114 research outputs found

    Evidence-based integrated environmental solutions for secondary lead smelters: Pollution prevention and waste minimization technologies and practices

    Get PDF
    An evidence-based methodology was adopted in this research to establish strategies to increase lead recovery and recycling via a systematic review and critical appraisal of the published literature. In particular, the research examines pollution prevention and waste minimization practices and technologies that meet the following criteria: (a) reduce/recover/recycle the largest quantities of lead currently being disposed of as waste, (b) technically and economically viable, that is, ready to be diffused and easily transferable, and (c) strong industry interest (i.e., industry would consider implementing projects with higher payback periods). The following specific aims are designed to achieve the study objectives: Aim 1 – To describe the recycling process of recovering refined lead from scrap; Aim 2 – To document pollution prevention and waste management technologies and practices adopted by US stakeholders along the trajectory of LAB and lead product life cycle; Aim 3 – To explore improved practices and technologies which are employed by other organizations with an emphasis on the aforementioned criteria; Aim 4 – To demonstrate the economic and environmental costs and benefits of applying improved technologies and practices to existing US smelting operations; and Aim 5 – To evaluate improved environmental technologies and practices using an algorithm that integrates quantitative and qualitative criteria. The process of identifying relevant articles and reports was documented. The description of evidence was presented for current practices and technologies used by US smelters as well as improved practices and technologies. Options for integrated environmental solutions for secondary smelters were introduced and rank ordered on the basis of costs (i.e., capital investment) and benefits (i.e., production increases, energy and flux savings, and reduction of SO2 and slag). An example was provided to demonstrate the utility of the algorithm by detailing the costs and benefits associated with different combinations of practices and technologies. The evidence-based methodology documented in this research reveals that it is technically and economically feasible to implement integrated environmental solutions to increase lead recovery and recycling among US smelters. The working example presented in this research can be confirmed with US stakeholders and form the basis for implementable solutions in the lead smelter and product industries to help reverse the overall trend of declining life-cycle recycling rates

    Evidence-based integrated environmental solutions for secondary lead smelters: Pollution prevention and waste minimization technologies and practices

    Get PDF
    An evidence-based methodology was adopted in this research to establish strategies to increase lead recovery and recycling via a systematic review and critical appraisal of the published literature. In particular, the research examines pollution prevention and waste minimization practices and technologies that meet the following criteria: (a) reduce/recover/recycle the largest quantities of lead currently being disposed of as waste, (b) technically and economically viable, that is, ready to be diffused and easily transferable, and (c) strong industry interest (i.e., industry would consider implementing projects with higher payback periods). The following specific aims are designed to achieve the study objectives: Aim 1 – To describe the recycling process of recovering refined lead from scrap; Aim 2 – To document pollution prevention and waste management technologies and practices adopted by US stakeholders along the trajectory of LAB and lead product life cycle; Aim 3 – To explore improved practices and technologies which are employed by other organizations with an emphasis on the aforementioned criteria; Aim 4 – To demonstrate the economic and environmental costs and benefits of applying improved technologies and practices to existing US smelting operations; and Aim 5 – To evaluate improved environmental technologies and practices using an algorithm that integrates quantitative and qualitative criteria. The process of identifying relevant articles and reports was documented. The description of evidence was presented for current practices and technologies used by US smelters as well as improved practices and technologies. Options for integrated environmental solutions for secondary smelters were introduced and rank ordered on the basis of costs (i.e., capital investment) and benefits (i.e., production increases, energy and flux savings, and reduction of SO2 and slag). An example was provided to demonstrate the utility of the algorithm by detailing the costs and benefits associated with different combinations of practices and technologies. The evidence-based methodology documented in this research reveals that it is technically and economically feasible to implement integrated environmental solutions to increase lead recovery and recycling among US smelters. The working example presented in this research can be confirmed with US stakeholders and form the basis for implementable solutions in the lead smelter and product industries to help reverse the overall trend of declining life-cycle recycling rates

    Cyclodextrin Diethyldithiocarbamate Copper II Inclusion Complexes: A Promising Chemotherapeutic Delivery System against Chemoresistant Triple Negative Breast Cancer Cell Lines

