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On the set chromatic number of the join and comb

product of graphs

B C L Felipe, A D Garciano and M A C Tolentino

Department of Mathematics, School of Science and Engineering, Loyola Schools,
Ateneo de Manila University, Philippines

E-mail: bryanceasarfelipe@gmail.com, agarciano@ateneo.edu, mtolentino@ateneo.edu

Abstract. A vertex coloring c : V (G) → N of a non-trivial connected graph G is called a set
coloring if NC(u) 6= NC(v) for any pair of adjacent vertices u and v. Here, NC(x) denotes the
set of colors assigned to vertices adjacent to x. The set chromatic number of G, denoted by
χS(G), is defined as the fewest number of colors needed to construct a set coloring of G. In this
paper, we study the set chromatic number in relation to two graph operations: join and comb
prdocut. We determine the set chromatic number of wheels and the join of a bipartite graph
and a cycle, the join of two cycles, the join of a complete graph and a bipartite graph, and the
join of two bipartite graphs. Moreover, we determine the set chromatic number of the comb
product of a complete graph with paths, cycles, and large star graphs.

1. Introduction
A vertex or edge coloring c of a graph G is said to be neighbor-distinguishing if c induces a
vertex labelling in which every pair of adjacent vertices in G is assigned distinct labels. Aside
from the well-studied proper vertex coloring, various neighbor-distinguishing colorings have also
been introduced and discussed in the literature (for examples, see [3], [4], [6], [7], [8]).

In [5], Chartrand, Okamoto, and Zhang introduced and explored the following neighbor-
distingushing vertex coloring that makes use of neighborhood color sets.

Definition 1.1. [5] For a nontrivial connected graph G, let c : V (G) → N be a vertex coloring
of G where adjacent vertices may be assigned the same color.

(i) For a set S ⊆ V (G), define the set c(S) of colors assigned to the vertices of S by

c(S) = {c(v) : v ∈ S}.

(ii) The neighborhood color set of v, denoted by NC(v), is the set c(N(v)); that is, NC(v) is
the set of colors of the neighbors of v.

(iii) The coloring c is called set neighbor-distinguishing, or simply a set coloring, if
NC(u) 6= NC(v) for every pair u, v of adjacent vertices of G.

(iv) The minimum number of colors required in a set coloring of G is called the set chromatic
number of G and is denoted by χs(G).

In their paper, Chartrand et al. studied the set chromatic numbers of some families of graphs
and established some bounds for the set chromatic number in terms of other graph parameters.
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It is clear that χs(G) ≤ χ(G). Moreover, results from [5] on the lower bound for χs are presented
below.

Proposition 1.2. [5] For every graph G,

(i) χs(G) ≥ dlog2(χ(G) + 1)e,
(ii) χs(G) ≥ 1 + dlog2(ω(G))e,
where χ(G) and ω(G) are the chromatic and clique numbers of G, respectively.

In this paper, we will study the set chromatic number of graphs in relation to two well-studied
graph operations: join and comb product. Section 2 will focus on the join of graphs. Our results
cover wheels and the join of a bipartite graph and a cycle, the join of two cycles, the join of a
complete graph and a bipartite graph, and the join of two bipartite graphs. Meanwhile, section
3 focuses on the comb product of graphs. We will determine the set chromatic number of the
comb product of a complete graph with paths, cycles, and large star graphs.

2. On the set chromatic number of the join of graphs
We present the definition of the join of two graphs below:

Definition 2.1. Let G and H be two vertex-disjoint graphs. The join G + H of G and H is
the graph whose vertex and edge sets are given by

V (G+H) = V (G) ∪ V (H),

E(G+H) = E(G) ∪ E(H) ∪ {gh : g ∈ V (G), h ∈ V (H)}.
It is well-known that χ(G + H) = χ(G) + χ(H). In relation to the set colorings, the join

of graphs has been studied in [10] by Okamoto et al. In particular, they have established the
following sharp bounds:

Theorem 2.2. [10] For every two graphs G and H,

max{χs(G) + dlog2 ω(H)e, χs(H) + dlog2 ω(G)e} ≤ χs(G+H) ≤ χs(G) + χs(H) + 1,

where ω(·) denotes the clique number of a graph.

