Ateneo de Manila University

On the set chromatic number of the join and comb product of graphs

Bryan Ceasar L. Felipe
Agnes Garciano
Mark Anthony C. Tolentino

Follow this and additional works at: https://archium.ateneo.edu/mathematics-faculty-pubs
Part of the Mathematics Commons

On the set chromatic number of the join and comb product of graphs

To cite this article: B C L Felipe et al 2020 J. Phys.: Conf. Ser. 1538012009

View the article online for updates and enhancements.

IOP ebooks ${ }^{\text {"I }}$

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

On the set chromatic number of the join and comb product of graphs

B CL Felipe, A D Garciano and M A C Tolentino
Department of Mathematics, School of Science and Engineering, Loyola Schools, Ateneo de Manila University, Philippines
E-mail: bryanceasarfelipe@gmail.com, agarciano@ateneo.edu, mtolentino@ateneo.edu

Abstract

A vertex coloring $c: V(G) \rightarrow \mathbb{N}$ of a non-trivial connected graph G is called a set coloring if $\mathrm{NC}(u) \neq \mathrm{NC}(v)$ for any pair of adjacent vertices u and v. Here, $\mathrm{NC}(x)$ denotes the set of colors assigned to vertices adjacent to x. The set chromatic number of G, denoted by $\chi_{S}(G)$, is defined as the fewest number of colors needed to construct a set coloring of G. In this paper, we study the set chromatic number in relation to two graph operations: join and comb prdocut. We determine the set chromatic number of wheels and the join of a bipartite graph and a cycle, the join of two cycles, the join of a complete graph and a bipartite graph, and the join of two bipartite graphs. Moreover, we determine the set chromatic number of the comb product of a complete graph with paths, cycles, and large star graphs.

1. Introduction

A vertex or edge coloring c of a graph G is said to be neighbor-distinguishing if c induces a vertex labelling in which every pair of adjacent vertices in G is assigned distinct labels. Aside from the well-studied proper vertex coloring, various neighbor-distinguishing colorings have also been introduced and discussed in the literature (for examples, see [3], [4], [6], [7], [8]).

In [5], Chartrand, Okamoto, and Zhang introduced and explored the following neighbordistingushing vertex coloring that makes use of neighborhood color sets.
Definition 1.1. [5] For a nontrivial connected graph G, let $c: V(G) \rightarrow \mathbb{N}$ be a vertex coloring of G where adjacent vertices may be assigned the same color.
(i) For a set $S \subseteq V(G)$, define the set $c(S)$ of colors assigned to the vertices of S by

$$
c(S)=\{c(v): v \in S\} .
$$

(ii) The neighborhood color set of v, denoted by $N C(v)$, is the set $c(N(v))$; that is, $N C(v)$ is the set of colors of the neighbors of v.
(iii) The coloring c is called set neighbor-distinguishing, or simply a set coloring, if $N C(u) \neq N C(v)$ for every pair u, v of adjacent vertices of G.
(iv) The minimum number of colors required in a set coloring of G is called the set chromatic number of G and is denoted by $\chi_{s}(G)$.

In their paper, Chartrand et al. studied the set chromatic numbers of some families of graphs and established some bounds for the set chromatic number in terms of other graph parameters.

It is clear that $\chi_{s}(G) \leq \chi(G)$. Moreover, results from [5] on the lower bound for χ_{s} are presented below.

Proposition 1.2. [5] For every graph G,
(i) $\chi_{s}(G) \geq\left\lceil\log _{2}(\chi(G)+1)\right\rceil$,
(ii) $\chi_{s}(G) \geq 1+\left\lceil\log _{2}(\omega(G))\right\rceil$,
where $\chi(G)$ and $\omega(G)$ are the chromatic and clique numbers of G, respectively.
In this paper, we will study the set chromatic number of graphs in relation to two well-studied graph operations: join and comb product. Section 2 will focus on the join of graphs. Our results cover wheels and the join of a bipartite graph and a cycle, the join of two cycles, the join of a complete graph and a bipartite graph, and the join of two bipartite graphs. Meanwhile, section 3 focuses on the comb product of graphs. We will determine the set chromatic number of the comb product of a complete graph with paths, cycles, and large star graphs.

2. On the set chromatic number of the join of graphs

We present the definition of the join of two graphs below:
Definition 2.1. Let G and H be two vertex-disjoint graphs. The join $G+H$ of G and H is the graph whose vertex and edge sets are given by

$$
\begin{gathered}
V(G+H)=V(G) \cup V(H) \\
E(G+H)=E(G) \cup E(H) \cup\{g h: g \in V(G), h \in V(H)\} .
\end{gathered}
$$

