38 research outputs found

    Twin chromatic indices of some graphs with maximum degree 3

    Get PDF
    Let k ≥ 2 be an integer and G be a connected graph of order at least 3. A twin k-edge coloring of G is a proper edge coloring of G that uses colors from k and that induces a proper vertex coloring on G where the color of a vertex v is the sum (in k ) of the colors of the edges incident with v. The smallest integer k for which G has a twin k-edge coloring is the twin chromatic index of G and is denoted by . In this paper, we determine the twin chromatic indices of circulant graphs , and some generalized Petersen graphs such as GP(3s, k), GP(m, 2), and GP(4s, l) where n ≥ 6 and n ≡ 0 (mod 4), s ≥ 1, k ≢ 0 (mod 3), m ≥ 3 and m {4, 5}, and l is odd. Moreover, we provide some sufficient conditions for a connected graph with maximum degree 3 to have twin chromatic index greater than 3

    On twin edge colorings in m-ary trees

    Get PDF
    Let k ≥ 2 be an integer and G be a connected graph of order at least 3. A twin k-edge coloring of G is a proper edge coloring of G that uses colors from ℤk and that induces a proper vertex coloring on G where the color of a vertex v is the sum (in ℤk) of the colors of the edges incident with v. The smallest integer k for which G has a twin k-edge coloring is the twin chromatic index of G and is denoted by χ′t(G). In this paper, we study the twin edge colorings in m-ary trees for m ≥ 2; in particular, the twin chromatic indexes of full m-ary trees that are not stars, r-regular trees for even r ≥ 2, and generalized star graphs that are not paths nor stars are completely determined. Moreover, our results confirm the conjecture that χ′t(G)≤Δ(G)+2 for every connected graph G (except C5) of order at least 3, for all trees of order at least 3

    Sigma chromatic numbers of the middle graph of some families of graphs

    Get PDF
    Let G be a nontrivial connected graph and let c : V (G) → be a vertex coloring of G, where adjacent vertices may have the same color. For a vertex υ of G, the color sum σ(υ) of υ is the sum of the colors of the vertices adjacent to υ. The coloring c is said to be a sigma coloring of G if σ(u) ≠ σ(υ) whenever u and υ are adjacent vertices in G. The minimum number of colors that can be used in a sigma coloring of G is called the sigma chromatic number of G and is denoted by σ(G). In this study, we investigate sigma coloring in relation to a unary graph operation called middle graph. We will show that the sigma chromatic number of the middle graph of any path, cycle, sunlet graph, tadpole graph, ladder graph, or triangular snake graph is 2 except for some small cases. We also determine the sigma chromatic number of the middle graph of stars

    On the set chromatic number of the join and comb product of graphs

    Get PDF
    A vertex coloring c : V(G) → of a non-trivial connected graph G is called a set coloring if NC(u) ≠ NC(v) for any pair of adjacent vertices u and v. Here, NC(x) denotes the set of colors assigned to vertices adjacent to x. The set chromatic number of G, denoted by χs (G), is defined as the fewest number of colors needed to construct a set coloring of G. In this paper, we study the set chromatic number in relation to two graph operations: join and comb prdocut. We determine the set chromatic number of wheels and the join of a bipartite graph and a cycle, the join of two cycles, the join of a complete graph and a bipartite graph, and the join of two bipartite graphs. Moreover, we determine the set chromatic number of the comb product of a complete graph with paths, cycles, and large star graphs

    On the Total Set Chromatic Number of Graphs

    Get PDF
    Given a vertex coloring c of a graph, the neighborhood color set of a vertex is defined to be the set of all of its neighbors’ colors. The coloring c is called a set coloring if any two adjacent vertices have different neighborhood color sets. The set chromatic number χs(G) of a graph G is the minimum number of colors required in a set coloring of G. In this work, we investigate a total analog of set colorings, that is, we study set colorings of the total graph of graphs. Given a graph G = (V; E); its total graph T (G) is the graph whose vertex set is V ∪ E and in which two vertices are adjacent if and only if their corresponding elements in G are adjacent or incident. First; we establish sharp bounds for the set chromatic number of the total graph of a graph. Furthermore, we study the set colorings of the total graph of different families of graphs