Moreover, they also considered the join of graphs with complete graphs.

Theorem 2.3. [10] For a graph G and a positive integer p,

χs(G) + p− 1 ≤ χs(G+Kp) ≤ χs(G) + p.

While Theorems 2.2 and 2.3 focused on bounds for the set chromatic number of joins, our
results focus on the exact set chromatic number of a join of two graphs from well-known graph
families. We begin with the following.

Proposition 2.4. Let Wn be the wheel graph of order n. Then χs(W4) = 4 and χs(Wn) = 3
for n ≥ 5.

Proof. The wheel graph W4 is a complete graph of order 4. Hence, χs(W4) = 4. For
n ≥ 5, without loss of generality, suppose Wn = Cn + K1 such that Cn = v1, v2, ..., vn, v1
and V (K1) = {v0}. Suppose n is even; then χ(Wn) = 3, which implies that χs(Wn) = 3
as well. Now, suppose n is odd. Then χ(Wn) = 4 and χs(Wn) ≥ 3. We define a coloring
c : V (Wn)→ {1, 2, 3} as follows:

c(vi) =

 1, i ∈ {0, 1, 2, n},
2, i is odd and 3 ≤ i ≤ n− 1,
3, i is even and 3 ≤ i ≤ n− 1.

Then (refer to Fig. 1), it is easy to see that c is a set 3-coloring of Wn. Therefore, χs(Wn) = 3
for n ≥ 5.
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Figure 1. A set 3-coloring of Wn, with odd n ≥ 5.

We now consider the join of a bipartite graph with another bipartite graph, an odd cycle, or
a complete graph.

Theorem 2.5. Let B be a bipartite graph.

(i) If H is also a bipartite graph, then χs(B +H) = 4.

(ii) If Cn is an odd cycle, then χs(B + C3) = 5 and χs(B + Cn) = 4 for n ≥ 5.

(iii) If p is a positive integer, then χs(B +Kp) = p+ 2.

Proof. (i) Since χ(B + H) = 4, it follows that χs(B + H) is 3 or 4. Suppose there is a set
3-coloring c of B + H; then c1 := c|V (B) and c2 := c|V (H) are set colorings of B and H,
respectively. Clearly, neither c1 nor c2 can use all 3 colors; so we can assume that c1 uses
colors 1 and 2 while c2 uses colors 1 and 3.

Figure 2. A join of two bipartite graphs B and H.

As shown in Fig. 2, if v ∈ V (B), then NC(v) ∈ {{1, 3}, {1, 2, 3}}. On the other hand, if
w ∈ V (H), then NC(w) ∈ {{1, 2}, {1, 2, 3}}. Since χ(B) = χ(H) = 2, there must be a
vertex p in B and a vertex q in H whose NC is {1, 2, 3}. Since p and q are adjacent in
B +H, this proves that we cannot use 3 colors. Therefore, χs(B +H) = 4.

(ii) First, we have

4 = χs(C3) + dlog2 ω(B)e ≤ χs(B + C3) ≤ χ(B + C3) = 5.

Then χs(B + C3) = 4 or 5. By using an argument similar to that in (i), we can show that
B + C3 has no set 4-coloring; hence, χs(B + C3) = 5.