    Get PDF
    Diethyldithiocarbamate Copper II (DDC-Cu) has shown potent anticancer activity against a wide range of cancer cells, but further investigations are hindered by its practical insolubility in water. In this study, inclusion complexes of DDC-Cu with hydroxypropyl beta-cyclodextrin (HP) or sulfobutyl ether beta-cyclodextrin (SBE) were prepared and investigated as an approach to enhance the apparent solubility of DDC-Cu. Formulations were prepared by simple mixing of DDC-Cu with both cyclodextrin (CDs) at room temperature. Phase solubility assessments of the resulting solutions were performed. DDC-Cu CD solutions were freeze-dried for further characterisations by DSC, thermogravimetric analysis (TGA) and FT-IR. Stability and cytotoxicity studies were also performed to investigate the maintenance of DDC-Cu anticancer activity. The phase solubility profile deviated positively from the linearity (Ap type) showing significant solubility enhancement of the DDC-Cu in both CD solutions (approximately 4 mg/mL at 20% w/w CD solutions). The DSC and TGA analysis confirmed the solid solution status of DDC-Cu in CD. The resulting solutions of DDC-Cu were stable for 28 days and conveyed the anticancer activity of DDC-Cu on chemoresistant triple negative breast cancer cell lines, with IC50 values less than 200 nM. Overall, cyclodextrin DDC-Cu complexes offer a great potential for anticancer applications, as evidenced by their very positive effects against chemoresistant triple negative breast cancer cells

    “Nanostandardization” in action: implementing standardization processes in a multidisciplinary nanoparticle-based research and development project

    Get PDF
    Nanomaterials have attracted much interest in the medical field and related applications as their distinct properties in the nano-range enable new and improved diagnosis and therapies. Owing to these properties and their potential interactions with the human body and the environment, the impact of nanomaterials on humans and their potential toxicity have been regarded a very significant issue. Consequently, nanomaterials are the subject of a wide range of cutting-edge research efforts in the medical and related fields to thoroughly probe their potential beneficial utilizations and their more negative effects. We posit that the lack of standardization in the field is a serious shortcoming as it has led to the establishment of methods and results that do not ensure sufficient consistency and thus in our view can possibly result in research outputs that are not as robust as they should be. The main aim of this article is to present how NanoDiaRA, a large FP7 European multidisciplinary project that seeks to investigate and develop nanotechnology-based diagnostic systems, has developed and implemented robust, standardized methods to support research practices involving the engineering and manipulation of nanomaterials. First, to contextualize this research, an overview of the measures defined by different regulatory bodies concerning nano-safety is presented. Although these authorities have been very active in the past several years, many questions remain unanswered in our view. Second, a number of national and international projects that attempted to ensure more reliable exchanges of methods and results are discussed. However, the frequent lack of publication of procedures and protocols in research can often be a hindrance for sharing those good practices. Subsequently, the efforts made through NanoDiaRA to introduce standardized methods and techniques to support the development and utilization of nanomaterials are discussed in depth. A series of semi-structured interviews were conducted with the partners of this project, and the interviews were analyzed thematically to highlight the determined efforts of the researchers to standardize their methods. Finally, some recommendations are made towards the setting up of well-defined methods to support the high-quality work of collaborative nanoparticle-based research and development projects and to enhance standardization processes

    Optimal synthesis and characterization of Ag nanofluids by electrical explosion of wires in liquids

    Get PDF
    Silver nanoparticles were produced by electrical explosion of wires in liquids with no additive. In this study, we optimized the fabrication method and examined the effects of manufacturing process parameters. Morphology and size of the Ag nanoparticles were determined using transmission electron microscopy and field-emission scanning electron microscopy. Size and zeta potential were analyzed using dynamic light scattering. A response optimization technique showed that optimal conditions were achieved when capacitance was 30 μF, wire length was 38 mm, liquid volume was 500 mL, and the liquid type was deionized water. The average Ag nanoparticle size in water was 118.9 nm and the zeta potential was -42.5 mV. The critical heat flux of the 0.001-vol.% Ag nanofluid was higher than pure water

    The HNF4A R76W mutation causes atypical dominant Fanconi syndrome in addition to a β cell phenotype

    Get PDF
    types: JOURNAL ARTICLEMutation specific effects in monogenic disorders are rare. We describe atypical Fanconi syndrome caused by a specific heterozygous mutation in HNF4A. Heterozygous HNF4A mutations cause a beta cell phenotype of neonatal hyperinsulinism with macrosomia and young onset diabetes. Autosomal dominant idiopathic Fanconi syndrome (a renal proximal tubulopathy) is described but no genetic cause has been defined.This article presents independent research supported by the National Institute for Health Research (NIHR) Exeter Clinical Research Facility. The research is funded by a Wellcome Trust Senior Investigator Award, (grant number 098395/Z/12/Z).Wellcome Trus

    Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities

    Get PDF
    Extent: 18p.Background: Manufactured silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials in consumer goods and consequently their concentrations in wastewater and hence wastewater treatment plants are predicted to increase. We investigated the fate of AgNPs in sludge that was subjected to aerobic and anaerobic treatment and the impact of AgNPs on microbial processes and communities. The initial identification of AgNPs in sludge was carried out using transmission electron microscopy (TEM) with energy dispersive X-ray (EDX) analysis. The solid phase speciation of silver in sludge and wastewater influent was then examined using X-ray absorption spectroscopy (XAS). The effects of transformed AgNPs (mainly Ag-S phases) on nitrification, wastewater microbial populations and, for the first time, methanogenesis was investigated. Results: Sequencing batch reactor experiments and anaerobic batch tests, both demonstrated that nitrification rate and methane production were not affected by the addition of AgNPs [at 2.5 mg Ag L-1 (4.9 g L-1 total suspended solids, TSS) and 183.6 mg Ag kg -1 (2.9 g kg-1 total solids, TS), respectively]. The low toxicity is most likely due to AgNP sulfidation. XAS analysis showed that sulfur bonded Ag was the dominant Ag species in both aerobic (activated sludge) and anaerobic sludge. In AgNP and AgNO3 spiked aerobic sludge, metallic Ag was detected (~15%). However, after anaerobic digestion, Ag(0) was not detected by XAS analysis. Dominant wastewater microbial populations were not affected by AgNPs as determined by DNA extraction and pyrotag sequencing. However, there was a shift in niche populations in both aerobic and anaerobic sludge, with a shift in AgNP treated sludge compared with controls. This is the first time that the impact of transformed AgNPs (mainly Ag-S phases) on anaerobic digestion has been reported. Conclusions: Silver NPs were transformed to Ag-S phases during activated sludge treatment (prior to anaerobic digestion). Transformed AgNPs, at predicted future Ag wastewater concentrations, did not affect nitrification or methanogenesis. Consequently, AgNPs are very unlikely to affect the efficient functioning of wastewater treatment plants. However, AgNPs may negatively affect sub-dominant wastewater microbial communities.Casey L Doolette, Mike J McLaughlin, Jason K Kirby, Damien J Batstone, Hugh H Harris, Huoqing Ge and Geert Corneli

    Alpha 1-antitrypsin deficiency (Pi SZ) and biliary atresia.

    No full text
    We report an infant who presented at 2 days of age with conjugated hyperbilirubinemia. Serological, radiographic, and surgical investigations revealed the concurrence of alpha-1-antitrypsin deficiency, protease inhibitor type SZ, and extrahepatic biliary atresia

    Age influences recovery of systemic and mucosal immune responses following acute depletion of CD4 T cells.

    No full text
    We have examined the influence of recipient age on the recovery of the CD4 T cell compartment following in vivo treatment with anti-CD4. Mice were treated with anti-CD4 beginning in utero (adolescent), at 8 weeks (young adult), or at 52 weeks (old adult). Following acute CD4 depletion, adolescent mice recovered CD4 T cells rapidly (99% of age-matched controls at 5 weeks after anti-CD4 treatment). Young adult mice recovered more slowly (48% of control at 5 weeks), while old adult mice recovered less than 50% of control CD4 T cell numbers at 12 weeks after depletion. At 12 weeks after anti-CD4 treatment, adolescent mice made an enhanced anti-SRBC antibody response and young adult mice mounted a response comparable to their age-matched controls. In comparison, old adult mice mounted on anti-SRBC response that was only 57% that of their age-matched controls. By 1 week after cessation of anti-CD4 treatment, adolescent mice mounted normal systemic and intestinal responses to challenge with the thymic-dependent antigen cholera toxin (CT). In contrast, young adult mice recovered \u3c 50% of age-matched control CT responsiveness by 5 weeks post-CD4 depletion. By 5 weeks post-CD4 depletion, young adult mice exhibited normal tolerance following enteric tolerization with ovalbumin. These findings underscore the importance of recipient age in designing or interpreting studies employing T cell depletion
    corecore