161 research outputs found

    No collective neutrino flavor conversions during the supernova accretion phase

    Full text link
    The large neutrino fluxes emitted with a distinct flavor hierarchy from core-collapse supernovae (SNe) during the post-bounce accretion phase, offer the best opportunity to detect effects from neutrino flavor oscillations. We perform a dedicated study of the SN neutrino flavor evolution during the accretion phase, using results from recent neutrino radiation hydrodynamics simulations. In contrast to what expected in the presence of only neutrino-neutrino interactions, we find that the multi-angle effects associated with the dense ordinary matter suppress collective oscillations. This is related to the high matter densities during the accretion phase in core-collapse SNe of massive iron-core progenitors. The matter suppression implies that neutrino oscillations will start outside the neutrino transport region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev- Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the case that the mixing angle θ13\theta_{13} is not very small.Comment: (4 pages, 4 eps figures, v2 revised version. Discussion clarified. Matches the version published on PRL

    Analysis of matter suppression in collective neutrino oscillations during the supernova accretion phase

    Full text link
    The usual description of self-induced neutrino flavor conversions in core collapse supernovae (SNe) is based on the dominance of the neutrino density n_nu over the net electron density n_e. However, this condition is not met during the post-bounce accretion phase, when the dense matter in a SN is piled up above the neutrinosphere. As recently pointed-out, a dominant matter term in the anisotropic SN environment would dephase the flavor evolution for neutrinos traveling on different trajectories, challenging the occurrence of the collective behavior in the dense neutrino gas. Using the results from recent long term simulations of core-collapse SN explosions, based on three flavor Boltzmann neutrino transport in spherical symmetry, we find that both the situations of complete matter suppression (when n_e >> n_nu) and matter-induced decoherence (when n_e \gtrsim n_nu) of flavor conversions are realized during the accretion phase. The matter suppression at high densities prevents any possible impact of the neutrino oscillations on the neutrino heating and hence on the dynamics of the explosion. Furthermore, it changes the interpretation of the Earth matter effect on the SN neutrino signal during the accretion phase, allowing the possibility of the neutrino mass hierarchy discrimination at not too small values of the leptonic mixing angle \theta_{13} (i.e. \sin^2{\theta}_{13} \gtrsim 10^{-3}).Comment: Revised version (15 pages, 13 eps figures) published on Physical Review D. Discussion enlarged, references update

    Bridging the gap in the mass-size relation of compact galaxies with MaNGA

    Full text link
    We present the analysis of the full MaNGA DR17 sample to characterize its population of compact galaxies. We focus on galaxies that fill the stellar mass (M_{\star}) gap between compact elliptical galaxies (cEs; 8log(M/M)108 \lesssim \log \left(M_{\star} / M_{\odot} \right) \lesssim 10) and compact massive galaxies (CMGs; 10log(M/M)10 \lesssim \log \left(M_{\star} / M_{\odot} \right)). We study their stellar populations and kinematics to reveal how their properties depend on stellar mass. We select compact galaxies in the MaNGA DR17 sample according to their effective radius (ReR_e) and stellar mass. 37 galaxies fulfill our selection criteria in the bridging region between cEs and CMGs. We derive their kinematics and stellar population parameters from the stacked spectra at 1~ReR_e using a full spectral fitting routine. We then classify the selected compact galaxies in three main groups based on their stellar population properties. One of the groups shows characteristics compatible with relic galaxies, i.e. galaxies that have remained mostly unchanged since their early formation epoch (z2z \sim 2). Another group shows more extended and continuous star formation histories (SFHs). The third group shows a low star-forming rate at initial times, which increases at around 4\sim4 Gyr. We compare the derived properties of the selected galaxies with those of previously studied compact galaxies at different mass ranges. The selected galaxies successfully fill the mass gap between cEs and CMGs. Their properties are compatible with the assumption that the scaling relations of compact galaxies at different mass ranges are related, although galaxies in the first group are clear outliers in the fundamental plane, suggesting different formation mechanisms for this relic population.Comment: 16 pages, 14 figures, 2 table