Now, consider B + Cn, where n ≥ 4. Then χs(B + Cn) ≥ χs(Cn) + dlog2 ω(B)e = 4.
Suppose B has partite sets V1 and V2 and Cn = v1, v2, ..., vn, v1. Define a coloring
c : V (G)→ {1, 2, 3, 4} as follows:



ICCGANT 2019

Journal of Physics: Conference Series 1538 (2020) 012009

IOP Publishing

doi:10.1088/1742-6596/1538/1/012009

4

c(v) =

{
1, v ∈ V1,
2, v ∈ V2,

and c(vi) =

 2, i ∈ {1, 2, n},
3, i is odd and 3 ≤ i ≤ n− 1,
4, i is even and 3 ≤ i ≤ n− 1.

Then, it is easy to see that c is a set 4-coloring of B + Cn; refer to Fig. 3. Hence,
χs(B + Cn) = 4.

Figure 3. A set 4-coloring of B + Cn, n ≥ 4.

(iii) By Theorem 2.3, p + 1 ≤ χs(B + Kp) ≤ p + 2. Suppose c is a set coloring of B + Kp that
uses only p+1 colors. Then |c(Kp)| = p and we can assume that c(Kp) = Np := {1, 2, ..., p}.
Let B1 and B2 be the partite sets of B. Then there is a non-isolated vertex v in B1

(without loss of generality) for which c(v) = p + 1. If y ∈ B2 is a neighbor of v, then
c(y) ∈ Np. Suppose c(y) = j ∈ Np. Let z be the vertex in Kp whose color is also j. Then
NC(z) = Np+1 = NC(y), which is not possible. Therefore, χs(B +Kp) = p+ 2.

We also determine the set chromatic number of the join of two odd cycles.

Proposition 2.6. Let n, k ≥ 3 be odd positive integers. Then

χs(Cn + Ck) =

{
6, if n = k = 3,
5, otherwise.

Proof. Suppose Cn = v1, v2, ..., vn, v1 and Ck = u1, u2, ..., uk, u1. Let G = Cn + Ck. Then
χs(G) ≥ χs(Cn) + dlog2 ω(Ck)e = 4. It is easy to show that G is not set 4-colorable. We now
consider four cases:

Case 1: n = k = 3. Since G = C3 + C3
∼= K6, χs(G) = 6.

Case 2: n = 3 and k ≥ 5. Define a coloring c : V (G)→ {1, 2, 3, 4, 5} as follows:

c(vi) =

 1, i = 1,
2, i = 2,
3, i = 3,

and c(ui) =

 1, i ∈ {1, 2, k},
4, i is odd and 3 ≤ i ≤ k − 1,
5, i is even and 3 ≤ i ≤ k − 1.

Then (refer to Fig. 4), it is easy to see that c is a set 5-coloring of G. Therefore, χs(C3+Ck) = 5
for k ≥ 5.
Case 3: n, k ≥ 5. Define a coloring f : V (G)→ {1, 2, 3, 4, 5} as follows:

f(vi) =

 1, i ∈ {1, 2, n},
2, i is odd, 3 ≤ i ≤ n− 1,
3, i is even, 3 ≤ i ≤ k − 1,

and f(ui) =

 1, i ∈ {1, 2, k},
4, i is odd, 3 ≤ i ≤ k − 1,
5, i is even, 3 ≤ i ≤ k − 1.
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Figure 4. A set 5-coloring of C3 + Ck, with odd k ≥ 5.

Figure 5. A set 5-coloring of Cn + Ck, with odd n, k ≥ 5.

Then (refer to Fig. 5), it is easy to see that c is a set 5-coloring of G. Therefore, χs(Cn+Ck) = 5
for n, k ≥ 5.

3. On the set chromatic number of comb products of graphs
In [5], Chartrand et al. studied the set chromatic number of a family of graphs denoted by Gn,t,
which is defined as follows: for an integer n ≥ 2, Gn,t is the graph of order n+ t obtained from
Kn with V (Kn) = {v1, v2, ..., vn} by adding t new vertices u1, u2, ..., ut (if t ≥ 1) and joining
each ui to vi for 1 ≤ i ≤ t. Their result for this family of graphs is as follows:

Proposition 3.1 (Chartrand et al. [5]). For n ≥ 2 and 0 ≤ t ≤ n, χs(Gn,t) = n.

