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An evidence-based methodology was adopted in this research to establish strategies to increase lead
recovery and recycling via a systematic review and critical appraisal of the published literature. In particular,
the research examines pollution prevention and waste minimization practices and technologies that meet
the following criteria: (a) reduce/recover/recycle the largest quantities of lead currently being disposed of as
waste, (b) technically and economically viable, that is, ready to be diffused and easily transferable, and
(c) strong industry interest (i.e., industry would consider implementing projects with higher payback
periods). The following specific aims are designed to achieve the study objectives: Aim 1 – To describe the
recycling process of recovering refined lead from scrap; Aim 2 – To document pollution prevention and waste
management technologies and practices adopted by US stakeholders along the trajectory of LAB and lead
product life cycle; Aim 3 – To explore improved practices and technologies which are employed by other
organizations with an emphasis on the aforementioned criteria; Aim 4 – To demonstrate the economic and
environmental costs and benefits of applying improved technologies and practices to existing US smelting
operations; and Aim 5 – To evaluate improved environmental technologies and practices using an algorithm
that integrates quantitative and qualitative criteria.
The process of identifying relevant articles and reports was documented. The description of evidence
was presented for current practices and technologies used by US smelters as well as improved practices
and technologies. Options for integrated environmental solutions for secondary smelters were
introduced and rank ordered on the basis of costs (i.e., capital investment) and benefits (i.e., production
increases, energy and flux savings, and reduction of SO2 and slag). An example was provided to
demonstrate the utility of the algorithm by detailing the costs and benefits associated with different
combinations of practices and technologies. The evidence-based methodology documented in this
research reveals that it is technically and economically feasible to implement integrated environmental
solutions to increase lead recovery and recycling among US smelters. The working example presented in
this research can be confirmed with US stakeholders and form the basis for implementable solutions in
the lead smelter and product industries to help reverse the overall trend of declining life-cycle recycling
rates.

©2009 Elsevier B.V. All rights reserved.

1. Introduction

In today's global economy businesses, consumers and commu-
nities are challenged more than ever with the continual significant
increase in the costs of, among other things, doing business, daily
living and upkeep of societal activities. In this endeavor, the practice of
sustainable development becomes integral to maintain the delicate
balancing act among the needs of business, society and environment.

This research deals with the environmental management of lead
which makes up the largest hazardous waste stream in the US.
Approximately 88% of US production is used in the manufacture of
lead-acid batteries (LAB) (Smith, 2008). Based on an exploratory study
of LAB product lifecycle, Genaidy et al. (2008) found that the recycling
rates for lead recovery declined from 1999 to 2006, with a peak of
85.2% in 1999 and significantly dropping to 66% in 2006. According to
the authors, the reasons for the decline was attributed to one or more
of the following: (a) the amount of lead recovered was virtually
unchanged and fluctuating in the range of 10010 and 1060 thousand
tons; (b) the amount of lead in domestic battery consumptionwent up
by 18% from 1995 to 2002 at an annual growth rate of 2.25%; and
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(c) the amount of lead in imported batteries increased by 118%, a value
much higher than the 37% recorded for lead content in exported
batteries. In lieu of the declining recycling rates, the focus of this paper
is to explore environmental improvement strategies to increase lead
recycling, process efficiency and recovery in order to improve human
and environmental health as well as the bottom line of lead smelters,
lead-acid battery and other lead product industries.

Environmental management has evolved over the years through a
series of successive paradigms: (a) Passive environmental manage-
ment; (b) Reactive environmental management or end-of-pipe
approaches; (c) Proactive environmental management or cleaner
production (Hilson, 2003). Passive environmental management
included foul and flee (e.g., after contaminating a plot of land, one
would abandon the area), dilute and disperse (e.g., the dispersal of
waste in the atmosphere or water body, the only waste management
practice in pre-industrial society), and concentrate and contain
(emerged to address highly toxic wastes such as nuclear waste and
spent fuels). End-of-pipe approaches involved the installation of
purification and detoxification units at the end of emission pipes and
coincided with the implementation of national environmental
regulations. The concept of cleaner production has emerged in the
past 10–15 years. It embraces waste minimization and pollution
prevention at the source, and combines environmental and business
concerns.

A comprehensive review of electronic databases suggest gen-
eral reviews exist on pollution prevention and waste minimization
technologies and practices (e.g., Freeman et al., 1992; Chaaban
et al., 2001; Moors et al., 2005; Hossain et al., 2008). However,
efforts are fragmented on specific technologies and/or practices
that address maximum lead recovery at the pre-processing or the
in-processing stage (e.g., Reuter et al., 1997; Andrews et al., 2000).
Given that the number of secondary lead smelter facilities dropped
from 50 plants in 1995 (USEPA, 1995) to an estimated number of
21 plants in 2006 on the basis of data derived from the US Geo-
logical Survey (Carlin et al., 2006), there is a need to augment the
production capacity of these fewer smelters to reverse the de-
clining recycling rates, yet, to improve the environmental perfor-
mance of the smelters.

An evidence-based methodology is adopted in this research to
establish strategies to increase lead recovery and recycling via a sys-
tematic review and critical appraisal of the published literature. In
particular, the research examines pollution prevention and waste
minimization practices and technologies that meet the following
criteria: (a) reduce/recover/recycle the largest quantities of lead cur-
rently being disposed of as waste, (b) technically and economically
viable, that is, ready to be diffused and easily transferable, and (c)
strong industry interest (i.e., industry would consider implementing
projects with higher payback periods). The following specific aims are
designed to achieve the study objectives: Aim 1 – To describe the
recycling process of recovering refined lead from scrap; Aim 2 – To
document pollution prevention and waste management technologies
and practices adopted by US stakeholders along the trajectory of LAB
and lead product life cycle; Aim 3 – To explore improved practices and
technologies which are employed by other organizations with an
emphasis on the aforementioned criteria; Aim 4 – To demonstrate the
economic and environmental costs and benefits of applying im-
proved technologies and practices to existing US smelting operations;
and Aim 5 – To evaluate improved environmental technologies and
practices using an algorithm that integrates quantitative and qualita-
tive criteria.

2. Recovering lead from waste streams

Lead scrap undergoes two stages during the recycling process:
physical separation and chemical separation (smelting and refining)
(Wernick and Themelis, 1998). Typically, lead scrap comes from

spent automobile and industrial lead-acid batteries (LAB). These
spent LABs are drained of the electrolyte and crushed into smaller
manageable pieces for further processing using hammer mill and
grinding procedures, followed by washing and gravity separation in
hydro-separators to isolate the lead-containing components and
other materials. There are three streams: lead materials (about 60%
lead, 15% PbO2, and 12% PbSO4), polypropylene scraps, and sulfuric
acid (Wernick and Themelis, 1998). The lead materials usually come
from grids and posts (lead alloy) and electrode paste (lead oxides
and sulfides).

Smelting is the reduction of lead compounds to elemental lead in
a high-temperature furnace which operates at higher temperatures
(2200° to 2300 °F or 1200° to1260 °C) than those required for ele-
mental lead (621 °F or 327 °C). Depending on the smelter's practices
andprocess, the recovered lead-containingmaterials are directly fed to
the smelting furnace, or, first desulfurized then fed to the furnace (e.g.,
blast or electric furnace). The reduction of feed in the furnace yields
raw lead product and slag rich (containing 20% to 40% lead) in lead
content. The slag is fed back to the furnace for further reduction and
lead recovery. The remaining slag is usually discarded as solid waste in
landfills or sold to other industries as raw material (e.g., material in
Portland cement). Following smelting, the recovered lead is trans-
ferred to refining kettles where lead is melted to remove the residual
impurities to recover pure lead or to adjust other trace elements to
produce alloys as per customer requirements and cast into ingots for
shipment.