    Home i natura: els usos tradicionals del sòl i la pesca

    Get PDF
    Cabrera, lloc de pas de les antigues rutes marítimes de la mediterrània occidental, illa en els límits de l'habitable, ha estat escassament poblada. La naturalesa, d'una banda, i els condicionants socials i històrics, de l'altra, s'han aliat per allunyar la societat. Així i tot, l'home ha utilitzat els recursos naturals de l'Arxipèlag. Les activitats ramadera, agrícola, forestal i pesquera es repeteixen al llarg de la història amb intensitat variable. D'altra banda, l'ús militar i, més modernament, el turístic, també han tingut repercussions sobre el paisatge. En aquest article feim un breu repàs de les activitats tradicionals de l'home a Cabrera, analitzant-les des de la perspectiva històrica.The harsh nature and social and historic constraints have made Cabrera be nearly always very scantly populated during all its history. The antique merchant ship routes have made use of the port of Cabrera, and the natural resources of the island have always been exploited (farming, livestock raising and fishing). In more recent times Cabrera has been used military and now days the most important usage of the archipelago is tourism. We discuss the traditional activities of man on Cabrera with a historical perspective

    High energy neutrino yields from astrophysical sources II: Magnetized sources

    Full text link
    We calculate the yield of high energy neutrinos produced in astrophysical sources for arbitrary interaction depths τ0\tau_0 and magnetic field strengths BB. We take into account energy loss processes like synchrotron radiation and diffusion of charged particles in turbulent magnetic fields as well as the scattering of secondaries on background photons and the direct production of charm neutrinos. Meson-photon interactions are simulated with an extended version of the SOPHIA model. Diffusion leads to an increased path-length before protons leave the source of size R_s and therefore magnetized sources lose their transparency below the energy E1018eV(Rs/pc)(B/mG)τ01/αE\sim 10^{18}{\rm eV} (R_s/{\rm pc}) (B/{\rm mG}) \tau_0^{1/\alpha}, with α=1/3\alpha=1/3 and 1 for Kolmogorov and Bohm diffusion, respectively. Moreover, the neutrino flux is suppressed above the energy where synchrotron energy losses become important for charged particles. As a consequence, the energy spectrum and the flavor composition of neutrinos are strongly modified both at low and high energies even for sources with \tau_0\lsim 1.Comment: 15 pages, 16 figure

    Interplay between collective effects and nonstandard interactions of supernova neutrinos

    Get PDF
    We consider the effect of non-standard neutrino interactions (NSI, for short) on the propagation of neutrinos through the supernova (SN) envelope within a three-neutrino framework and taking into account the presence of a neutrino background. We find that for given NSI parameters, with strength generically denoted by εij, neutrino evolution exhibits a significant time dependence. For |εττ|≳ 10−3 the neutrino survival probability may become sensitive to the θ23 octant and the sign of εττ. In particular, if εττ≳10−2 an internal I-resonance may arise independently of the matter density. For typical values found in SN simulations this takes place in the same dense-neutrino region above the neutrinosphere where collective effects occur, in particular during the synchronization regime. This resonance may lead to an exchange of the neutrino fluxes entering the bipolar regime. The main consequences are (i) bipolar conversion taking place for normal neutrino mass hierarchy and (ii) a transformation of the flux of low-energy νe, instead of the usual spectral swap

    High-Throughput Task to Study Memory Recall During Spatial Navigation in Rodents

    Get PDF
    © Copyright © 2020 Morales, Tomàs, Dalmau, de la Rocha and Jercog. Spatial navigation is one of the most frequently used behavioral paradigms to study memory formation in rodents. Commonly used tasks to study memory are labor-intensive, preventing the simultaneous testing of multiple animals with the tendency to yield a low number of trials, curtailing the statistical power. Moreover, they are not tailored to be combined with neurophysiology recordings because they are not based on overt stereotyped behavioral responses that can be precisely timed. Here we present a novel task to study long-term memory formation and recall during spatial navigation. The task consists of learning sessions during which mice need to find the rewarding port that changes from day to day. Hours after learning, there is a recall session during which mice search for the location of the memorized rewarding port. During the recall sessions, the animals repeatedly poke the remembered port over many trials (up to ∼20) without receiving a reward (i.e., no positive feedback) as a readout of memory. In this task, mice show memory of port locations learned on up to three previous days. This eight-port maze task requires minimal human intervention, allowing for simultaneous and unsupervised testing of several mice in parallel, yielding a high number of recall trials per session over many days, and compatible with recordings of neural activity

    Collective flavor transitions of supernova neutrinos

    Get PDF
    We give a very brief overview of collective effects in neutrino oscillations in core collapse supernovae where refractive effects of neutrinos on themselves can considerably modify flavor oscillations, with possible repercussions for future supernova neutrino detection. We discuss synchronized and bipolar oscillations, the role of energy and angular neutrino modes, as well as three-flavor effects. We close with a short summary and some open questions.This work was supported by the Deutsche Forschungsgemeinschaft (SFB 676 “Particles, Strings and the Early Universe: The Structure of Matter and Space-Time) and by the European Union (contracts No. RII3-CT-2004-506222)
    corecore