It is well-known that $\chi(G+H)=\chi(G)+\chi(H)$. In relation to the set colorings, the join of graphs has been studied in [10] by Okamoto et al. In particular, they have established the following sharp bounds:
Theorem 2.2. [10] For every two graphs G and H,

$$
\max \left\{\chi_{s}(G)+\left\lceil\log _{2} \omega(H)\right\rceil, \chi_{s}(H)+\left\lceil\log _{2} \omega(G)\right\rceil\right\} \leq \chi_{s}(G+H) \leq \chi_{s}(G)+\chi_{s}(H)+1
$$

where $\omega(\cdot)$ denotes the clique number of a graph.
Moreover, they also considered the join of graphs with complete graphs.
Theorem 2.3. [10] For a graph G and a positive integer p,

$$
\chi_{s}(G)+p-1 \leq \chi_{s}\left(G+K_{p}\right) \leq \chi_{s}(G)+p
$$

While Theorems 2.2 and 2.3 focused on bounds for the set chromatic number of joins, our results focus on the exact set chromatic number of a join of two graphs from well-known graph families. We begin with the following.
Proposition 2.4. Let W_{n} be the wheel graph of order n. Then $\chi_{s}\left(W_{4}\right)=4$ and $\chi_{s}\left(W_{n}\right)=3$ for $n \geq 5$.

Proof. The wheel graph W_{4} is a complete graph of order 4. Hence, $\chi_{s}\left(W_{4}\right)=4$. For $n \geq 5$, without loss of generality, suppose $W_{n}=C_{n}+K_{1}$ such that $C_{n}=v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ and $V\left(K_{1}\right)=\left\{v_{0}\right\}$. Suppose n is even; then $\chi\left(W_{n}\right)=3$, which implies that $\chi_{s}\left(W_{n}\right)=3$ as well. Now, suppose n is odd. Then $\chi\left(W_{n}\right)=4$ and $\chi_{s}\left(W_{n}\right) \geq 3$. We define a coloring $c: V\left(W_{n}\right) \rightarrow\{1,2,3\}$ as follows:

$$
c\left(v_{i}\right)= \begin{cases}1, & i \in\{0,1,2, n\} \\ 2, & i \text { is odd and } 3 \leq i \leq n-1 \\ 3, & i \text { is even and } 3 \leq i \leq n-1\end{cases}
$$

Then (refer to Fig. 1), it is easy to see that c is a set 3 -coloring of W_{n}. Therefore, $\chi_{s}\left(W_{n}\right)=3$ for $n \geq 5$.

Figure 1. A set 3 -coloring of W_{n}, with odd $n \geq 5$.

We now consider the join of a bipartite graph with another bipartite graph, an odd cycle, or a complete graph.
Theorem 2.5. Let B be a bipartite graph.
(i) If H is also a bipartite graph, then $\chi_{s}(B+H)=4$.
(ii) If C_{n} is an odd cycle, then $\chi_{s}\left(B+C_{3}\right)=5$ and $\chi_{s}\left(B+C_{n}\right)=4$ for $n \geq 5$.
(iii) If p is a positive integer, then $\chi_{s}\left(B+K_{p}\right)=p+2$.

Proof. (i) Since $\chi(B+H)=4$, it follows that $\chi_{s}(B+H)$ is 3 or 4 . Suppose there is a set 3 -coloring c of $B+H$; then $c_{1}:=c_{V(B)}$ and $c_{2}:=\left.c\right|_{V(H)}$ are set colorings of B and H, respectively. Clearly, neither c_{1} nor c_{2} can use all 3 colors; so we can assume that c_{1} uses colors 1 and 2 while c_{2} uses colors 1 and 3 .

Figure 2. A join of two bipartite graphs B and H.
As shown in Fig. 2, if $v \in V(B)$, then $\mathrm{NC}(v) \in\{\{1,3\},\{1,2,3\}\}$. On the other hand, if $w \in V(H)$, then $\mathrm{NC}(w) \in\{\{1,2\},\{1,2,3\}\}$. Since $\chi(B)=\chi(H)=2$, there must be a vertex p in B and a vertex q in H whose NC is $\{1,2,3\}$. Since p and q are adjacent in $B+H$, this proves that we cannot use 3 colors. Therefore, $\chi_{s}(B+H)=4$.
(ii) First, we have

$$
4=\chi_{s}\left(C_{3}\right)+\left\lceil\log _{2} \omega(B)\right\rceil \leq \chi_{s}\left(B+C_{3}\right) \leq \chi\left(B+C_{3}\right)=5 .
$$

Then $\chi_{s}\left(B+C_{3}\right)=4$ or 5 . By using an argument similar to that in (i), we can show that $B+C_{3}$ has no set 4-coloring; hence, $\chi_{s}\left(B+C_{3}\right)=5$.