When t = n, the graph Gn,n is, in fact, cor(Kn)—the corona of Kn; that is, it is the graph
obtained by adding a pendant edge at each vertex of Kn. The notion of the corona a graph can
be generalized using the notion of comb product (or rooted product), which we define below.

Definition 3.2. The comb product (or rooted product) of a graph G and a rooted graph H
is the graph obtained by taking |V (G)| copies of H, and for every vertex vi of G, identifying vi
with the root node of the ith copy of H.

More formally, if V (G) = {g1, ..., gn}, V (H) = {h1, ..., hm}, and h1 is the root of H, then the
rooted product of G with H, denoted by G Bh1 H, has vertex set V = {(gi, hj) : 1 ≤ i ≤ n, 1 ≤
j ≤ m} and edge set E = {(gi, h1)(gk, h1) : gigk ∈ E(G)}∪

⋃n
i=1{(gi, hj)(gi, hk) : hjhk ∈ E(H)}.

Hence, cor(Kn) is, in fact, Kn Br P2, where r is any vertex of P2. A direct consequence of
Proposition 3.1 is the following.
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Corollary 3.3. Let n ≥ 2, m ≥ 2, and r be a pendant vertex of Pm. Then χs(Kn Br Pm) = n.

The comb product of graphs is a well-studied graph operation and has been considered in
relation to several graph parameters and labellings (for examples, see [1], [2], [9], [11], [12]).

In this work, we focus on the comb product of complete graphs with well-known graph
families. We present below our first result, which concerns the comb products of complete
graphs with cycles or paths. The proof is based on a technique used for the proof of Proposition
3.1 in [5].

Theorem 3.4. Let H be a cycle Cs (s ≥ 4) rooted at any vertex r, or a path Pt (t ≥ 3) rooted
at a vertex r that is not a leaf. Then for n ≥ 3, χs(Kn Br H) =

⌈
1
2(1 +

√
8n+ 1)

⌉
.

Proof. Denote the quantity
⌈
1
2(1 +

√
8n+ 1)

⌉
by kn. First, notice that in constructing KnBrH,

each vertex of Kn is connected to two nonadjacent vertices of a copy of H. Thus, since χs(H) ≤ 3
and kn ≥ 3, the result follows directly from the case where H = P3, rooted at a non-pendant
vertex r.

Now, suppose H = P3, rooted at a non-pendant vertex r. For simplicity, we denote Kn BrH
by Gn and we label its vertices as shown in Figure 6.

Figure 6. Labels of vertices in Kn Br P3.

First, we show that χs(Gn) ≤ kn by constructing a set coloring c of Gn that uses at
most kn colors. Let S1, S2, ..., Sm be all the 1-subsets and 2-subsets of {2, 3, ..., kn}. Then

m =
(
kn−1

1

)
+
(
kn−1

2

)
and it follows that m ≥ n. Hence, we can define the coloring c so that

c(x) = 1 for all x = xi, i = 1, 2, ..., n, and {c(xi,j) : j = 1, 2} = Si for i = 1, 2, ..., n. Thus,
NC(xi) = {1} ∪ Si and NC(xi,j) = {1} for i = 1, 2, ..., n and j = 1, 2. Since the Si’s are
nonempty and disjoint, it follows that c is a set coloring.

