7 research outputs found

    Use of micro CHP plants to support the local operation of electric heat pumps

    Get PDF
    Fig. 1. Global distribution of chytridiomycosis-associated amphibian species declines. Bar plots indicate the number (N) of declined species, grouped by continental area and classified by decline severity. Brazilian species are plotted separately from all other South American species (South America W); Mesoamerica includes Central America, Mexico, and the Caribbean Islands; and Oceania includes Australia and New Zealand. No declines have been reported in Asia. n, total number of declines by region. [Photo credits (clockwise from top left): Anaxyrus boreas, C. Brown, U.S. Geological Survey; Atelopus varius, B.G.; Salamandra salamandra, D. Descouens, Wikimedia Commons; Telmatobius sanborni, I.D.l.R; Cycloramphus boraceiensis, L.F.T.; Cardioglossa melanogaster, M.H.; and Pseudophryne corroboree, C. Doughty

    The study protocol for a non-randomized controlled clinical trial using a genotype-guided strategy in a dataset of patients who undergone percutaneous coronary intervention with stent

    Get PDF
    This article contains data related to the research article entitled “Results of genotype–guided antiplatelet therapy in patients undergone percutaneous coronary intervention with stent” (J. Sánchez-Ramos, C.L. Dávila-Fajardo, P. Toledo Frías, X. Díaz Villamarín, L.J. Martínez-González, S. Martínez Huertas, F. Burillo Gómez, J. Caballero Borrego, A. Bautista Pavés, M.C. Marín Guzmán, J.A. Ramirez Hernández, C. Correa Vilches, J. Cabeza Barrera, 2016) (1). This data article reports, for the first time, about the non-randomized clinical trial protocol that check if CYP2C19/ABCB1 genotype–guided strategy in which the choice of antiplatelet therapy is based on the genetic test, reduces the rates of cardiovascular events and bleeding compared to a non-tailored strategy in patients undergone percutaneous coronary intervention (PCI) with stent. The data included in this article are: design and setting of the study, study population, inclusion and exclusion criteria, definition of the intervention, objectives, variables (baseline characteristics and during the follow-up), study procedures, collection and treatment of the biological sample, genotyping, withdrawal criteria, sample size, statistic analysis, ethical aspects, information sheet and consent form. The authors confirm that this study has been registered in Eudra CT (Eudra CT: 2016-001294-33).Ministry of Health of Government of Andalusia PI-057/201

    Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity

    Get PDF
    Anthropogenic trade and development have broken down dispersal barriers, facilitating the spread of diseases that threaten Earth's biodiversity. We present a global, quantitative assessment of the amphibian chytridiomycosis panzootic, one of the most impactful examples of disease spread, and demonstrate its role in the decline of at least 501 amphibian species over the past half-century, including 90 presumed extinctions. The effects of chytridiomycosis have been greatest in large-bodied, range-restricted anurans in wet climates in the Americas and Australia. Declines peaked in the 1980s, and only 12% of declined species show signs of recovery, whereas 39% are experiencing ongoing decline. There is risk of further chytridiomycosis outbreaks in new areas. The chytridiomycosis panzootic represents the greatest recorded loss of biodiversity attributable to a disease.B.C.S. and D.B.L. were supported by the Australian National Environmental Science Program. L.B., L.F.S., T.A.K., and B.C.S. were supported by the Australian Research Council (grants FT100100375, LP110200240, and DP120100811), the NSW Office of Environment and Heritage, and the Taronga Conservation Science Initiative. S.C., W.B., A.M., and F.P. were supported by Research Foundation Flanders grants FWO3E001916 and FWO11ZK916N‐11ZK918N and Ghent University grant BOF16/GOA/024. S.C. was supported by Research Foundation Flanders grant FWO16/PDO/019. A.A.A. was supported by the Conservation Leadership Program (0621310), Vicerrectoría de Investigaciones, Universidad de Pamplona-Colombia, and Colciencias (1121-659-44242). T.C. was supported by the Coordination for the Improvement of Higher Education Personnel. A.C. was supported by the Amazon Conservation Association, the Amphibian Specialist Group, the Disney Worldwide Conservation Fund, the Eppley Foundation, the Mohammed bin Zayed Species Conservation Fund, the NSF, the Rufford Small Grants Foundation, and the Swiss National Foundation. I.D.l.R. was supported by the Spanish Government (CGL2014-56160-P). M.C.F. was supported by the NERC (NE/K014455/1), the Leverhulme Trust (RPG-2014-273), and the Morris Animal Foundation (D16ZO-022). S.V.F. was supported by the USFWS Wildlife without Borders (96200-0-G228), the AZA–Conservation Endowment Fund (08-836), and the Conservation International Critically Endangered Species Fund. P.F.Á. was supported by a Postdoctoral Research fellowship from the Mexican Research Council (CONACYT, 171465). T.W.J.G. was supported by the NERC (NE/N009967/1 and NE/K012509/1). J.M.G. was supported by the Universidad San Francisco de Quito (collaboration grants 11164 and 5447). M.H. was supported by scholarships from the Elsa-NeumannFoundation and the German Academic Exchange Service (DAAD). C.A.M. was supported by the Atkinson Center for a Sustainable Future and the Cornell Center for Vertebrate Genomics. G.P.-O. was supported by DGAPA-UNAM and CONACYT while on sabbatical at the University of Otago, New Zealand. C.L.R.-Z. was supported by the NSF (1660311). S.M.R. was supported by a CONACYT Problemas Nacionales grant (PDCPN 2015-721) and a UC Mexus-Conacy cooperative grant. C.S.-A. was supported by the Chilean National Science and Technology Fund (Fondecyt no. 1181758). L.F.T. was supported by the São Paulo Research Foundation (FAPESP 2016/25358-3) and the National Council for Scientific and Technological Development (CNPq 300896/2016-6). J.V. was supported by the NSF (DEB1551488 and IOS-1603808). C.W. was supported by the South African National Research Foundatio