Now, consider $B+C_{n}$, where $n \geq 4$. Then $\chi_{s}\left(B+C_{n}\right) \geq \chi_{s}\left(C_{n}\right)+\left\lceil\log _{2} \omega(B)\right\rceil=4$. Suppose B has partite sets V_{1} and V_{2} and $C_{n}=v_{1}, v_{2}, \ldots, v_{n}, v_{1}$. Define a coloring $c: V(G) \rightarrow\{1,2,3,4\}$ as follows:

$$
c(v)=\left\{\begin{array}{ll}
1, & v \in V_{1}, \\
2, & v \in V_{2},
\end{array} \quad \text { and } \quad c\left(v_{i}\right)= \begin{cases}2, & i \in\{1,2, n\}, \\
3, & i \text { is odd and } 3 \leq i \leq n-1, \\
4, & i \text { is even and } 3 \leq i \leq n-1\end{cases}\right.
$$

Then, it is easy to see that c is a set 4 -coloring of $B+C_{n}$; refer to Fig. 3. Hence, $\chi_{s}\left(B+C_{n}\right)=4$.

Figure 3. A set 4-coloring of $B+C_{n}, n \geq 4$.
(iii) By Theorem 2.3, $p+1 \leq \chi_{s}\left(B+K_{p}\right) \leq p+2$. Suppose c is a set coloring of $B+K_{p}$ that uses only $p+1$ colors. Then $\left|c\left(K_{p}\right)\right|=p$ and we can assume that $c\left(K_{p}\right)=\mathbb{N}_{p}:=\{1,2, \ldots, p\}$. Let B_{1} and B_{2} be the partite sets of B. Then there is a non-isolated vertex v in B_{1} (without loss of generality) for which $c(v)=p+1$. If $y \in B_{2}$ is a neighbor of v, then $c(y) \in \mathbb{N}_{p}$. Suppose $c(y)=j \in \mathbb{N}_{p}$. Let z be the vertex in K_{p} whose color is also j. Then $N C(z)=\mathbb{N}_{p+1}=N C(y)$, which is not possible. Therefore, $\chi_{s}\left(B+K_{p}\right)=p+2$.

We also determine the set chromatic number of the join of two odd cycles.
Proposition 2.6. Let $n, k \geq 3$ be odd positive integers. Then

$$
\chi_{s}\left(C_{n}+C_{k}\right)= \begin{cases}6, & \text { if } n=k=3, \\ 5, & \text { otherwise } .\end{cases}
$$

Proof. Suppose $C_{n}=v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ and $C_{k}=u_{1}, u_{2}, \ldots, u_{k}, u_{1}$. Let $G=C_{n}+C_{k}$. Then $\chi_{s}(G) \geq \chi_{s}\left(C_{n}\right)+\left\lceil\log _{2} \omega\left(C_{k}\right)\right\rceil=4$. It is easy to show that G is not set 4-colorable. We now consider four cases:
Case 1: $n=k=3$. Since $G=C_{3}+C_{3} \cong K_{6}, \chi_{s}(G)=6$.
Case 2: $n=3$ and $k \geq 5$. Define a coloring $c: V(G) \rightarrow\{1,2,3,4,5\}$ as follows:

$$
c\left(v_{i}\right)=\left\{\begin{array}{ll}
1, & i=1, \\
2, & i=2, \\
3, & i=3,
\end{array} \quad \text { and } \quad c\left(u_{i}\right)= \begin{cases}1, & i \in\{1,2, k\}, \\
4, & i \text { is odd and } 3 \leq i \leq k-1, \\
5, & i \text { is even and } 3 \leq i \leq k-1\end{cases}\right.
$$

Then (refer to Fig. 4), it is easy to see that c is a set 5 -coloring of G. Therefore, $\chi_{s}\left(C_{3}+C_{k}\right)=5$ for $k \geq 5$.
Case 3: $n, k \geq 5$. Define a coloring $f: V(G) \rightarrow\{1,2,3,4,5\}$ as follows:

$$
f\left(v_{i}\right)=\left\{\begin{array}{ll}
1, & i \in\{1,2, n\}, \\
2, & i \text { is odd, } 3 \leq i \leq n-1, \\
3, & i \text { is even, } 3 \leq i \leq k-1,
\end{array} \quad \text { and } \quad f\left(u_{i}\right)= \begin{cases}1, & i \in\{1,2, k\} \\
4, & i \text { is odd, } 3 \leq i \leq k-1 \\
5, & i \text { is even, } 3 \leq i \leq k-1\end{cases}\right.
$$

Figure 4. A set 5-coloring of $C_{3}+C_{k}$, with odd $k \geq 5$.

Figure 5. A set 5-coloring of $C_{n}+C_{k}$, with odd $n, k \geq 5$.

Then (refer to Fig. 5), it is easy to see that c is a set 5-coloring of G. Therefore, $\chi_{s}\left(C_{n}+C_{k}\right)=5$ for $n, k \geq 5$.

