6 research outputs found

    In situ synthesis, structural chemistry and vibrational spectroscopy of Zn-doped Ca5Mg4(VO4)6

    Get PDF
    The phase formation of the solid solution Ca5Mg4–xZnx(VO4)6 (0≤x≤4) was studied in situ using differential scanning calorimetry and high-temperature X-Ray powder diffraction (XRPD). XRPD analysis shows the appearance of unavoidable secondary pyrovanadate phases using conventional synthesis methods. The local structure of the solid solution was verified by vibrational spectroscopy. The analysis of the infrared and Raman spectroscopy data allows establishing the main features between vanadate garnets and their isostructural analogs among natural silicates

    Study of the Effect of Squalene Epoxidase Activity on Squalene Biosynthesis by Yeast Saccharomyces Cerevisiae VGSh-2

    Get PDF
    The researchers of this study investigated the biosynthesis of squalene by the yeast S. cerevisiae VGSH-2 through the activity of squalene epoxidase, which is a key enzyme in the conversion of squalene to ergosterol. It has been established that under aerobic conditions the antimycotic drug terbinafine promotes the switching of ergosterol formation to squalene synthesis. This switch occurs through specific inhibition of the squalene epoxidase of the yeast S. cerevisiae VGSH-2, thus increasing the biosynthetic ability of the yeast towards squalene. According to the results of this study, the optimal concentration of terbinofine in the nutrient medium was 0.3 μmol / cm3 . This concentration led to a 5-fold decrease in squalene epoxidase activity and a 7-8 times increase in squalene synthesis. The results obtained can be used to develop a competitive technology for the industrial production of squalene by microbial synthesis. Keywords: squalene, yeast, biosynthesis, inhibition of activity, terbinafine, squalene epoxidase, Saccharomices cerevisiae VGSH-

    Diversities in the Gut Microbial Patterns in Patients with Atherosclerotic Cardiovascular Diseases and Certain Heart Failure Phenotypes

    No full text
    To continue progress in the treatment of cardiovascular disease, there is a need to improve the overall understanding of the processes that contribute to the pathogenesis of cardiovascular disease (CVD). Exploring the role of gut microbiota in various heart diseases is a topic of great interest since it is not so easy to find such reliable connections despite the fact that microbiota undoubtedly affect all body systems. The present study was conducted to investigate the composition of gut microbiota in patients with atherosclerotic cardiovascular disease (ASCVD) and heart failure syndromes with reduced ejection fraction (HFrEF) and HF with preserved EF (HFpEF), and to compare these results with the microbiota of individuals without those diseases (control group). Fecal microbiota were evaluated by three methods: living organisms were determined using bacterial cultures, total DNA taxonomic composition was estimated by next generation sequencing (NGS) of 16S rRNA gene (V3–V4) and quantitative assessment of several taxa was performed using qPCR (quantitative polymerase chain reaction). Regarding the bacterial culture method, all disease groups demonstrated a decrease in abundance of Enterococcus faecium and Enterococcus faecalis in comparison to the control group. The HFrEF group was characterized by an increased abundance of Streptococcus sanguinus and Streptococcus parasanguinis. NGS analysis was conducted at the family level. No significant differences between patient’s groups were observed in alpha-diversity indices (Shannon, Faith, Pielou, Chao1, Simpson, and Strong) with the exception of the Faith index for the HFrEF and control groups. Erysipelotrichaceae were significantly increased in all three groups; Streptococcaceae and Lactobacillaceae were significantly increased in ASCVD and HFrEF groups. These observations were indirectly confirmed with the culture method: two species of Streptococcus were significantly increased in the HFrEF group and Lactobacillus plantarum was significantly increased in the ASCVD group. The latter observation was also confirmed with qPCR of Lactobacillus sp. Acidaminococcaceae and Odoribacteraceae were significantly decreased in the ASCVD and HFrEF groups. Participants from the HFpEF group showed the least difference compared to the control group in all three study methods. The patterns found expand the knowledge base on possible correlations of gut microbiota with cardiovascular diseases. The similarities and differences in conclusions obtained by the three methods of this study demonstrate the need for a comprehensive approach to the analysis of microbiota
    corecore