We now show that χs(Gn) ≥ kn by showing that any set coloring of Gn uses at least kn
colors. To this end, suppose c is a set coloring of Gn that uses p colors. We split the proof into
three cases:

Case 1. Suppose c colors the vertices x1, x2, ..., xn using n colors. Then p ≥ n. Since n ≥ 3
implies n ≥ kn, we must have p ≥ kn.
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Case 2. Suppose c(x) = 1 for all x = xi, i = 1, 2, ..., n. Then for each i,

NC(xi) =

 {1}, if {c(xi,1), c(xi,2)} = {1},
{1, a}, if {c(xi,1), c(xi,2)} = {1, a} or {a},
{1, a, b}, if {c(xi,1), c(xi,2)} = {a, b},

where 1 < a, b ≤ p. Clearly, the case where NC(xi) = {1} is not possible since this would also
make NC(xi,j) = {1} for j = 1, 2. Hence, since c is a set coloring, we should have at least
n different neighborhood color sets of the form {1, a} or {1, a, b}, where 1 < a, b ≤ p. Then(
p−1
1

)
+
(
p−1
2

)
≥ n, which is equivalent to p ≥ kn.

Case 3. Suppose c({x1, x2, ..., xn}) = N` := {1, ..., `}, where 2 ≤ ` ≤ n−1. Let S be the subset of
{x1, x2, ..., xn} satisfying the following condition: for any x ∈ S, there is a vertex y 6= x in S for
which c(x) = c(y). For convenience, we assume that S = {x1, x2, ..., x|S|}. Since 2 ≤ ` ≤ n− 1,
we must have |S| ≥ n− `+ 1. Moreover, for xi ∈ S,

NC(xi) =

 N`, if {c(xi,1), c(xi,2)} ⊆ N`,
N` ∪ {a}, if {c(xi,1), c(xi,2)} − N` = {a},

N` ∪ {a, b}, if {c(xi,1), c(xi,2)} − N` = {a, b},

where ` < a, b ≤ p. Since c is a set coloring, only at most one xi in S can have NC(xi) = N`.
Hence, we should have at least |S| − 1 different neighborhood color sets of the form N` ∪ {a}
or N` ∪ {a, b}. Then

(
p−`
1

)
+
(
p−`
2

)
≥ |S| − 1 ≥ (n − ` + 1) − 1 = n − `, which is equivalent to

p ≥
⌈
2`−1
2 +

√
2n+ 1

4 − 2`
⌉
. Then p ≥ min

`=2,3,...,n−1

⌈
2`− 1

2
+

√
2n+

1

4
− 2`

⌉
. It can easily be

verified that this minimum occurs when ` = 2; hence

p ≥

⌈
3

2
+

√
2n− 15

4

⌉
≥ kn,

since n ≥ 3.

Therefore, in any case, any set coloring of Gn that uses p colors must have p ≥ kn.

In Theorem 3.4, the case where H is the cycle C3 was not considered. This is because, in
this case, in constructing the comb product Kn Br C3, each vertex of Kn is connected to two
adjacent vertices of a copy of C3. For example, the comb product K3 Br C3 has set chromatic
number 3; an optimal set coloring is shown in Figure 7. We consider the rest of this exceptional
case in Proposition 3.5.

Proposition 3.5. Let H be the cycle C3, rooted at any vertex r. Then for n ≥ 4, χs(KnBrH) =⌈
1
2(3 +

√
8n− 7)

⌉
.

Proof. Denote the quantity
⌈
1
2(3 +

√
8n− 7)

⌉
by kn and the graph Kn Br H by Gn. First, note

that kn ≥ 4 for n ≥ 4. We show that χs(Gn) ≤ kn by constructing a set coloring c of Gn

that uses at most kn colors. Let S1, S2, ..., Sm be all the 1-subsets and 2-subsets of {3, 4, ..., kn}.
Then m =

(
kn−2

1

)
+
(
kn−2

2

)
and since n ≥ 4, it follows that m ≥ n− 1. Hence, we can define the

coloring c so that c(x1) = 2, c(x) = 1 for all x = xi (i = 2, 3, ..., n), {c(x1,j) : j = 1, 2} = {3, 4},
and

{c(xi,j) : j = 1, 2} =

{
{1} ∪ Si, if |Si| = 1,

Si, if |Si| = 2,
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Figure 7. An optimal set coloring of K3 Br C3.

for i = 2, ..., n. Thus, NC(x1) = {1, 3, 4}, NC(xi) = {1, 2} ∪ Si, i = 2, 3, ..., n, {NC(x1,j) : j =
1, 2} = {{2, 3}, {2, 4}}, and

{NC(xi,j) : j = 1, 2} =

{
{{1}, {1, a}}, if Si = {a},
{{1, a}, {1, b}}, if Si = {a, b},

where a and b are distinct integers from 3, 4, ..., kn. Since the Si’s are nonempty and disjoint, it
follows that c is a set coloring.