3. On the set chromatic number of comb products of graphs

In [5], Chartrand et al. studied the set chromatic number of a family of graphs denoted by $G_{n, t}$, which is defined as follows: for an integer $n \geq 2, G_{n, t}$ is the graph of order $n+t$ obtained from K_{n} with $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ by adding t new vertices $u_{1}, u_{2}, \ldots, u_{t}$ (if $t \geq 1$) and joining each u_{i} to v_{i} for $1 \leq i \leq t$. Their result for this family of graphs is as follows:
Proposition 3.1 (Chartrand et al. [5]). For $n \geq 2$ and $0 \leq t \leq n, \chi_{s}\left(G_{n, t}\right)=n$.
When $t=n$, the graph $G_{n, n}$ is, in fact, $\operatorname{cor}\left(K_{n}\right)$ - the corona of K_{n}; that is, it is the graph obtained by adding a pendant edge at each vertex of K_{n}. The notion of the corona a graph can be generalized using the notion of comb product (or rooted product), which we define below.
Definition 3.2. The comb product (or rooted product) of a graph G and a rooted graph H is the graph obtained by taking $|V(G)|$ copies of H, and for every vertex v_{i} of G, identifying v_{i} with the root node of the ith copy of H.

More formally, if $V(G)=\left\{g_{1}, \ldots, g_{n}\right\}, V(H)=\left\{h_{1}, \ldots, h_{m}\right\}$, and h_{1} is the root of H, then the rooted product of G with H, denoted by $G \triangleright_{h_{1}} H$, has vertex set $V=\left\{\left(g_{i}, h_{j}\right): 1 \leq i \leq n, 1 \leq\right.$ $j \leq m\}$ and edge set $E=\left\{\left(g_{i}, h_{1}\right)\left(g_{k}, h_{1}\right): g_{i} g_{k} \in E(G)\right\} \cup \bigcup_{i=1}^{n}\left\{\left(g_{i}, h_{j}\right)\left(g_{i}, h_{k}\right): h_{j} h_{k} \in E(H)\right\}$.

Hence, $\operatorname{cor}\left(K_{n}\right)$ is, in fact, $K_{n} \triangleright_{r} P_{2}$, where r is any vertex of P_{2}. A direct consequence of Proposition 3.1 is the following.

Corollary 3.3. Let $n \geq 2, m \geq 2$, and r be a pendant vertex of P_{m}. Then $\chi_{s}\left(K_{n} \triangleright_{r} P_{m}\right)=n$.
The comb product of graphs is a well-studied graph operation and has been considered in relation to several graph parameters and labellings (for examples, see [1], [2], [9], [11], [12]).

In this work, we focus on the comb product of complete graphs with well-known graph families. We present below our first result, which concerns the comb products of complete graphs with cycles or paths. The proof is based on a technique used for the proof of Proposition 3.1 in [5].

Theorem 3.4. Let H be a cycle $C_{s}(s \geq 4)$ rooted at any vertex r, or a path $P_{t}(t \geq 3)$ rooted at a vertex r that is not a leaf. Then for $n \geq 3, \chi_{s}\left(K_{n} \triangleright_{r} H\right)=\left\lceil\frac{1}{2}(1+\sqrt{8 n+1})\right\rceil$.
Proof. Denote the quantity $\left\lceil\frac{1}{2}(1+\sqrt{8 n+1})\right\rceil$ by k_{n}. First, notice that in constructing $K_{n} \triangleright_{r} H$, each vertex of K_{n} is connected to two nonadjacent vertices of a copy of H. Thus, since $\chi_{s}(H) \leq 3$ and $k_{n} \geq 3$, the result follows directly from the case where $H=P_{3}$, rooted at a non-pendant vertex r.

Now, suppose $H=P_{3}$, rooted at a non-pendant vertex r. For simplicity, we denote $K_{n} \triangleright_{r} H$ by G_{n} and we label its vertices as shown in Figure 6.

Figure 6. Labels of vertices in $K_{n} \triangleright_{r} P_{3}$.
First, we show that $\chi_{s}\left(G_{n}\right) \leq k_{n}$ by constructing a set coloring c of G_{n} that uses at most k_{n} colors. Let $S_{1}, S_{2}, \ldots, S_{m}$ be all the 1 -subsets and 2 -subsets of $\left\{2,3, \ldots, k_{n}\right\}$. Then $m=\binom{k_{n}-1}{1}+\binom{k_{n}-1}{2}$ and it follows that $m \geq n$. Hence, we can define the coloring c so that $c(x)=1$ for all $x=x_{i}, i=1,2, \ldots, n$, and $\left\{c\left(x_{i, j}\right): j=1,2\right\}=S_{i}$ for $i=1,2, \ldots, n$. Thus, $N C\left(x_{i}\right)=\{1\} \cup S_{i}$ and $N C\left(x_{i, j}\right)=\{1\}$ for $i=1,2, \ldots, n$ and $j=1,2$. Since the S_{i} 's are nonempty and disjoint, it follows that c is a set coloring.

We now show that $\chi_{s}\left(G_{n}\right) \geq k_{n}$ by showing that any set coloring of G_{n} uses at least k_{n} colors. To this end, suppose c is a set coloring of G_{n} that uses p colors. We split the proof into three cases:
Case 1. Suppose c colors the vertices $x_{1}, x_{2}, \ldots, x_{n}$ using n colors. Then $p \geq n$. Since $n \geq 3$ implies $n \geq k_{n}$, we must have $p \geq k_{n}$.

