89 research outputs found

    A Model System for In Vitro Studies of Bank Vole Borne Viruses

    Get PDF
    The bank vole (Myodes glareolus) is a common small mammal in Europe and a natural host for several important emerging zoonotic viruses, e.g. Puumala hantavirus (PUUV) that causes hemorrhagic fever with renal syndrome (HFRS). Hantaviruses are known to interfere with several signaling pathways in infected human cells, and HFRS is considered an immune-mediated disease. There is no in vitro-model available for infectious experiments in bank vole cells, nor tools for analyses of bank vole immune activation and responses. Consequently, it is not known if there are any differences in the regulation of virus induced responses in humans compared to natural hosts during infection. We here present an in vitro-model for studies of bank vole borne viruses and their interactions with natural host cell innate immune responses. Bank vole embryonic fibroblasts (VEFs) were isolated and shown to be susceptible for PUUV-infection, including a wild-type PUUV strain (only passaged in bank voles). The significance of VEFs as a model system for bank vole associated viruses was further established by infection studies showing that these cells are also susceptible to tick borne encephalitis, cowpox and Ljungan virus. The genes encoding bank vole IFN-β and Mx2 were partially sequenced and protocols for semi-quantitative RT-PCR were developed. Interestingly, PUUV did not induce an increased IFN-β or Mx2 mRNA expression. Corresponding infections with CPXV and LV induced IFN-β but not Mx2, while TBEV induced both IFN-β and Mx2

    Surface strength of materials to the method of friction

    Get PDF
    Influenza A virus (IAV) has its natural reservoir in wild waterfowl, and emerging human IAVs often contain gene segments from avian viruses. The active drug metabolite of oseltamivir (oseltamivir carboxylate [OC]), stockpiled as Tamiflu for influenza pandemic preparedness, is not removed by conventional sewage treatment and has been detected in river water. There, it may exert evolutionary pressure on avian IAV in waterfowl, resulting in the development of resistant viral variants. A resistant avian IAV can circulate among wild birds only if resistance does not restrict viral fitness and if the resistant virus can persist without continuous drug pressure. In this in vivo mallard (Anas platyrhynchos) study, we tested whether an OC-resistant avian IAV (H1N1) strain with an H274Y mutation in the neuraminidase (NA-H274Y) could retain resistance while drug pressure was gradually removed. Successively infected mallards were exposed to decreasing levels of OC, and fecal samples were analyzed for the neuraminidase sequence and phenotypic resistance. No reversion to wild-type virus was observed during the experiment, which included 17 days of viral transmission among 10 ducks exposed to OC concentrations below resistance induction levels. We conclude that resistance in avian IAV that is induced by exposure of the natural host to OC can persist in the absence of the drug. Thus, there is a risk that human-pathogenic IAVs that evolve from IAVs circulating among wild birds may contain resistance mutations. An oseltamivir-resistant pandemic IAV would pose a substantial public health threat. Therefore, our observations underscore the need for prudent oseltamivir use, upgraded sewage treatment, and surveillance for resistant IAVs in wild birds

    Spatio-temporal dynamics and aetiology of proliferative leg skin lesions in wild British finches