We now show that χs(Gn) ≥ kn by showing that any set coloring of Gn uses at least kn
colors. To this end, suppose c is a set coloring of Gn that uses p colors. We split the proof into
four cases:

Case 1. Suppose c colors the vertices x1, x2, ..., xn using n colors. Then p ≥ n. Since n ≥ 4
implies n ≥ kn, we must have p ≥ kn.

Case 2. Suppose c(x) = 1 for all x = xi, i = 1, 2, ..., n. Then for each i,

NC(xi) =

 {1}, if {c(xi,1), c(xi,2)} = {1},
{1, a}, if {c(xi,1), c(xi,2)} = {1, a} or {a},
{1, a, b}, if {c(xi,1), c(xi,2)} = {a, b},

where 1 < a, b ≤ p. Clearly, the case where NC(xi) = {1} is not possible since this would also
make NC(xi,j) = {1} for j = 1, 2. Moreover, the case where NC(xi) = {1, a} is also not possible
since in this case, we would have c(xi) = c(xi,j) for some j or c(xi,1) = c(xi,2). Hence, we should
have at least n different neighborhood color sets of the form {1, a, b}, where 1 < a, b ≤ p. Then(
p−1
2

)
≥ n, which is equivalent to p ≥ 1

2(3 +
√

8n+ 1) ≥ kn.

Case 3. Suppose c({x1, x2, ..., xn}) = N` := {1, ..., `}, where 2 ≤ ` ≤ n−1. Let S be the subset of
{x1, x2, ..., xn} satisfying the following condition: for any x ∈ S, there is a vertex y 6= x in S for
which c(x) = c(y). For convenience, we assume that S = {x1, x2, ..., x|S|}. Since 2 ≤ ` ≤ n− 1,
we must have |S| ≥ n− `+ 1. Moreover, for xi ∈ S,

NC(xi) =

 N`, if {c(xi,1), c(xi,2)} ⊆ N`,
N` ∪ {a}, if {c(xi,1), c(xi,2)} − N` = {a},

N` ∪ {a, b}, if {c(xi,1), c(xi,2)} − N` = {a, b},

where ` < a, b ≤ p.
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• Case 3.1 Suppose ` = 2. Then none of the xi’s can have NC(xi) = N2. Then we must have(
p−2
1

)
+
(
p−2
2

)
≥ |S| ≥ n− 1, which implies p ≥ kn.

• Case 3.2 Suppose 3 ≤ `n − 1. Then only at most one of the xi’s can have NC(xi) = N`.

Then we must have
(
p−`
1

)
+
(
p−`
2

)
≥ |S| − 1 ≥ n− `, which implies

p ≥
⌈

2`− 1

2
+

1

2

√
8n− 8`+ 1

⌉
≥ min

`=3,...,n−1

⌈
2`− 1

2
+

1

2

√
8n− 8`+ 1

⌉
.

It can be easily verified that the minimum occurs when ` = 3; hence,

p ≥ d2.5 + 0.5
√

8n− 23e ≥ kn

since n ≥ 4.

Therefore, in any case, any set coloring of Gn that uses p colors must have p ≥ kn.

We now determine the set chromatic number of the comb product of complete graphs with
star graphs of large order.

Proposition 3.6. Let n ≥ 3 and H be the star graph K1,q, q ≥ n, rooted at the vertex r that is
not a leaf. Then χs(Kn Br H) = d1 + log2(n+ 1)e.