A simplified flow process diagram is shown in Fig. 1 for secondary
lead smelting (USEPA, 1998). The lead recycling process consists
of three stages, namely, pre-, in- and post-processing. The physical
separation step constitutes the pre-processing stage. The chemical
separation makes up the in-processing stage including the smelting
and refining processing. It should be noted that the smelting stage
consists of charging lead scrap to a reverberatory furnace. Conse-
quently, the reverberatory furnace slag is used as feedmaterial to blast
or electric furnace for lead recovery. The third stage consists of post-
processing, that is, the application of pollution control technologies.

Fig. 2 presents four possible practices in US secondary lead
smelting operations. In the first case, spent batteries are directly fed
to the high temperature furnace. The second scenario separates the
plastic components from the remainder of spent batteries in which
lead scrap and battery paste are fed to the high temperature
furnace. The third scenario is a variation of the second case where a
drying/roasting unit is introduced between the battery breaking/
hydro-separation unit and the high temperature furnace. Lastly, the
fourth scenario adds a desulfurization unit to the components in
the third scenario for the significant reduction of, among other
things, SO2.

3. Methods

3.1. Search strategies

Initially, the search concentrated on in-processing technologies in
the US and abroad. However, in light of the application of inclusion
criteria such as economic payback and efficiency, the evidence-based
research team realized that the search should be extended to en-
vironmental technologies and practices at the pre-, in-, and post-
processing stages. In addition, we expanded the search to metal
recovery at large, that is, it was not exclusive to lead processing. Thus,
the redefined target areas in our search were: (a) current environ-
mental practices and technologies adopted by US industries and
abroad in the lead recycling process; (b) improved environmental
practices and technologies for use in all stages of the lead recycling
process; and (c) environmental practices and technologies applicable
to pollution prevention and control technologies at the pre- and post-
processing stages in the metal recycling process at large.
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Fig. 1. Simplified flow process diagram for secondary lead smelting process (Adapted from EPA, 1998).
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The detail of comprehensive search of electronic databases is
outlined below in support of the above target areas.

• For current in-processing practices and technologies in the US and
abroad,weconsulted theenvironmentaldatabases ofAcademic Search
Premier and Environetbase and general search engines such as Google
and Yahoo with combinations of the following keywords: secondary
lead smelting, smelting technologies, lead recycling technologies, and
reclaiming and clean technologies. An emphasiswas placed on articles
emphasizing technologies in terms of efficiency and economic impact.

• For improved pollution prevention and control technologies
relevant to all three stages of the smelting operation, specialized

databases were used, namely, Academic Search Premier, Environet-
base, Environment Complete and IEEE Electronic Library Online.
General purpose search engines were also used including Google
and Yahoo. The following combinations of keywords were used:
pollution prevention technologies, air emission control technolo-
gies, gas emission control technologies, and waste water treatment
technologies. Inclusion criteria included efficiency, economic pay-
back, and energy expenditures/savings.

• The above databases were also searched for articles on practices
and other technologies aiming at improving metal recovery at
the pre- and post-processing stages. The following keywords and
combinations were used: secondary lead smelting, best practices,

Fig. 2. a. Secondary lead recovery with spent batteries directly fed to smelting furnace. b. Secondary lead recovery with battery breaking/hydro-separation unit. c. Addition of drying/
roasting unit to set-up in panel b. d. Addition of desulfurization unit to set-up in panel c.
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pre-processing technologies, smelter feed, feed preparation, scrap
separation, lead scrap treatment. In this light, individual and re-
view articles were included.

3.2. Data and information extraction for evidence description

To accomplish Aims 2 and 3, the following items were documented
for the evidence description of technologies and practices current and
improved) for the three stages of secondary lead smelting: (a) Pre-
processing – Technology description, efficiency (%), cost-effectiveness
(% energy savings or expenditures per ton of metal recovered), payback
period (years), environmental benefits (e.g., reduction in slag and
SO2) and production increases (% increase in throughput); (b) In-
processing – Technology description, furnace efficiency (%), cost-
effectiveness in terms of energyexpenditures per ton ofmetal recovered
(GJ/ton of lead), and effectiveness (purity of metal recovered in %); and
(c) Post-processing – efficiency (%), cost-effectiveness in terms of
energy expenditures per ton of metal recovered (GJ/ton of lead),
payback (yrs), and effectiveness in terms of concentration of con-
taminant in treated gas or water (mg/Nm3 for gas flow or mg/l for
processed water). Data and information were gathered for each type of
technology/practice from one or more articles by one member of the
research team and was verified by another member. Any discrepancies
were resolved in consensus meetings.

3.3. Assessment of economic/environmental cost and benefits for
improvement options

To achieve Specific Aim 4, the third scenario shown in Fig. 2c was
utilized as the example to demonstrate the economic and environ-
mental costs and benefits of adopting improved technologies and
practices. A detailed account of the benefits and costs was presented
with respect to changes in production, energy andmaterial inputs, and
environmental emissions. The analyses were made with reference to
small (production capacity of 10,000 t), medium (i.e., 50,000 t) and
large smelters (i.e., 100,000 t).

To achieve Aim 5, a methodology was devised to rank order the
different options of bundles of improved environmental technologies
and practices. In order to encourage the diffusion of improved tech-
nologies and practices, we assumed that the in-processing technol-
ogies in secondary smelting are not changing due to prohibitive costs
of their replacement. Accordingly, our efforts concentrated on im-
provement of technologies and practices at the pre-processing stage.
To assess the different options, an algorithm was developed which
took into account the following criteria: (a) cost of capital investment
and (b) benefits from production increases, energy and flux savings,
and environmental emission reduction (SO2 and slag). All benefit
indices were estimated in monetary values and were converted into
a percentage level relative to the predicted revenues for smelters
depending on its size (10,000 t for small smelters; 40,000 t for me-
dium smelters; and 100,000 t for large smelters).

The overall benefit level was derived using the step-by-step
process outlined in Fig. 3. In step 1, production increase is evaluated
into one of four levels, namely, very low, low, moderate and high. Both
energy/flux savings and environmental benefits are computed in
units relative to production increase, that is, no change, increase by 1/
2 level, or increase by one level as shown in steps 2 and 3 in Fig. 3,
respectively; then, the energy/material savings and environmental
benefits are converted into a single score by utilizing the conversion
factor in step 4 (Fig. 3). Finally, the overall benefits are determined
by integrating the values of production increase and energy savings/
environmental benefits (see step 5). For example, if the converter
outcome is ‘1 level’ and the level of production increase is ‘high’, the
product will yield a ‘very high’ overall benefit. The one-time capital
cost investment was converted into an annual basis by dividing the
value by 4 years to be able to compare it on equal level with annual

benefits (a 4-yr normalization value was selected because it cor-
responds to the payback period for hydro-metallurgical units as re-
ported in Table A3 in Appendix A). Consequently, the obtained value
was converted to a percentage level relative to the smelter's estimated
revenues as explained above. The percentage value was transformed
into a linguistic descriptor as shown in Fig. 3 (Step 6).

To illustrate the process of converting the numerical value into a
linguistic descriptor for a benefit or cost variable, let us assume for
example that a production increase in the improved blast furnace system
for a small smelter is valued at $17 M. Relative to the smelter annual
revenues (e.g., $27 M), this is equivalent to 62% of the annual revenues
and equates to a ‘High’ level (see Fig. 3). It should be noted that one
cannot easily translate the significant reduction in SO2 emission into
monetary values. Therefore, given that the reduction in SO2 is comparable
to that in slag reduction, thepercentage value assigned to the reduction in
slag was assumed to be the same as that for the reduction in SO2.