    Get PDF
    Proliferative leg skin lesions have been described in wild finches in Europe although there have been no large-scale studies of their aetiology or epizootiology to date. Firstly, disease surveillance, utilising public reporting of observations of live wild finches was conducted in Great Britain (GB) and showed proliferative leg skin lesions in chaffinches (Fringilla coelebs) to be widespread. Seasonal variation was observed, with a peak during the winter months. Secondly, pathological investigations were performed on a sample of 39 chaffinches, four bullfinches (Pyrrhula pyrrhula), one greenfinch (Chloris chloris) and one goldfinch (Carduelis carduelis) with proliferative leg skin lesions and detected Cnemidocoptes sp. mites in 91% (41/45) of affected finches and from all species examined. Fringilla coelebs papillomavirus (FcPV1) PCR was positive in 74% (23/31) of birds tested: a 394 base pair sequence was derived from 20 of these birds, from all examined species, with 100% identity to reference genomes. Both mites and FcPV1 DNA were detected in 71% (20/28) of birds tested for both pathogens. Histopathological examination of lesions did not discriminate the relative importance of mite or FcPV1 infection as their cause. Development of techniques to localise FcPV1 within lesions is required to elucidate the pathological significance of FcPV1 DNA detection.We thank the members of the public and BTO Garden BirdWatch participants who reported garden bird morbidity and mortality incidents and our colleagues, Katie Beckmann, Shaheed Macgregor, Ricardo Castro Cesar de Sa, Lydia Franklinos and Tim Hopkins from the Zoological Society of London; Kirsi Peck from the Royal Society for the Protection of Birds; BTO staff members in the Garden BirdWatch team; the staff at Abbey Veterinary Services and the Animal & Plant Health Agency (Daniel Hicks, Richard Irvine, Alejandro Núñez and Scott Reid) for their assistance with this investigation. This work was financially supported by the following organisations; Birdcare Standards Association, British Trust for Ornithology, British Veterinary Association Animal Welfare Foundation, CJ Wildbird Foods, Cranswick Pet Products, UK Department for the Environment Food & Rural Affairs and Welsh Government through the Animal & Plant Health Agency’s Diseases of Wildlife Scheme Scanning Surveillance Programme (Project ED1600), Esmée Fairbairn Foundation, Gardman Ltd, Institute of Zoology, Royal Society for the Protection of Birds and the Universities Federation for Animal Welfare. RAJW was supported by the Moncloa of Excellence PICATA programme and Crafoord Foundation Sweden (grant number 20160971). Molecular and sequencing costs were funded by the Spanish Ministry of Science and Innovation, (Ref: CGL2013-41642-P/BOS)

    Эффективность работы сплит-системы в режиме теплового насоса

    Get PDF
    Рассмотрены проблемы, возникающие во время работы сплит-системы в режиме теплового насоса и предложена экспериментальная установка, которая даст возможность их исследовать, решить или минимизировать. Разработана методика проведения исследования, обработки полученных данных и расчета показателей эффективности работы сплит-системы в режиме воздушного теплового насоса. Введено понятие цикличности работы сплит-системы и выполнено разделение рабочего цикла на отдельные самостоятельные составляющие. Предложено использовать поправочный коэффициент, который дает возможность получать действительные значения эффективности любого воздушного теплового насоса сплит-системы. Проведена апробация полученных результатов с данными фирм-производителей сплит-систем и выделены особенности, влияющие на значение коэффициента трансформации при использовании разных методов расчета.The problems arising in the operation of the split systems in the thermal pump mode are considered and an experimental unit is proposed which will enable to study, to solve or to minimize them. The methods of the studying, data obtained processing and calculation of the efficiency indices for the split system operation in the mode of the air thermal pump are developed. The notion of cyclicity of the split system operation is introduced and the operation cycle division into separate independent components is provided. It is proposed to use coefficient of correction which enables to obtain actual efficiency values of any air thermal pump of the split system. Testing and comparison of the data obtained with the data of the split system manufacturing companies and their approbation are carried out. The specific features having an influence on the value of transformation ratio when using different methods of calculation are singled out

    Heterosubtypic Immunity to Influenza A Virus Infections in Mallards May Explain Existence of Multiple Virus Subtypes