Case 2. Suppose $c(x)=1$ for all $x=x_{i}, i=1,2, \ldots, n$. Then for each i,

$$
N C\left(x_{i}\right)=\left\{\begin{aligned}
\{1\}, & \text { if }\left\{c\left(x_{i, 1}\right), c\left(x_{i, 2}\right)\right\}=\{1\}, \\
\{1, a\}, & \text { if }\left\{c\left(x_{i, 1}\right), c\left(x_{i, 2}\right)\right\}=\{1, a\} \text { or }\{a\}, \\
\{1, a, b\}, & \text { if }\left\{c\left(x_{i, 1}\right), c\left(x_{i, 2}\right)\right\}=\{a, b\},
\end{aligned}\right.
$$

where $1<a, b \leq p$. Clearly, the case where $N C\left(x_{i}\right)=\{1\}$ is not possible since this would also make $N C\left(x_{i, j}\right)=\{1\}$ for $j=1,2$. Hence, since c is a set coloring, we should have at least n different neighborhood color sets of the form $\{1, a\}$ or $\{1, a, b\}$, where $1<a, b \leq p$. Then $\binom{p-1}{1}+\binom{p-1}{2} \geq n$, which is equivalent to $p \geq k_{n}$.
Case 3. Suppose $c\left(\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right)=\mathbb{N}_{\ell}:=\{1, \ldots, \ell\}$, where $2 \leq \ell \leq n-1$. Let S be the subset of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ satisfying the following condition: for any $x \in S$, there is a vertex $y \neq x$ in S for which $c(x)=c(y)$. For convenience, we assume that $S=\left\{x_{1}, x_{2}, \ldots, x_{|S|}\right\}$. Since $2 \leq \ell \leq n-1$, we must have $|S| \geq n-\ell+1$. Moreover, for $x_{i} \in S$,

$$
N C\left(x_{i}\right)=\left\{\begin{aligned}
\mathbb{N}_{\ell}, & \text { if }\left\{c\left(x_{i, 1}\right), c\left(x_{i, 2}\right)\right\} \subseteq \mathbb{N}_{\ell}, \\
\mathbb{N}_{\ell} \cup\{a\}, & \text { if }\left\{c\left(x_{i, 1}\right), c\left(x_{i, 2}\right)\right\}-\mathbb{N}_{\ell}=\{a\}, \\
\mathbb{N}_{\ell} \cup\{a, b\}, & \text { if }\left\{c\left(x_{i, 1}\right), c\left(x_{i, 2}\right)\right\}-\mathbb{N}_{\ell}=\{a, b\},
\end{aligned}\right.
$$

where $\ell<a, b \leq p$. Since c is a set coloring, only at most one x_{i} in S can have $N C\left(x_{i}\right)=\mathbb{N}_{\ell}$. Hence, we should have at least $|S|-1$ different neighborhood color sets of the form $\mathbb{N}_{\ell} \cup\{a\}$ or $\mathbb{N}_{\ell} \cup\{a, b\}$. Then $\binom{p-\ell}{1}+\binom{p-\ell}{2} \geq|S|-1 \geq(n-\ell+1)-1=n-\ell$, which is equivalent to $p \geq\left\lceil\frac{2 \ell-1}{2}+\sqrt{2 n+\frac{1}{4}-2 \ell}\right\rceil$. Then $p \geq \min _{\ell=2,3, \ldots, n-1}\left\lceil\frac{2 \ell-1}{2}+\sqrt{2 n+\frac{1}{4}-2 \ell}\right\rceil$. It can easily be verified that this minimum occurs when $\ell=2$; hence

$$
p \geq\left\lceil\frac{3}{2}+\sqrt{2 n-\frac{15}{4}}\right\rceil \geq k_{n}
$$

since $n \geq 3$.
Therefore, in any case, any set coloring of G_{n} that uses p colors must have $p \geq k_{n}$.
In Theorem 3.4, the case where H is the cycle C_{3} was not considered. This is because, in this case, in constructing the comb product $K_{n} \triangleright_{r} C_{3}$, each vertex of K_{n} is connected to two adjacent vertices of a copy of C_{3}. For example, the comb product $K_{3} \triangleright_{r} C_{3}$ has set chromatic number 3; an optimal set coloring is shown in Figure 7. We consider the rest of this exceptional case in Proposition 3.5.
Proposition 3.5. Let H be the cycle C_{3}, rooted at any vertex r. Then for $n \geq 4, \chi_{s}\left(K_{n} \triangleright_{r} H\right)=$ $\left\lceil\frac{1}{2}(3+\sqrt{8 n-7})\right\rceil$.
Proof. Denote the quantity $\left\lceil\frac{1}{2}(3+\sqrt{8 n-7})\right\rceil$ by k_{n} and the graph $K_{n} \triangleright_{r} H$ by G_{n}. First, note that $k_{n} \geq 4$ for $n \geq 4$. We show that $\chi_{s}\left(G_{n}\right) \leq k_{n}$ by constructing a set coloring c of G_{n} that uses at most k_{n} colors. Let $S_{1}, S_{2}, \ldots, S_{m}$ be all the 1 -subsets and 2 -subsets of $\left\{3,4, \ldots, k_{n}\right\}$. Then $m=\binom{k_{n}-2}{1}+\binom{k_{n}-2}{2}$ and since $n \geq 4$, it follows that $m \geq n-1$. Hence, we can define the coloring c so that $c\left(x_{1}\right)=2, c(x)=1$ for all $x=x_{i}(i=2,3, \ldots, n),\left\{c\left(x_{1, j}\right): j=1,2\right\}=\{3,4\}$, and