Fig. 3 depicts the compatibility function for integrating the costs and
benefits into a single index ranging in values from ‘Very Low’, ‘Low’,
‘Moderate’, ‘High’ to ‘Very High’. The compatibility function takes into
account not only the payback period for the option at hand, but also, the
economic and environmental benefits beyond the payback period. In a
way, the compatibility function can be seen as a sustainability index
integrating the economic, environmental and societal costs and benefits
under one umbrella.

The assessment algorithm is used to calculate the compatibility
function in several steps as follows: (1) Production increase is assigned
a linguistic descriptor ranging from ‘Very Low’ to ‘High’ as shown in
Step 1 of Fig. 3; (2) The energy and flux savings are evaluated as
reported in Step 2 of Fig. 3 to determine the action required ranging
from ‘No Change’ to ‘Increase by 1/2 Level’ to ‘Increase by One Level’;
(3) Step 3 of Fig. 3 calls for a similar action in terms of the added
environmental benefits of both SO2 and slag reduction; (4) The action
outcomes from Steps 2 and 3 are added up to obtain an intermediate
action for the integration of energy/flux savings and SO2/slag
reduction ranging from ‘No Change’ to ‘Increase by 1 1/2 Level’;
(5) The outcomeof production increase obtained fromStep 1 of Fig. 3 is
modified by an integration of the intermediate action outcome from
both the energy/flux savings and SO2/slag reduction to arrive at the
overall benefit level (step 5); (6) The overall cost is assigned one offive
values ranging from ‘Very Low’ to ‘VeryHigh’ as demonstrated in Step6
of Fig. 3; (7) the compatibility function is calculated for a given value of
cost and benefit using the table shown in Fig. 3 and is assigned a value
ranging from ‘Very Low’ to ‘Very High’ (Step 7).

It should be noted that combining energy and flux savings together
with environmental emission reduction may lead to improvement in
the order of 1/2 units (see footnote in Fig. 3). Thus, one may add a
‘somewhat’ level between two consecutive descriptors, for example,
‘low’ and ‘moderate’ becoming ‘somewhat moderate’. Therefore, the
benefit scale (i.e., in steps 1, 5 and 7) will consist of the following
levels: ‘Very Low’, ‘Somewhat Low’; ‘Low’, ‘Somewhat Moderate’,
‘Moderate’ ‘Somewhat High’, ‘High’, ‘Somewhat Very High’ and ‘Very
High’ (please see a refined table of the compatibility function in the
footnote of Fig. 3). The compatibility table was developed using a
round table of experts in industrial management.

3.4. Identification of studies

3.4.1. Smelting technologies
The search of electronic databases for smelting technologies resulted

in 1452 citations (Fig. 4a). Seventy-two abstracts were retrieved after
removing repeated abstracts, reviewarticles and abstracts not related to
the topic. Upon application of inclusion criteria (e.g., efficiency, cost-
effectiveness, output purity), a total of 28 articles were fully examined
and twenty-one studies were finally selected for use in our evidence-
based methodology (Andrews et al., 2000; Baldock and Short, 2000;
Cow-perthwaite et al., 1980; Diaz et al., 2001; Ferracin et al., 2002; Frias
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et al., 2002; Agrawal et al., 2004; Rabah, 1998; Ramus and Hawkins,
1993; Reddy, 2003; Raghavan et al., 2000; Tianjun and Qichang, 1999;
Errington et al., 2005; Arthur and Edwards, 2003; Zhang et al., 2008;
Ziebik and Stanek, 2006; Barakat, 1998; Ettler et al., 2005; Ryzhenkov
et al., 2006; Socolow and Thomas, 1997; Yender, 1998).

3.4.2. Pollution prevention and control technologies
The electronic search for pollution prevention and control tech-

nologies applicable to secondary lead smelting produced 1784

citations of which 1556 articles were eliminated on the basis of
irrelevance to the study objective (Fig. 4b). After elimination of
review and repeated articles from different databases, fifty-eight
articles were short listed and read. Upon screening with respect to
technology characteristics (e.g., efficiency), thirteen research papers
were deemed appropriate for our study (Freeman et al., 1992; Hilson,
2000; Warhurst and Bridge, 1996; Hilson, 2003; Matheickal and Yu,
1997; De-Bruijn et al., 1996; Jaworek et al., 2006; Mooiman et al.,
2005; Moss, 2008; Kreusch et al., 2007; Jolly and Rhin, 1994; Hossain

Fig. 3. Calculation of compatibility function. (VL – Very Low; L – Low; M – Moderate; H – High; VH – Very High).

Footnote:

• Combining energy and flux savings together with environmental emission reduction may lead to improvement in the order of 1/2 units. In this case, one may add a ‘somewhat’
level between two consecutive descriptors such as low andmoderate becoming ‘somewhatmoderate’. Therefore, the benefit scale (i.e., Steps 1, 5 and 7)will consist of the following
levels: VL – Very Low; SL – Somewhat low; L – Low; SM – Somewhat moderate; M – Moderate; SH – Somewhat high; H – High; SVH – Somewhat very high; VH – Very High.

• The final compatibility matrix is shown below while incorporating the ‘somewhat’ levels:

Cost Benefit

VL SL L SM M SH H SVH VH

VL L L L SM M SH H H H
L L L L SM M SH H H H
M L L L SH H SH H SVH VH
H VL L L SM M SH H SVH VH
VH VL VL VL SL L SM M M M
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et al., 2008; El-Halwagi 1998). Three additional reports were identified
and found of use in the present study in light of internet inquiry on
general purpose search engines (UNEP, 2003; USEPA, 1998; European
Commission – Integrated Pollution Prevention and Control, 2001).

3.4.3. Additional practices and technologies
Fig. 4c provides a summary of the article selection search pro-

cedure for additional technologies and practices designed to max-

imizemetal recovery at the pre- and post-processing stages during the
recycling process. A total of 984 citations were found. Fifty-four
abstracts were selected after eliminating repeated abstracts and
papers which are not relevant to the study objective. The following
nineteen articles were finally used to support the study specific aims
(Kang and Schoenung, 2005; Scott et al., 1997; Mesina et al., 2007; van
Schaik and Reuter, 2004; Salomone et al., 2005; Vaysgant et al., 1995;
Rabah, 1998; Quirijnen, 1999; Nakada et al., 2008; Lewis and

Fig. 4. a. Article selection flowchart for in-processing lead smelting technologies. b. Article selection flowchart for pollution prevention and control technologies. c. Article selection
flowchart for additional technologies and practices for metal recovery.
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Beautement, 2002; Kinaev et al., 2005; Driussi and Jansz, 2006; De
Angelis et al., 2002; Dahodwalla and Heart, 2000; Espinosa et al.,
2004; Coya et al., 2000; Bunge et al., 1996; Bourson, 1995; Zhao et al.,
2008; Zabaniotou et al., 1999).

Upon completion of the primary electronic search and evidence-
based analyses, the research team conducted another secondary
search to fill in gaps found in the tables of evidence-based information
discussed in the results section and reported in the Appendices.
Additional studies and reports include, among others, the work of
Akihiko (2004), Abrams et al. (1999), Hughes (2000), Kenson (2005),
Lyakov et al. (2007), Olson (2008), Olympia Resource Limited (2005),
Saman and Nutter (1994), Warner et al. (2006), Wolters et al. (2008),
and Xstrata (2006).