    The Set Chromatic Numbers of the Middle Graph of Graphs

    Get PDF
    For a simple connected graph G; let c : V (G) → N be a vertex coloring of G; where adjacent vertices may be colored the same. The neighborhood color set of a vertex v; denoted by NC(v); is the set of colors of the neighbors of v. The coloring c is called a set coloring provided that NC(u) neq NC(v) for every pair of adjacent vertices u and v of G. The minimum number of colors needed for a set coloring of G is referred to as the set chromatic number of G and is denoted by χ_s(G). In this work; the set chromatic number of graphs is studied inrelation to the graph operation called middle graph. Our results include the exact set chromatic numbers of the middle graph of cycles; paths; star graphs; double-star graphs; and some trees of height 2. Moreover; we establish the sharpness of some bounds on the set chromatic number of general graphs obtained using this operation. Finally; we develop an algorithm for constructingan optimal set coloring of the middle graph of trees of height 2 under some assumptions

    On the Total Set Chromatic Number of Graphs

    Get PDF
    Given a vertex coloring c of a graph, the neighborhood color set of a vertex is defined to be the set of all of its neighbors’ colors. The coloring c is called a set coloring if any two adjacent vertices have different neighborhood color sets. The set chromatic number χs(G) of a graph G is the minimum number of colors required in a set coloring of G. In this work, we investigate a total analog of set colorings; that is, we study set colorings of the total graph of graphs. Given a graph G = (V, E), its total graph T(G) is the graph whose vertex set is V ∪ E and in which two vertices are adjacent if and only if their corresponding elements in G are adjacent or incident. First, we establish sharp bounds for the set chromatic number of the total graph of a graph. Furthermore, we study the set colorings of the total graph of different families of graphs

    Sigma Coloring and Edge Deletions

    Get PDF
    A vertex coloring c : V(G) → N of a non-trivial graph G is called a sigma coloring if σ(u) is not equal to σ(v) for any pair of adjacent vertices u and v. Here, σ(x) denotes the sum of the colors assigned to vertices adjacent to x. The sigma chromatic number of G, denoted by σ(G), is defined as the fewest number of colors needed to construct a sigma coloring of G. In this paper, we consider the sigma chromatic number of graphs obtained by deleting one or more of its edges. In particular, we study the difference σ(G)−σ(G−e) in general as well as in restricted scenarios; here, G−e is the graph obtained by deleting an edge e from G. Furthermore, we study the sigma chromatic number of graphs obtained via multiple edge deletions in complete graphs by considering the complements of paths and cycles

    The sigma chromatic number of the Sierpinski gasket graphs and the Hanoi graphs

    Get PDF
    A vertex coloring c : V(G) → of a non-trivial connected graph G is called a sigma coloring if σ(u) ≠ σ(v) for any pair of adjacent vertices u and v. Here, σ(x) denotes the sum of the colors assigned to vertices adjacent to x. The sigma chromatic number of G, denoted by σ(G), is defined as the fewest number of colors needed to construct a sigma coloring of G. In this paper, we determine the sigma chromatic numbers of the Sierpiński gasket graphs and the Hanoi graphs. Moreover, we prove the uniqueness of the sigma coloring for Sierpiński gasket graphs

    On the Sigma Chromatic Number of the Zero-Divisor Graphs of the Ring of Integers Modulo n

    Get PDF
    The zero-divisor graph of a commutative ring R with unity is the graph Γ(R) whose vertex set is the set of nonzero zero divisors of R; where two vertices are adjacent if and only if their product in R is zero. A vertex coloring c : V (G) → Bbb N of a non-trivial connected graph G is called a sigma coloring if σ(u) = σ(ν) for any pair of adjacent vertices u and v. Here; σ(χ) denotes the sum of the colors assigned to vertices adjacent to x. The sigma chromatic number of G; denoted by σ(G); is defined as the least number of colors needed to construct a sigma coloring of G. In this paper; we analyze the structure of the zero-divisor graph of rings Bbb Zn; where n = pn11 P2n2 ...Pmnm; where m,ni,n2; ...,nm are positive integers and p1,p2; ...,pm are distinct primes. The analysis is carried out by partitioning the vertex set of such zero-divisor graphs and analyzing the adjacencies; cardinality; and the degree of the vertices in each set of the partition. Using these properties; we determine the sigma chromatic number of these zero-divisor graphs
    corecore