$$
\left\{c\left(x_{i, j}\right): j=1,2\right\}=\left\{\begin{aligned}
\{1\} \cup S_{i}, & \text { if }\left|S_{i}\right|=1 \\
S_{i}, & \text { if }\left|S_{i}\right|=2
\end{aligned}\right.
$$

Figure 7. An optimal set coloring of $K_{3} \triangleright_{r} C_{3}$.
for $i=2, \ldots, n$. Thus, $N C\left(x_{1}\right)=\{1,3,4\}, N C\left(x_{i}\right)=\{1,2\} \cup S_{i}, i=2,3, \ldots, n,\left\{N C\left(x_{1, j}\right): j=\right.$ $1,2\}=\{\{2,3\},\{2,4\}\}$, and

$$
\left\{N C\left(x_{i, j}\right): j=1,2\right\}=\left\{\begin{aligned}
\{\{1\},\{1, a\}\}, & \text { if } S_{i}=\{a\}, \\
\{\{1, a\},\{1, b\}\}, & \text { if } S_{i}=\{a, b\},
\end{aligned}\right.
$$

where a and b are distinct integers from $3,4, \ldots, k_{n}$. Since the S_{i} 's are nonempty and disjoint, it follows that c is a set coloring.

We now show that $\chi_{s}\left(G_{n}\right) \geq k_{n}$ by showing that any set coloring of G_{n} uses at least k_{n} colors. To this end, suppose c is a set coloring of G_{n} that uses p colors. We split the proof into four cases:
Case 1. Suppose c colors the vertices $x_{1}, x_{2}, \ldots, x_{n}$ using n colors. Then $p \geq n$. Since $n \geq 4$ implies $n \geq k_{n}$, we must have $p \geq k_{n}$.
Case 2. Suppose $c(x)=1$ for all $x=x_{i}, i=1,2, \ldots, n$. Then for each i,

$$
N C\left(x_{i}\right)=\left\{\begin{array}{rlrl}
\{1\}, & & \text { if }\left\{c\left(x_{i, 1}\right), c\left(x_{i, 2}\right)\right\} & =\{1\}, \\
\{1, a\}, & \text { if }\left\{c\left(x_{i, 1}\right), c\left(x_{i, 2}\right)\right\} & =\{1, a\} \text { or }\{a\}, \\
\{1, a, b\}, & & \text { if }\left\{c\left(x_{i, 1}\right), c\left(x_{i, 2}\right)\right\} & =\{a, b\},
\end{array}\right.
$$

where $1<a, b \leq p$. Clearly, the case where $N C\left(x_{i}\right)=\{1\}$ is not possible since this would also make $N C\left(x_{i, j}\right)=\{1\}$ for $j=1,2$. Moreover, the case where $N C\left(x_{i}\right)=\{1, a\}$ is also not possible since in this case, we would have $c\left(x_{i}\right)=c\left(x_{i, j}\right)$ for some j or $c\left(x_{i, 1}\right)=c\left(x_{i, 2}\right)$. Hence, we should have at least n different neighborhood color sets of the form $\{1, a, b\}$, where $1<a, b \leq p$. Then $\binom{p-1}{2} \geq n$, which is equivalent to $p \geq \frac{1}{2}(3+\sqrt{8 n+1}) \geq k_{n}$.
Case 3. Suppose $c\left(\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right)=\mathbb{N}_{\ell}:=\{1, \ldots, \ell\}$, where $2 \leq \ell \leq n-1$. Let S be the subset of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ satisfying the following condition: for any $x \in S$, there is a vertex $y \neq x$ in S for which $c(x)=c(y)$. For convenience, we assume that $S=\left\{x_{1}, x_{2}, \ldots, x_{|S|}\right\}$. Since $2 \leq \ell \leq n-1$, we must have $|S| \geq n-\ell+1$. Moreover, for $x_{i} \in S$,

$$
N C\left(x_{i}\right)=\left\{\begin{aligned}
\mathbb{N}_{\ell}, & \text { if }\left\{c\left(x_{i, 1}\right), c\left(x_{i, 2}\right)\right\} \subseteq \mathbb{N}_{\ell}, \\
\mathbb{N}_{\ell} \cup\{a\}, & \text { if }\left\{c\left(x_{i, 1}\right), c\left(x_{i, 2}\right)\right\}-\mathbb{N}_{\ell}=\{a\}, \\
\mathbb{N}_{\ell} \cup\{a, b\}, & \text { if }\left\{c\left(x_{i, 1}\right), c\left(x_{i, 2}\right)\right\}-\mathbb{N}_{\ell}=\{a, b\},
\end{aligned}\right.
$$

where $\ell<a, b \leq p$.