4. Results

4.1. Description of evidence

The description of evidence is documented in Appendix A.
Tables A1 through A4 provide the description and characteristics of
in-processing technologies in typical US secondary smelting plants,
improved in-processing technologies (not currently used in US
plants), and pre- and post-processing technologies, respectively.
The sources of emissions and pollutants during the smelting
operations are outlined in Fig. 5a for typical activities conducted
in US recycling plants based on pyro-metallurgical techniques.
Fig. 5b documents the emissions for improved hydro-metallurgical
technologies.

4.1.1. Current technologies and practices used by US smelters
The US lead smelting industry uses reverberatory, blast, rotary

and electric furnaces for smelting lead scrap to produce refined
lead. As a first step, the batteries are broken down by hammer mills
or sawing and scrapped lead is separated via hydro-separation. Few
of the smelters use desulfurization units to remove sulfur from lead
prior to being fed into high temperature furnaces. The recovered
lead scrap is dried and mixed with other lead-content materials.
Measured quantities of feed are processed with flux and reducing
agents in high temperature furnaces, usually reverberatory, to
separate elemental lead from other impurities. Soft lead is tapped
from the furnace and the generated slag rich in lead content is
further reduced in blast or electric furnaces. Thereafter, soft lead is
purified or alloyed in kettles and cast to lead billets per customer
requirements.

The emissions in the secondary lead smelting process are con-
trolled to meet environmental regulations. Baghouse filters are used
to collect the dust produced during battery breaking, drying and feed
preparation and smelting. Some smelters process the battery paste
directly into the high temperature furnaces, therefore, the plants are
equipped with gas scrubbing units to remove the sulfur dioxide pro-
duced during the process in the form of sulfuric acid. Other emissions
such as carbon monoxide and dioxide, and dioxins are burned with
the dust collected in bag filters. Lead dust collected in bag filters is
redirected to the furnace for further smelting.

Vast amounts of water are used at different points in secondary
lead smelting operations including hydro-separation units, furnace
cooling, quenching, and emission control equipment. The resulting
contaminated water with lead and lead compounds and other acids
and alkalies is collected and treated in tanks and reservoirs to
remove contaminants. The treated water is reused in the smelter
processes or released into the streams depending on the smelter
practices and waste water.

4.1.2. Improved technologies and practices
Improved in-process smelting technologies include both pyro- and

hydro-metallurgical processes (UNEP, 2003). Pyro-metallurgical tech-

niques reduce all metallic compounds via chemical methods to their
metallic or reduced forms by means of heating and use of fluxing and
reducing agents. Prior to smelting, some pyrometallurgical techniques
employ desulfurization and neutralization steps. Following smelting, a
refining step is required in which specific reagents are added to
molten lead at appropriate temperatures. The reagents will remove
the unwanted metals.

Hydro-metallurgical technologies reduce all lead compounds to
metallic lead electrically via electrolysis that deposits lead on elec-
trodes, which is subsequently shaken off, collected and pressed to
form platelets of pure lead. A comparative assessment of hydro- and
pyro-metallurgical techniques reveals the following observations:

• Hydro-metallurgical methods are highly effective in producing pure
metals. Its efficiency is comparatively higher than that of pyro-
metallurgical procedures.

• Hydro-metallurgical processes can be altered to accept a wide range
of feed materials with minimally invasive process changes.

• The production output capacity of pyro-metallurgical technologies
is much higher than that of hydro-metallurgical processes.

• The points of emissions are significantly less in hydro-metallurgical
methods (Fig. 4b) in comparison to pyro-metallurgical process
(Fig. 5a).

It should be noted that hydro-metallurgical units are produced in
various sizes. In this research, smaller hydro-metallurgical units, as
shown in a later section, are also presented as viable options in the
pre-processing technologies to augment the capabilities of in-
processing technologies among US smelters (e.g. pyro-metallurgical
units).

In addition to hydro- and pyro-metallurgical techniques, the
following observations can be made about pollution prevention and
waste minimization technologies and practices which can assist in
reducing the sources of emissions during pre- and in- processing
activities:

• Baghouse filters with fabric and ceramic filters are best suited for
dust abatement with efficiency greater than 99.9%+.

• Significant reduction in hazardous gas emissions can be achieved
through in- and post-processing after gas burners.

• End-of-pipe control technologies, such as sedimentation, can be
used to capture material lost in water and dust during transporta-
tion, handling, processing and extraction of lead.

• The recycle and reuse of process/waste/treatment of water has
significant economic impact.

• The desulfurization of battery paste prior to in-process smelting
significantly reduces the amount of generated slag due to
reduction/elimination of iron and savings in coke consumption.
The efficiency of smelting operation can increase by 25 to 30% due
to the desulfurization activity.

• Battery separation and smelting practices have a significant impact
on slag reduction relative to smeltingwhole batteries (i.e., thewhole
battery is fed to high temperature furnaces).

• Prior to entry into the smelting phase, drying feed materials can
significantly reduce the energy requirements of the furnace.

• The pre-sorting of batteries and lead-containing materials increases
the furnace efficiency via increased throughput, and reduced emis-
sions and generated slag.

4.2. Example of economic/environmental costs and benefits for improved
technologies and practices

Appendix B documents the details of costs and benefits of in-
troducing hydro-metallurgical techniques to the third scenario shown
in Fig. 2c so as to improve the environmental practices of US smelters.
The details are demonstrated for small, medium and large smelters.
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Fig. 5. a. Sources of emissions in pyro-metallurgical process.
Footnote:

1. Grinding of battery to separate plastic, electrolyte and lead plates:

• Dust contaminated with lead and acid electrolyte

• Particulate lead

• Contaminated waste

2. Transportation (in the event that a breaking facility is separate from a smelting facility):

• Dust contaminated with lead particulate and lead compounds

• Ground water contamination by transportation of wet charge

3. Lead reduction in a rotary furnace:

• Lead-contaminated scrap

• Lead-contaminated dust (from filters)

• Emission of SO2

• Emission of chlorinated compounds

• Production of slag

4. Separation of metallic lead from slag and refining:

• Emission of lead vapors

• Emission of SO2

• Production and removal of fine, dry dust with high percentage of lead and other metals

• Release of chlorine gas (Cl2)

5. Other sources:

• Dust from storage and handling of concentrates; Leakage from roasters and smelters; Miscellaneous (0.7 t/year)
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Fig. 5. b. Sources of emissions in hydro-metallurgical process.
Footnote:

1. Grinding of battery to separate plastic, electrolyte and lead plates:

• Dust contaminated with lead and acid electrolyte

• Particulate lead

• Contaminated waste

2. Transportation (in the event that a breaking facility is separate from extraction facility):

• Dust contaminated with lead particulate and lead compounds

• Ground water contamination by transportation of wet charge

3. Lead leaching:

• Lead containing leachant seepage and contamination of soil in in-situ or dump leaching

• Dust contaminated with lead while transporting pregnant solution

• Acid mists (pressure leaching)

4. Electrolysis:

• Spent acids and electrolytes

• Acids in water from wet gas cleaning

3248
A
.M

.G
enaidy

et
al./

Science
of

the
Total

Environm
ent

407
(2009)

3239
–3268



Fig. 6. a. Summary of costs and benefits for small smelter – blast furnace. b. Summary of costs and benefits for small smelter – electric furnace. c. Summary of costs and benefits for
medium smelter – rotary furnace. d. Summary of costs and benefits for medium smelter – reverberatory/blast furnace set-up. e. Summary of costs and benefits for medium smelter –
reverberatory/electric furnace set-up. f. Summary of costs and benefits for large smelter – rotary furnace. g. Summary of costs and benefits for large smelter – reverberatory/blast
furnace set-up. h. Summary of costs and benefits for large smelter – reverberatory/electric furnace set-up.
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Fig. 6 (continued).
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Fig. 6 (continued).
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It was assumed that existing in-processing smelting technologies are
kept as is for economic reasons. With this in mind, the costs and
benefits are outlined for both blast and electric furnaces (small

smelters with a capacity of 10,000 t), and rotary, reverberatory/blast
and reverberatory/electric furnaces (medium and large smelters with
capacities of 40,000 and 100,000 t, respectively).