    Get PDF
    Wild birds, particularly duck species, are the main reservoir of influenza A virus (IAV) in nature. However, knowledge of IAV infection dynamics in the wild bird reservoir, and the development of immune responses, are essentially absent. Importantly, a detailed understanding of how subtype diversity is generated and maintained is lacking. To address this, 18,679 samples from 7728 Mallard ducks captured between 2002 and 2009 at a single stopover site in Sweden were screened for IAV infections, and the resulting 1081 virus isolates were analyzed for patterns of immunity. We found support for development of homosubtypic hemagglutinin (HA) immunity during the peak of IAV infections in the fall. Moreover, re-infections with the same HA subtype and related prevalent HA subtypes were uncommon, suggesting the development of natural homosubtypic and heterosubtypic immunity (p-value = 0.02). Heterosubtypic immunity followed phylogenetic relatedness of HA subtypes, both at the level of HA clades (p-value = 0.04) and the level of HA groups (p-value = 0.05). In contrast, infection patterns did not support specific immunity for neuraminidase (NA) subtypes. For the H1 and H3 Clades, heterosubtypic immunity showed a clear temporal pattern and we estimated within-clade immunity to last at least 30 days. The strength and duration of heterosubtypic immunity has important implications for tran

    The swan genome and transcriptome, its not all black and white

    Get PDF
    BACKGROUND: The Australian black swan (Cygnus atratus) is an iconic species with contrasting plumage to that of the closely related northern hemisphere white swans. The relative geographic isolation of the black swan may have resulted in a limited immune repertoire and increased susceptibility to infectious diseases, notably infectious diseases from which Australia has been largely shielded. Unlike mallard ducks and the mute swan (Cygnus olor), the black swan is extremely sensitive to highly pathogenic avian influenza. Understanding this susceptibility has been impaired by the absence of any available swan genome and transcriptome information. RESULTS: Here, we generate the first chromosome-length black and mute swan genomes annotated with transcriptome data, all using long-read based pipelines generated for vertebrate species. We use these genomes and transcriptomes to show that unlike other wild waterfowl, black swans lack an expanded immune gene repertoire, lack a key viral pattern-recognition receptor in endothelial cells and mount a poorly controlled inflammatory response to highly pathogenic avian influenza. We also implicate genetic differences in SLC45A2 gene in the iconic plumage of the black swan. CONCLUSION: Together, these data suggest that the immune system of the black swan is such that should any avian viral infection become established in its native habitat, the black swan would be in a significant peril. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-022-02838-0

    Transient Expression of Hemagglutinin Antigen from Low Pathogenic Avian Influenza A (H7N7) in Nicotiana benthamiana

    Get PDF
    The influenza A virus is of global concern for the poultry industry, especially the H5 and H7 subtypes as they have the potential to become highly pathogenic for poultry. In this study, the hemagglutinin (HA) of a low pathogenic avian influenza virus of the H7N7 subtype isolated from a Swedish mallard Anas platyrhynchos was sequenced, characterized and transiently expressed in Nicotiana benthamiana. Recently, plant expression systems have gained interest as an alternative for the production of vaccine antigens. To examine the possibility of expressing the HA protein in N. benthamiana, a cDNA fragment encoding the HA gene was synthesized de novo, modified with a Kozak sequence, a PR1a signal peptide, a C-terminal hexahistidine (6×His) tag, and an endoplasmic retention signal (SEKDEL). The construct was cloned into a Cowpea mosaic virus (CPMV)-based vector (pEAQ-HT) and the resulting pEAQ-HT-HA plasmid, along with a vector (pJL3:p19) containing the viral gene-silencing suppressor p19 from Tomato bushy stunt virus, was agro-infiltrated into N. benthamiana. The highest gene expression of recombinant plant-produced, uncleaved HA (rHA0), as measured by quantitative real-time PCR was detected at 6 days post infiltration (dpi). Guided by the gene expression profile, rHA0 protein was extracted at 6 dpi and subsequently purified utilizing the 6×His tag and immobilized metal ion adsorption chromatography. The yield was 0.2 g purified protein per kg fresh weight of leaves. Further molecular characterizations showed that the purified rHA0 protein was N-glycosylated and its identity confirmed by liquid chromatography-tandem mass spectrometry. In addition, the purified rHA0 exhibited hemagglutination and hemagglutination inhibition activity indicating that the rHA0 shares structural and functional properties with native HA protein of H7 influenza virus. Our results indicate that rHA0 maintained its native antigenicity and specificity, providing a good source of vaccine antigen to induce immune response in poultry species