- Case 3.1 Suppose $\ell=2$. Then none of the x_{i} 's can have $N C\left(x_{i}\right)=\mathbb{N}_{2}$. Then we must have $\binom{p-2}{1}+\binom{p-2}{2} \geq|S| \geq n-1$, which implies $p \geq k_{n}$.
- Case 3.2 Suppose $3 \leq \ell n-1$. Then only at most one of the x_{i} 's can have $N C\left(x_{i}\right)=\mathbb{N}_{\ell}$. Then we must have $\binom{\bar{p}-\ell}{1}+\binom{p-\ell}{2} \geq|S|-1 \geq n-\ell$, which implies

$$
p \geq\left\lceil\frac{2 \ell-1}{2}+\frac{1}{2} \sqrt{8 n-8 \ell+1}\right\rceil \geq \min _{\ell=3, \ldots, n-1}\left\lceil\frac{2 \ell-1}{2}+\frac{1}{2} \sqrt{8 n-8 \ell+1}\right\rceil .
$$

It can be easily verified that the minimum occurs when $\ell=3$; hence,

$$
p \geq\lceil 2.5+0.5 \sqrt{8 n-23}\rceil \geq k_{n}
$$

since $n \geq 4$.
Therefore, in any case, any set coloring of G_{n} that uses p colors must have $p \geq k_{n}$.
We now determine the set chromatic number of the comb product of complete graphs with star graphs of large order.

Proposition 3.6. Let $n \geq 3$ and H be the star graph $K_{1, q}, q \geq n$, rooted at the vertex r that is not a leaf. Then $\chi_{s}\left(K_{n} \triangleright_{r} H\right)=\left\lceil 1+\log _{2}(n+1)\right\rceil$.

Proof. Denote the quantity $\left\lceil 1+\log _{2}(n+1)\right\rceil$ by k_{n} and the graph $K_{n} \triangleright_{r} H$ by G_{n}. Label the vertices of K_{n} as $x_{1}, x_{2}, \ldots, x_{n}$ and for each i, label the leaf vertices adjacent to x_{i} as $x_{i, 1}, x_{i, 2}, \ldots, x_{i, q}$.

First, we show that $\chi_{s}\left(G_{n}\right) \leq k_{n}$ by constructing a set coloring c of G_{n} that uses at most k_{n} colors. Let $S_{1}, S_{2}, \ldots, S_{m}$ be the set of all nonempty subsets of $\left\{2,3, \ldots, k_{n}\right\}$. Then $m=2^{k_{n}}-1$ and it follows that $m \geq n$. Hence, we can define the coloring c so that $c(x)=1$ for all $x=x_{i}$, $i=1,2, \ldots, n$, and $\left\{c\left(x_{i, j}\right): j=1,2, \ldots, q\right\}=S_{i}$ for $i=1,2, \ldots, n$. Thus, $N C\left(x_{i}\right)=\{1\} \cup S_{i}$ and $N C\left(x_{i, j}\right)=\{1\}$ for $i=1,2, \ldots, n$ and $j=1,2, \ldots, q$. Since the S_{i} 's are nonempty and disjoint, it follows that c is a set coloring.

We now show that $\chi_{s}\left(G_{n}\right) \geq k_{n}$ by showing that any set coloring of G_{n} uses at least k_{n} colors. To this end, suppose c is a set coloring of G_{n} that uses p colors. We split the proof into three cases:
Case 1. Suppose c colors the vertices $x_{1}, x_{2}, \ldots, x_{n}$ using n colors. Then $p \geq n$. Since $n \geq 3$ implies $n \geq k_{n}$, we must have $p \geq k_{n}$.
Case 2. Suppose $c(x)=1$ for all $x=x_{i}, i=1,2, \ldots, n$. Then for each i,

$$
N C\left(x_{i}\right)=\left\{\begin{aligned}
\{1\}, & \text { if }\left\{c\left(x_{i, j}\right): j=1,2, \ldots, q\right\}=\{1\}, \\
\{1\} \cup T, & \text { if }\left\{c\left(x_{i, j}\right): j=1,2, \ldots, q\right\}=\{1\} \cup T \text { or } T,
\end{aligned}\right.
$$