Fig. 6 (continued).
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Fig. 6 shows a summary of the costs and benefits of the drying/
roasting and hydro-metallurgical units for different types and com-
binations of in-processing smelting technologies. The costs represent
the one-time capital investment in improved technologies and
practices. On the other hand, the benefits are presented on an annual
basis for: (a) increases in refined lead production and creation of
gypsum as secondary products accrued only via the hydro-metallur-
gical unit; (b) energy savings from both units; and (c) reduction in
flux usage due to re-routing of battery paste directly to the hydro-
metallurgical unit as well as significant reduction in environmental
emissions as evidenced by SO2 and slag removal. For small smelters,
the benefits are higher for existing blast furnace set-ups because
their efficiency is lower (91%) than that of electric furnaces (99%).
Therefore, the full benefits of the hydro-metallurgical unit are
realized for the blast furnace. Comparable benefits are achieved for
different combinations of high temperature furnaces for medium and
large smelters because of the comparable efficiencies of existing
furnace set-ups.

4.3. Options for integrated environmental solutions for secondary lead
smelters

Appendix C provides an analysis of the different options in terms
of costs and benefits for pre-processing technologies and practices.
There are three pre-processing technologies and practices which can be
adopted by US secondary lead smelters without significant changes.
These include: (a) drying feed material prior to entry into high tem-
perature furnace, (b) desulfurization of battery paste and slag, and
(c) hydro-metallurgical processing of battery paste and slag. Air- and
hydro-separation are the choices for physical separation or presorting
lead scrap. The selection of presorting methods is dependent on the
smelter's acceptance of its rawmaterials. Theprocessingof amixof lead-
containing materials (e.g. printed circuit boards in addition to LAB) can
benefit from air separation units for feed enrichment. Finally, pollution
control technologies for air emissions and waste water treatments are
mature methods and there is a wide selection to choose from.

Table 1 provides a comparative assessment of different bundles of
pre-processing pollution prevention technologies used to improve the
performance of existing in-processing smelting technologies. The
following observations can be made from this table.

• A drying unit is almost required in any bundle because it significantly
reduces the energy requirements of high temperature furnace via
removal of moisture and pre-heating the furnace charge.

• When added to an existing pyro-metallurgical smelting operation, a
hydro-metallurgical unit significantly increases the metal recovery
efficiency by extracting the metal content lost in slag and sludge
generated from other pollution control devices.

• Although the rate of reduction in environmental air emissions, par-
ticularly SO2, is almost the same for both hydro-metallurgical and
desulfurization methods, hydro-metallurgical methods use less
energy than desulfurization units. In essence, pyro-metallurgical

techniques require further processing of desulfurized paste, hence,
higher energy requirements.

• The reduction in slag generated through the use of desulfurization
or hydro-metallurgical units is attributed to the reduction in flux
required to extract pure lead from sulfurized lead.

In light of the above, it appears that a bundle consisting of dried
and hydro-metallurgical units considerably enhance the performance
of existing pyro-metallurgical-based smelting plants from the stand-
point of production, energy/material savings, and environmental
emission reduction. Plants with added desulfurized units (see Fig. 2d)
will achieve very high performance by adding the hydro-metallurgical
unit. For small smelters, this option will close the gaps between blast
and electric furnaces. For medium to large smelters, this option
provides the best performance to a rotary furnace or a combination of
reverberatory and electric/blast furnaces.

5. Discussion

In recent years, sustainable industries determined that conven-
tional end-of-pipe environmental systems are not effective at damage
remediation and are costly to operate and maintain (Hilson, 2000). It
was concluded that the solution to these problems is to replace the
conventional end-of-pipe equipment with cleaner technologies (i.e.
equipment that emits little or no hazardous material or that tackles
pollution at the source rather than after it is discharged) and to
implement cleaner production practices as part of daily business
operations. With the above in mind, the research reported herein
deals with lead which makes up the largest hazardous waste in the U.S.
and still presents a significant source of pollutants (Gearhart et al.,
2003). In light of recent declining rates for metal recovery in the LAB
product lifecycle in the US market (Genaidy et al., 2008), the focus of
this study was to identify integrated environmental strategies to
increase lead recycling, process efficiency and recovery in order to
improve human and environmental health as well as the bottom line
of secondary lead smelters, LAB and other lead product industries.

Typically, a secondary smelting operation consists of three stages:
pre-, in- and post-processing. The in-processing stage is at the core of
the smelting operation. From a smelter perspective, we assumed that
one cannot replace the in-processing equipment given the high capital
investment. Therefore, we concentrated our efforts on improving the
operation at the pre-processing stage. An evidence-based methodol-
ogy was deployed through a systematic review and appraisal of the
scientific literature with an emphasis on solutions that can lead to
recovery and recycling of the largest quantities of lead currently being
disposed of as waste subject to technical and economic viability and
strong industry interest. A comprehensive search of electronic data-
bases and general purpose search engines was conducted to retrieve
relevant articles and reports to the present research. The required data
and information was extracted for the purpose of improving the
operation of secondary lead smelters. Following data search and

Table 1
Summary of implementation priorities of suggested bundles.

Furnace type Pre-processing improvement practices

Drying unit only Drying + desulfurization
units

Drying + hydro-metallurgical
units

Drying + desulfurization +
hydro-metallurgical units

Blast (small smelters) Low Somewhat Moderate Very High Very High
Electric (small) Low Somewhat Moderate High Somewhat Very High
Rotary medium to large) Low Somewhat Moderate High Somewhat Very High
Reverberatory + blast (medium to large) Low Somewhat Moderate High Somewhat Very High
Reverberatory + electric (medium to large) Low Somewhat Moderate High Somewhat Very high

Appendix C shows the details of rank ordering of different bundles of environmental improvement technologies.
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extraction, the description of evidence was presented for current
practices and technologies used by US smelters as well as improved
practices and technologies at the pre-, in- and post-processing stages.

Indeed, primary barriers to implementing improved environmen-
tal technologies and practices are economic factors (Hilson, 2000).
Thus, an algorithm was developed to assess the economic and envi-
ronmental performance of suggested bundles of improved technolo-
gies and practices. The assessment criteria were based on capital cost
and benefits (i.e. production increases and generation of by-products,
savings in energy and flux materials, and reduction in SO2 and slag).
These criteria were formulated through the use of a multi-step
procedure incorporating quantitative and qualitative evaluations. In
essence, these bundles were rank ordered on the basis of the
assessment algorithm in terms of potential improved environmental
and economic performance as a function of smelter size (small,
medium, large) and existing furnace type (reverberatory, blast,
electric, and rotary high temperature furnaces). We compared four
types of bundles for inclusion at the pre-processing stage, that is,
(a) drying unit only, (b) drying and desulfurization units, (c) drying
and hydro-metallurgical units, and (d) drying, desulfurization and
hydro-metallurgical units. Typical practices in secondary lead smelting
operations involve drying units at the pre-processing stage and to a
lesser extent both drying and desulfurization units. As documented in
Table 1, the drying unit added little improvement from both economic
and environmental standpoint. The desulfurization unit contributed
marginal improvement. The addition of hydro-metallurgical unit to
drying significantly improved the bundle performance to a ‘high’ level
for different furnace set-ups across all sizes of smelters and even to
‘very high’ level for the blast furnace set-up for small smelters.