    Fig. 2 in Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity

    No full text
    Fig. 2. Taxonomic distribution of chytridiomycosis-associated amphibian declines. Each bar represents one species, and color denotes the severity of its decline. Concentric circles indicate, from inner to outer, order (Caudata or Anura), family, and genus. Full names are given only for families and genera that include>5 and>2 species, respectively; details for all taxa are in table S4. Within each taxonomic level, sublevels are ordered alphabetically. Protruding bars indicate species for which there is evidence of recovery. [Photo credits (left to right): Telmatobius bolivianus, I.D.l.R.; Atelopus zeteki, B.G.; and Craugastor crassidigitus, B.G.

    A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, cluster-randomised crossover implementation study

    No full text
    © 2023Background: The benefit of pharmacogenetic testing before starting drug therapy has been well documented for several single gene–drug combinations. However, the clinical utility of a pre-emptive genotyping strategy using a pharmacogenetic panel has not been rigorously assessed. Methods: We conducted an open-label, multicentre, controlled, cluster-randomised, crossover implementation study of a 12-gene pharmacogenetic panel in 18 hospitals, nine community health centres, and 28 community pharmacies in seven European countries (Austria, Greece, Italy, the Netherlands, Slovenia, Spain, and the UK). Patients aged 18 years or older receiving a first prescription for a drug clinically recommended in the guidelines of the Dutch Pharmacogenetics Working Group (ie, the index drug) as part of routine care were eligible for inclusion. Exclusion criteria included previous genetic testing for a gene relevant to the index drug, a planned duration of treatment of less than 7 consecutive days, and severe renal or liver insufficiency. All patients gave written informed consent before taking part in the study. Participants were genotyped for 50 germline variants in 12 genes, and those with an actionable variant (ie, a drug–gene interaction test result for which the Dutch Pharmacogenetics Working Group [DPWG] recommended a change to standard-of-care drug treatment) were treated according to DPWG recommendations. Patients in the control group received standard treatment. To prepare clinicians for pre-emptive pharmacogenetic testing, local teams were educated during a site-initiation visit and online educational material was made available. The primary outcome was the occurrence of clinically relevant adverse drug reactions within the 12-week follow-up period. Analyses were irrespective of patient adherence to the DPWG guidelines. The primary analysis was done using a gatekeeping analysis, in which outcomes in people with an actionable drug–gene interaction in the study group versus the control group were compared, and only if the difference was statistically significant was an analysis done that included all of the patients in the study. Outcomes were compared between the study and control groups, both for patients with an actionable drug–gene interaction test result (ie, a result for which the DPWG recommended a change to standard-of-care drug treatment) and for all patients who received at least one dose of index drug. The safety analysis included all participants who received at least one dose of a study drug. This study is registered with ClinicalTrials.gov, NCT03093818 and is closed to new participants. Findings: Between March 7, 2017, and June 30, 2020, 41 696 patients were assessed for eligibility and 6944 (51·4 % female, 48·6% male; 97·7% self-reported European, Mediterranean, or Middle Eastern ethnicity) were enrolled and assigned to receive genotype-guided drug treatment (n=3342) or standard care (n=3602). 99 patients (52 [1·6%] of the study group and 47 [1·3%] of the control group) withdrew consent after group assignment. 652 participants (367 [11·0%] in the study group and 285 [7·9%] in the control group) were lost to follow-up. In patients with an actionable test result for the index drug (n=1558), a clinically relevant adverse drug reaction occurred in 152 (21·0%) of 725 patients in the study group and 231 (27·7%) of 833 patients in the control group (odds ratio [OR] 0·70 [95% CI 0·54–0·91]; p=0·0075), whereas for all patients, the incidence was 628 (21·5%) of 2923 patients in the study group and 934 (28·6%) of 3270 patients in the control group (OR 0·70 [95% CI 0·61–0·79]; p <0·0001). Interpretation: Genotype-guided treatment using a 12-gene pharmacogenetic panel significantly reduced the incidence of clinically relevant adverse drug reactions and was feasible across diverse European health-care system organisations and settings. Large-scale implementation could help to make drug therapy increasingly safe. Funding: European Union Horizon 2020
    corecore