where T is a nonempty subset of $\{2, \ldots, p\}$. Clearly, the case where $N C\left(x_{i}\right)=\{1\}$ is not possible since this would also make $N C\left(x_{i, j}\right)=\{1\}$ for all j. Hence, since c is a set coloring, we should have at least n different sets T. Then $2^{p-1}-1 \geq n$, which is equivalent to $p \geq k_{n}$.
Case 3. Suppose $c\left(\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right)=\mathbb{N}_{\ell}:=\{1, \ldots, \ell\}$, where $2 \leq \ell \leq n-1$. Let S be the subset of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ satisfying the following condition: for any $x \in S$, there is a vertex $y \neq x$ in S for which $c(x)=c(y)$. For convenience, we assume that $S=\left\{x_{1}, x_{2}, \ldots, x_{|S|}\right\}$. Since $2 \leq \ell \leq n-1$, we must have $|S| \geq n-\ell+1$. Moreover, for $x_{i} \in S$,

$$
N C\left(x_{i}\right)=\left\{\begin{aligned}
\mathbb{N}_{\ell}, & \text { if }\left\{c\left(x_{i, j}\right): j=1,2, \ldots, q\right\} \subseteq \mathbb{N}_{\ell}, \\
\mathbb{N}_{\ell} \cup T, & \text { if }\left\{c\left(x_{i, j}\right): j=1,2, \ldots, q\right\}-\mathbb{N}_{\ell}=T,
\end{aligned}\right.
$$

where T is a nonempty subset of $\{\ell+1, \ldots, p\}$. Since c is a set coloring, only at most one x_{i} in S can have $N C\left(x_{i}\right)=\mathbb{N}_{\ell}$. Hence, we should have at least $|S|-1$ different sets T. Then $2^{p-\ell}-1 \geq|S|-1 \geq(n-\ell+1)-1=n-\ell$, which is equivalent to $p \geq\left\lceil\ell+\log _{2}(n-\ell+1)\right\rceil \geq$ $\min _{\ell=2,3, \ldots, n-1}\left\lceil\ell+\log _{2}(n-\ell+1)\right\rceil$. It can be easily verified that this minimum occurs when $\ell=2$; hence

$$
p \geq\left\lceil 2+\log _{2}(n-1)\right\rceil \geq k_{n}
$$

since $n \geq 3$.
Therefore, in any case, any set coloring of G_{n} that uses p colors must have $p \geq k_{n}$.

4. Conclusion

In this paper, we considered the set chromatic number in relation to two well-studied graph operations: the join and the comb product. While previous research revealed sharp lower and upper bounds for the join of two graphs, our results pertained to the exact set chromatic numbers of the joins of two graphs from well-known families. Moreover, continuing a previous result on the corona of complete graphs, we determined the set chromatic number of the comb product of complete graphs with paths, cycles, and large star graphs.

Acknowledgment

The authors would like to thank the Office of the Vice President for the Loyola Schools and the Department of Mathematics BCA fund of Ateneo de Manila University for supporting our attendance to this conference. Moreover, we would like to thank the organizers of ICCGANT 2019 for warmly welcoming us and hosting a wonderful conference. Finally, we would like to thank the referees of this paper for their valuable comments and suggestions.

References

[1] Agustin I H, Hasan M, Dafik, Alfarisi R, Kristiana A and Prihandini R M 2018 Local edge antimagic coloring of comb product of graphs Journal of Physics: Conference Series 10081
[2] Agustin I H, Prihandini R M, Dafik $2019 p_{2} \triangleleft h$-super antimagic total labeling of comb product of graphs AKCE International Journal of Graphs and Combinatorics 16 163-171
[3] Arumugam S, Premalatha K, Bača M and Semaničová-Feňovčíková A 2017 Local antimagic vertex coloring of a graph Graphs and Combinatorics 33 275-285
[4] Chartrand G, English S and Zhang P 2017 Kaleidoscopic colorings of graphs Discussiones Mathematicae Graph Theory 373
[5] Chartrand G, Okamoto F, Rasmussen C W and Zhang P 2009 The set chromatic number of a graph Discussiones Mathematicae Graph Theory 29 545-561
[6] Chartrand G, Okamoto F and Zhang P 2009 The metric chromatic number of a graph The Australasian Journal of Combinatorics 44 273-286
[7] Chartrand G, Okamoto F and Zhang P 2010 Neighbor-distinguishing vertex colorings of graphs Journal of Combinatorial Mathematics and Combinatorial Computing 74
[8] Chartrand G, Okamoto F and Zhang P 2010 The sigma chromatic number of a graph Graphs and Combinatorics 26 755-773
[9] Darmaji and Alfarisi R 2017 On the partition dimension of comb product of path and complete graph AIP Conference Proceedings 1867020038
[10] Okamoto F, Rasmussen C W and Zhang P 2009 Set vertex colorings and joins of graphs Czechoslovak Mathematical Journal 59 929-941
[11] Saputro S W, Mardiana N and Purwasih I A 2017 The metric dimension of comb product graphs Matematički Vesnik 69 248-258
[12] Susilowati L, Utoyo M I and Slamin 2017 On commutative characterization of graph operation with respect to metric dimension Journal of Mathematical and Fundamental Sciences 49 156-170