As a significant cleaner technology, a hydro-metallurgical unit is
highly efficient and produces significantly less amounts of emissions
compared to pyro-metallurgical systems. The use of a hydro-
metallurgical system results in increased lead production, energy/
flux savings as well as significant reduction in SO2 and slag. This was
evident for all smelter sizes and different types of high temperature
furnace set-ups. The addition of desulfurization unit to the drying/
hydro-metallurgical combination marginally increased the perfor-
mance to ‘somewhat very high’ (except for a blast furnace set-up for a

small smelter). Therefore, it appears that the adoption of cleaner
technologies at the pre-processing stage in secondary smelter opera-
tions can significantly improve the smelter performance from both
economic and environmental perspectives. Consequently, future
research should pursue these options among U.S. secondary lead
smelters.

The limitations of this study should be acknowledged. First, the
knowledge presented in this study is based on an evidence-based
methodology. Although it is largely relying on the scientific literature
and the experience of the authors, there is a need to further validate
the findings with stakeholders in the universe of US secondary lead
smelters. Second, we presented a model to integrate the criteria of
cost and benefits in a single sustainable index. Although the outcomes
of this index are consistent with the general views in the published
literature, further validation is required on scientific grounds. Perhaps
additional elements should be added to capital cost such as operating
costs, an issue that will be examined in future research. Nonetheless, it
seems a promising approach for managing complexity and comparing
the performance of integrated environmental solutions for different
options.

6. Concluding remarks

One can deduce from the findings of this study that it is technically
and economically feasible to implement integrated environmental
solutions to increase lead recovery and recycling among US smelters.
The working example presented in this research can be confirmed
with US stakeholders and form the basis for implementable solutions
in the lead smelter and product industries to help reverse the overall
trend of declining life-cycle recycling rates.
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Table A1
Description of evidence for characteristics of in-processing technologies in US recycling plants.

Type of technology Type of furnace Technology description Furnace
efficiency

Cost-effectiveness (energy
expenditure) (GJ/t of lead)

Effectiveness
(purity of metal recovered)

Pyro-metallurgical
techniques

Blast furnace • Extracting lead via reaction of lead scrap and coke,
and subsequent oxidization1

91–94%a 5 –11.86b 82–94% depending on
charge and reaction gasesb

Electric furnace • Extracting lead via melting and reaction of lead scrap,
fluxes and coke

>99%b 2.98c >99.5%b

• An electric arc produced between two electrodes is
used to heat the mix to the reaction temperatureb

Rotary furnace • Extracting lead via reaction of lead scrap and coke,
and subsequent oxidization of coke with introduction
of fuel gases through tuyeres or burnersd

98%e 2.32f 94–98%e

Reverberatory furnace • Extracting lead by reaction of lead scrap and flux by
introduction of reaction gases, fuel and fine materials
through top or wall mounted tuyeresf

75–80%d 2.13 – 2.47g 92–96%f

Cost effectiveness is calculated as the energy spent per ton of metal recovered.
Payback period was not documented for in-processing technologies because it is assumed that environmental improvement will only be applied to pre- and post-processing
technologies to enhance the performance of in-processing technologies.

a From Ryzhenkov et al. (2006).
b From Ziebik and Stanek (2006).
c From Akihiko (2004).
d From USEPA (1998).
e From Zhang et al. (2008).
f From Rabah and Barakat (2001).
g From Akihiko (2004).

Appendix A. Description of evidence for in-, pre- and post- processing technologies for secondary lead smelters
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Table A2
Description of evidence for characteristics of improved in-processing smelting technologies.

Type of technology Type of process Technology description Efficiency
(process efficiency)

Cost-effectiveness (energy
expenditure) (GJ/t of lead)

Effectiveness (purity of
metal recovered)

Hydro-metallurgical
techniques

LEDCLOR • Metal content is leached into the solvent (diluted
ferric chloride) and extracted by electrowinninga

99.4–99.7%a 1.8b 97–99%a

Electrowinning acid • Metal content is leached into the solvent and
extracted by electrowinningb

98–99.5%b 1.8–3.28b 99.98–99.99%b

Electrowinning
basic

• Metal content is leached into basic solvent and
extracted by electrowinningb

85–98%b 1.4–1.8b 99.98–99.99%b

PLINT • Intermediates from the electrowinning process
(lead hydroxide) are used as the feed to the kettle
(pyro-metallurgy)c

99.5c 1.8 – 2.16d 99.99%c

Pyro-metalurgical
techniques

Ausmelt • Technology is based on top entry into lance system,
delivering combustion gases, fuel and process air below
the surface of liquid slag bathe

95%f 0.36–1.44f 98%f

CX system • Use of desulphurization and rotary furnace to extract
lead from batteriesg

86.50%g 0.61h 99.99%i

ISASMELT • Technology is based on top entry into lance system,
delivering combustion gases, fuel and process air below
the surface of liquid slag bathj

>99%j 0.47k Soft lead 99.8%,
Hard lead 79.2%j

KIVCET • Based on combination of charge roasting and smelting
technologies in pulverized condition via use of oxygen
and electrosmeltingl

98–98.3%l 1.33m 94–96.5l

Top blown
rotary furnace

• Based on rotating tilted furnace with introduction
(blowing) of oxygen and fuel gases via a lancen

98%n 1.93o 94–98%p

a From Andrews et al. (2000).
b From Ferracin et al. (2002).
c From Frias et al. (2002).
d From Agrawal et al. (2004).
e From Baldock and Short (2000).
f From Hughes (2000).
g From Errington et al. (2005).
h From Engitec STE process (2008b).
i From Arthur and Edwards (2003).
j From Ramus and Hawkins (1993).
k From Xstrata (2006).
l From Agrawal et al. (2004).
m From Akihiko (2004).
n From Ryzhenkov et al. (2006).
o From Rabah and Barakat (2001).
p From Ziebik and Stanek (2006).

• Payback period for improved in-processing technologies varies with the designed production capacity.
• Proprietary technologies, which are acknowledged in the scientific literature, are listed in the table. These technologies are improvement over existing technologies listed in Table

A1. LEDCLOR and PLINT technologies are the most widely accepted proprietary hydro-metallurgical technologies in the metal extraction industry. Electrowinning technologies
have been implemented with some variations among smelters. Ausmelt, CX System, ISASMELT and KIVCET are improved proprietary pyro-metallurgical technologies which are
variations of existing technologies. Top-blown rotary furnace is an improved technology currently in use in the US smelting industry.

Table A3
Description of evidence for characteristics of pre-processing US secondary lead smelting technologies.