    The swan genome and transcriptome, it is not all black and white

    Get PDF
    Background: The Australian black swan (Cygnus atratus) is an iconic species with contrasting plumage to that of the closely related northern hemisphere white swans. The relative geographic isolation of the black swan may have resulted in a limited immune repertoire and increased susceptibility to infectious diseases, notably infectious diseases from which Australia has been largely shielded. Unlike mallard ducks and the mute swan (Cygnus olor), the black swan is extremely sensitive to highly pathogenic avian influenza. Understanding this susceptibility has been impaired by the absence of any available swan genome and transcriptome information. Results: Here, we generate the first chromosome-length black and mute swan genomes annotated with transcriptome data, all using long-read based pipelines generated for vertebrate species. We use these genomes and transcriptomes to show that unlike other wild waterfowl, black swans lack an expanded immune gene repertoire, lack a key viral pattern-recognition receptor in endothelial cells and mount a poorly controlled inflammatory response to highly pathogenic avian influenza. We also implicate genetic differences in SLC45A2 gene in the iconic plumage of the black swan. Conclusion: Together, these data suggest that the immune system of the black swan is such that should any avian viral infection become established in its native habitat, the black swan would be in a significant peril

    Molecular identification of papillomavirus in ducks

    No full text
    Tis work was supported by the Crafoord Foundation Sweden (grants number 20160971 and 20170671). Tis is contribution no. 306 from Ottenby Bird Observatory.Papillomaviruses infect many vertebrates, including birds. Persistent infections by some strains can cause malignant proliferation of cells (i.e. cancer), though more typically infections cause benign tumours, or may be completely subclinical. Sometimes extensive, persistent tumours are recorded–notably in chaffinches and humans. In 2016, a novel papillomavirus genotype was characterized from a duck faecal microbiome, in Bhopal, India; the sixth papillomavirus genotype from birds. Prompted by this finding, we screened 160 cloacal swabs and 968 faecal samples collected from 299 ducks sampled at Ottenby Bird Observatory, Sweden in 2015, using a newly designed real-time PCR. Twenty one samples (1.9%) from six individuals (2%) were positive. Eighteen sequences were identical to the published genotype, duck papillomavirus 1. One additional novel genotype was recovered from three samples. Both genotypes were recovered from a wild strain domestic mallard that was infected for more than 60 days with each genotype. All positive individuals were adult (P=0.004). Significantly more positive samples were detected from swabs than faecal samples (P<0.0001). Sample type data suggests transmission may be via direct contact, and only infrequently, via the oral-faecal route. Infection in only adult birds supports the hypothesis that this virus is sexually transmitted, though more work is required to verify thisDepto. de Genética, Fisiología y MicrobiologíaFac. de Ciencias BiológicasTRUEpu

    Freeze-drying can replace cold-chains for transport and storage of fecal microbiome samples

    No full text
    Background: The transport and storage of samples in temperatures of minus 80 °C is commonly considered as the gold standard for microbiome studies. However, studies conducting sample collection at remote sites without a reliable cold-chain would benefit from a sample preservation method that allows transport and storage at ambient temperature. Methods: In this study we compare alpha diversity and 16S microbiome composition of 20 fecal sample replicates from Damaraland mole-rats (Fukomys damarensis) preserved in a minus 80 °C freezer and transported on dry ice to freeze-dried samples that were stored and transported in ambient temperature until DNA extraction. Results: We found strong correlations between relative abundances of Amplicon Sequence Variants (ASVs) between preservation treatments of the sample, no differences in alpha diversity measures between the two preservation treatments and minor effects of the preservation treatment on beta diversity measures. Our results show that freeze-drying samples can be a useful method for cost-effective transportation and storage of microbiome samples that yields quantitatively almost indistinguishable results in 16S microbiome analyses as those stored in minus 80 °C
    corecore