Proof. Denote the quantity d1 + log2(n+ 1)e by kn and the graph Kn Br H by Gn. Label
the vertices of Kn as x1, x2, ..., xn and for each i, label the leaf vertices adjacent to xi as
xi,1, xi,2, ..., xi,q.

First, we show that χs(Gn) ≤ kn by constructing a set coloring c of Gn that uses at most kn
colors. Let S1, S2, ..., Sm be the set of all nonempty subsets of {2, 3, ..., kn}. Then m = 2kn − 1
and it follows that m ≥ n. Hence, we can define the coloring c so that c(x) = 1 for all x = xi,
i = 1, 2, ..., n, and {c(xi,j) : j = 1, 2, ..., q} = Si for i = 1, 2, ..., n. Thus, NC(xi) = {1} ∪ Si and
NC(xi,j) = {1} for i = 1, 2, ..., n and j = 1, 2, ..., q. Since the Si’s are nonempty and disjoint, it
follows that c is a set coloring.

We now show that χs(Gn) ≥ kn by showing that any set coloring of Gn uses at least kn
colors. To this end, suppose c is a set coloring of Gn that uses p colors. We split the proof into
three cases:

Case 1. Suppose c colors the vertices x1, x2, ..., xn using n colors. Then p ≥ n. Since n ≥ 3
implies n ≥ kn, we must have p ≥ kn.

Case 2. Suppose c(x) = 1 for all x = xi, i = 1, 2, ..., n. Then for each i,

NC(xi) =

{
{1}, if {c(xi,j) : j = 1, 2, ..., q} = {1},

{1} ∪ T, if {c(xi,j) : j = 1, 2, ..., q} = {1} ∪ T or T,

where T is a nonempty subset of {2, ..., p}. Clearly, the case where NC(xi) = {1} is not possible
since this would also make NC(xi,j) = {1} for all j. Hence, since c is a set coloring, we should
have at least n different sets T . Then 2p−1 − 1 ≥ n, which is equivalent to p ≥ kn.

Case 3. Suppose c({x1, x2, ..., xn}) = N` := {1, ..., `}, where 2 ≤ ` ≤ n−1. Let S be the subset of
{x1, x2, ..., xn} satisfying the following condition: for any x ∈ S, there is a vertex y 6= x in S for
which c(x) = c(y). For convenience, we assume that S = {x1, x2, ..., x|S|}. Since 2 ≤ ` ≤ n− 1,
we must have |S| ≥ n− `+ 1. Moreover, for xi ∈ S,

NC(xi) =

{
N`, if {c(xi,j) : j = 1, 2, ..., q} ⊆ N`,

N` ∪ T, if {c(xi,j) : j = 1, 2, ..., q} − N` = T,
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where T is a nonempty subset of {` + 1, ..., p}. Since c is a set coloring, only at most one xi
in S can have NC(xi) = N`. Hence, we should have at least |S| − 1 different sets T . Then
2p−` − 1 ≥ |S| − 1 ≥ (n− `+ 1)− 1 = n− `, which is equivalent to p ≥ d`+ log2(n− `+ 1)e ≥

min
`=2,3,...,n−1

d`+ log2(n− `+ 1)e. It can be easily verified that this minimum occurs when ` = 2;

hence
p ≥ d2 + log2(n− 1)e ≥ kn

since n ≥ 3.

Therefore, in any case, any set coloring of Gn that uses p colors must have p ≥ kn.

4. Conclusion
In this paper, we considered the set chromatic number in relation to two well-studied graph
operations: the join and the comb product. While previous research revealed sharp lower and
upper bounds for the join of two graphs, our results pertained to the exact set chromatic numbers
of the joins of two graphs from well-known families. Moreover, continuing a previous result on
the corona of complete graphs, we determined the set chromatic number of the comb product
of complete graphs with paths, cycles, and large star graphs.
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