Type of
technology

Type of process Technology description Efficiency Cost-effectiveness
(energy savings/
expenditure)

Payback
period
(years)

Environmental
benefits

Productivity
increase

Pre-processing Battery breaking
and hydro-
separation

• Scrapped batteries are crushed and
metal components and plastic casing
parts are density separated in water

95%a Not
available

3b Reduction in
furnace
slag outputc

None

Air separation • Scrapped lead containing parts are crushed and
metal components are separated from other
waste using compressed air

Not
available

Not
available

Not
available

Reduction in
furnace
slag outputc

None

Roasting/ drying • Separated lead metal scrap is dried by passing
hot gases produced either from furnace
operations or separately

85%d 3% savingse 1e None None

Desulfurization • Battery paste separated during hydro-separation
is desulfurized by mixing it with sodium carbonate

93%f 8–10% savingsg 3b 75–80% reduction
in SO2 emissionsh

25–30% increase in
smelter throughputh

Hydro-metallurgical
processing

• Pure lead is extracted from battery paste or sludge
containing lead content by electro-winning process

98–99.5%i 10–12% savingsj 3–4j >80% in reduction
in SO2 emissionse

25–30% increase in
smelter throughputh

a From Abrams et al. (1999).
b From Wolters et al. (2008).
c Reduction in furnace slag generated is estimated at ≥10%.
d From Warner et al. (2006).
e From Chakrabarti and Mitra (2005).
f From Lyakov et al. (2007).
g From Olympia Resource Limited (2005).
h From Missouri Department of Natural Resources Report (2005).
• Hydro-metallurgical processing is considered complementary to improve the performance of existing in-processing technology.

i From Ferracin et al. (2002).
j From the Environmental Technology Assessment Workshop Report (UNEP, 2000).
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Table A4
Description of evidence for characteristics of pollution prevention and control technologies.

Type of control Point of emission Type of technology Technology description Efficiency Cost-effectiveness (energy
expenditure per volume
of gas flow) (kWh/Nm3)

Payback period
(years)

Effectiveness (contaminant
concentration per volume of
treated gas) (mg/Nm3)

Dust abatement a,b,c,f,o,p Hot electrostatic precipitator • Particles are charged and subsequently separated mechanically
from gas stream by vibrating the collection electrodes

>99%a 1.27 3.5–4b <5–15a

Wet electrostatic precipitator • Particles are charged and separated from the gas stream. Settled dust
is flushed out of the collection electrodes by spraying suitable solution

<99%a 1.27 3.5–4b <1–5a

Fabric or bag filters • Particles are separated by passing gas through a series of
fabric screens (bags)

>99.5%a 1.5⁎10−3 − 4⁎10−3 2c 1−5a

Wet scrubbers • Scrubbing liquid is sprayed on the gas passage path
to wet the particles and collect them in wetting liquid

>80–99%a 8.6⁎10−3 <1d 4−50a

Cyclones • Particles are separated by changing the direction of gas flow,
thus, separating heavier particles

40%a NA 1–3e 100–300a

Ceramic filters • Particles are separated by forcing the gas through a series
of ceramic filter candles

99.50%a 1.5⁎10−3 − 4⁎10−3 2−2.5a 0.1−1a

Gas burning n After burners • The gas is heated to suitable temperature to
oxidize or decompose excess/low concentration of hazardous gases

98%d 2.7⁎10−4 − 6⁎10−4 1−2.2d <5−15a

Gas scrubbing systems g,h,l,m Wet scrubbing • Scrubbing liquid is sprayed on the gas passage path. The gas is
held in the scrubbing chamber till acceptable level of precipitation
occurs. The gas molecules react with the media and
precipitate or combine to form useful by-products

>80−99%a 4.2⁎10−4 <1d <50−2001

Dry and semidry scrubbing • Gas is passed through scrubbing medium (solid or slurry)
to capture the molecules in the medium

>80–99%1 1.6⁎10−4 <1 4 <50 − 200a

Effluent (water)
Treatment

E Process integrated measures
Recycling • Recirculation of effluent water in the process where it is generated NA NA NA NA
Reuse • Redirecting effluent water generated in one process

for use in other processes
NA NA NA NA

J End-of-pipe measures
Chemical precipitation • Soluble metal ions are separated by adding reagents to form insoluble

compounds and forcing them to precipitate in holding tanks
>99.5%a 6.25 1.5–2a <0.1a

Sedimentation • Solid (heavier) particles are separated from effluent water by
holding waste water in tanks and allowing solids to precipitate

Up to 99%a 6.25 1–2a <0.1a

Filtration • Effluent water is passed trough filter media (media bed) to separate
toxic substances before releasing into holding tanks or water streams

Up to 99%a 6.25 1–2a <0.1a

Flotation • Light density effluent particles are separated from effluent water
by holding waste water in tanks and injecting (bubbling) air in
water forcing material to float

Up to 99%a 6.25 1–1.5a <0.1a

Electrolysis • Effluent water is stored in electrolytic cell and metals are
separated by applying a potential between electrodes

>99.5%a 6.25 2–3a <0.1a

Ion exchange • Effluent water is passed through a column matrix of ion
exchange resins to absorb selective metal ions

>99.5%a 6.25 2–2.5a <0.1a

a From the European Commission Report (2007).
b From PT Seman Pandang (2006).
c From Chakrabarti and Mitra (2005).
d From Kenson (2005).
e From Saman and Nutter (1994).

• NA – not applicable.

• Please consult Fig. 4a for points of emission in pyro-metallurgical-based smelting process.

• The values obtained for cost-effectiveness were extracted fro the European Commission Report (2007).
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Appendix B. Environmental improvement in lead smelting practices and technologies

Fig. B1. Improvement for blast furnace – small smelter (10,000 t/year).
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Fig. B2. Improvement for electric furnace – small smelter (10,000 t/year).
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Fig. B3. Rotary furnace – medium smelter (40,000 t/year).
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Fig. B4. Reverberatory and blast furnaces – medium smelter (40,000 t/year).
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Fig. B5. Reverberatory and electric furnaces – medium smelter (40,000 t/year).
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Fig. B6. Rotary furnace – large smelter (100,000 t/year).
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Fig. B7. Reverberatory and blast furnaces – large smelter (100,000 t/year).
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Fig. B8. Reverberatory and electric furnaces – large smelter (100,000 t/year).
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Footnote:

1Smelter capacity is assumed 10,000 t for small, 40,000 t for medium and 100,000 t for large smelters. The estimation is based on the industry characterization of smelters.
2The slag generated per smelter is calculated (without hydro-metallurgical unit) from the information provided by Kreusch et al. (2007). It was estimated that the amount of slag
generated per ton of recovered pure lead to be 400 kg/t of pure lead. The actual amount of slag generated with the hydro-metallurgical unit was extracted from Engitec
Technologies (2008a). With the added features of the above technology bundle, it is assumed that it will closely resemble the CX system.
3The cost of acquiring a drying/roasting unit with installation/modifications is estimated to be $477.25/t (European Commission, 2001).
4The cost of a hydro-metallurgical plant is estimated at $6.25 M with a production capacity of 2000 t/year (Hanson Westhouse, 2008). The cost is proportionately adjusted for the
requirement of each scenario.
5Information on reduction in SO2 emission is extracted from the European Commission Report (2001). It is estimated that desulfurization of battery paste prior to smelting reduces
SO2 emissions by 80%.
6Information on reduction in energy requirement is extracted from the European Commission Report (2001). It is estimated that drying/heating the furnace feed will result in ~3%
in energy savings. The cost of energy is obtained from Energy Information Administration.
7Information on blast furnace efficiency is extracted from Ryzhenkov et al. (2006).
8Information on electric furnace efficiency is extracted from Ziebik and Stanek (2006).
9Information on rotary furnace efficiency is extracted from Akihiko (2004).
10Information on reverberatory furnace efficiency is extracted from Zhang et al. (2008).
11The efficiency of reverberatory + blast furnace is calculated as: 80% reverberatory furnace efficiency+(20%⁎91%) for blast furnace efficiency.
12The efficiency of reverberatory +electric furnace is calculated as; 80% reverberatory furnace efficiency+(20%⁎99%) for electric furnace efficiency.
13Information on energy expenditure per ton of lead for a blast furnace is extracted from Ziebik and Stanek (2006).
14Information on energy expenditure per ton of lead for an electric furnace is extracted from Akihiko (2004).
15Information on energy expenditure per ton of lead for a rotary furnace is extracted from Rabah and Barakat (2001).
16Information on energy expenditure per ton of lead for a blast furnace is extracted from Akihiko (2004).
17The price per pound of lead was extracted from the Smith (2008). It is reported as $ 1.23/lb.
18The price per ton of iron was extracted from the Fenton (2008). It is reported as $ 252/t.
19The price per ton for gypsum was extracted from the Olson (2008). It is reported as $ 17.37/t.
20The price per ton of slag disposal was extracted from the State of Idaho (2004). It is reported as hazardous waste disposal fees is $25/t.

Appendix C. Environmental improvement in lead smelting practices and technologies via changes in pre-processing stage

Type Technology/
practice bundles

Benefits Cost Benefit Compatibility Comments

Blast U1 + A2 • 91–94% efficiency – – – –

U1 + A2 + U3 +
U4 + U5

• 98% efficiency High Very High Very High • High in efficiency
• 8–10% energy savings • Little/no energy savings
• 5–6 years payback period • Somewhat moderate payback period
• >80% reduction in SO2 emission • Increased environmental benefit
• 25–30% more throughput • Increased productivity
• Commercial grade Na2SO4 • High in efficiency
• Reduction in slag generated • Little/no energy savings

U1 + A2 + U3 + U5 • 98% efficiency High Very High Very High • High in efficiency
• 10–12% energy savings • Moderate energy savings
• 4–5 years payback period • Somewhat moderate payback period
• >80% reduction in SO2 emission • Increased environmental benefit
• 25–30% more throughput • Increased productivity
• Reduction in slag generated

U1 + A2 + U3 + U4 • 91–94% efficiency Very Low Somewhat
Moderate

Somewhat
Moderate

• Moderate in efficiency
• 3% energy savings • Little/no energy savings
• 3.5 years payback period • Somewhat moderate payback period
• 75–80% reduction in SO2 emission • Increased environmental benefit
• 25–30% more throughput • Increased productivity
• Reduction in slag generated
• Commercial grade Na2SO4

U1 + A2 + U3 • 91–94% efficiency Very Low Very Low Low • Moderate in efficiency
• 1 year payback period • Little/no energy savings
• 3% energy savings • Moderate payback period

• No environmental benefit
• No increase in productivity

Electric U1 + A3 • 99% efficiency – – – –

U1 + A3 + U3 +
U4 + U5

• 99% efficiency Moderate Somewhat
Very High

Somewhat
Very High

• High in efficiency
• 8–10% energy savings • Little/no energy savings
• 5–6 Yrs payback period • Somewhat moderate payback period
• >80% reduction in SO2 emission • Increased environmental benefit
• 25–30% more throughput • Increased productivity
• Commercial grade Na2SO4

• Reduction in slag generated
U1 + A3 + U3 + U5 • >99% efficiency Moderate High High • Very high in efficiency

• 10–12% energy savings • Moderate energy savings
• 4–5 years payback period • Somewhat moderate payback period
• >80% reduction in SO2 emission • Increased environmental benefit
• 25–30% more throughput • Increased productivity
• Reduction in slag generated

U1 + A4 + U3 + U4 • 99% efficiency Very Low Somewhat
Moderate

Somewhat
Moderate

• High in efficiency
• 3% energy savings • Little/no energy savings
• 3.5 years payback period • Somewhat moderate payback period
• 75–80% reduction in SO2 emission • Increased environmental benefit
• 25–30% more throughput • Increased productivity

(continued on next page)
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(continued)

Type Technology/
practice bundles

Benefits Cost Benefit Compatibility Comments

• Reduction in slag generated
• Commercial grade Na2SO4

U1 + A3 + U3 • 99% efficiency Very Low Very Low Low • High in efficiency
• 1 year payback period • Little/no energy savings
• 3% energy savings • Moderate payback period

• No increase in environmental benefit
• No increased in productivity

Rotary U1 + A4 • 98% efficiency – – –

U1 + A4 + U3 +
U4 + U5

• 98% efficiency Moderate Somewhat
Very High

Somewhat
Very High

• High in efficiency
• 8–10% energy savings • Little/no energy savings
• 5–6 years payback period • Somewhat moderate payback period
• >80% reduction in SO2 emission • Increased environmental benefit
• 25–30% more throughput • Increased productivity
• Commercial grade Na2SO4

• Reduction in slag generated
U1 + A4 + U3 + U5 • 98% efficiency Moderate High High • High in efficiency

• 10–12% energy savings • Moderate energy savings
• 4–5 years payback period • Somewhat moderate payback period
• >80% reduction in SO2 emission • Increased environmental benefit
• 25–30% more throughput • Increased productivity
• Reduction in slag generated

U1 + A4 + U3 + U4 • 98% efficiency Very Low Somewhat
Moderate

Somewhat
Moderate

• High in efficiency
• 3% energy savings • Little/no energy savings
• 3.5 years payback period • Somewhat moderate payback period
• 75–80% reduction in SO2 emission • Increased environmental benefit
• 25–30% more throughput • Increased productivity
• Reduction in slag generated
• Commercial grade Na2SO4

U1 + A4 + U3 • 98% efficiency Very Low Very Low Low • High in efficiency
• 1 year payback period • Little/no energy savings
• 3% energy savings • Moderate payback period

• No increase in environmental benefit
• No increase in productivity

Reverberatory + Blast U1 + A1 + A2 • 93–98% efficiency – – – –

U1 + A1 + A2 +
U3 + U4 + U5

• 98% efficiency Moderate Somewhat
Very High

Somewhat
Very High

• High in efficiency2
• 8–10% energy savings • Little/no energy savings
• 5–6 years payback period • Somewhat moderate payback period
• >80% reduction in SO2 emission • Increased environmental benefit
• 25–30% more throughput • Increased productivity
• Commercial grade Na2SO4

• Reduction in slag generated
U1 + A1 + A2 + U3 + U5 • 98% efficiency Moderate High High • High in efficiency

• 10–12% energy savings • Moderate energy savings
• 4–5 years payback period • Somewhat moderate payback period
• >80% reduction in SO2 emission • Increased environmental benefit
• 25–30% more throughput • Increased productivity
• Reduction in slag generated

U1 + A1 + A2 + U3 + U4 • 93–98% efficiency Very Low Somewhat
Moderate

Somewhat
Moderate

• High in efficiency
• 3% energy savings • Little/no energy savings
• 3.5 years payback period • Somewhat moderate payback period
• 75–80% reduction in
SO2 emission

• Increased environmental benefit

• 25–30% more throughput • Increased productivity
• Reduction in slag generated
• Commercial grade Na2SO4

U1 + A1 + A2 + U3 • 93–98% efficiency Very Low Very Low Low • High in efficiency
• 3% energy savings • Little/no energy savings
• 1 year payback period • Moderate payback period

• No increase in environmental benefit
• No increase in productivity

Reverberatory +
Electric

U1 + A1 + A3 • 95–99% efficiency – – – –

U1 + A1 + A3 +
U3 + U4 + U5

• 99% efficiency Moderate Somewhat
Very High

Somewhat
Very High

• High in efficiency
• 8–10% energy savings • Little/no energy savings
• 5–6 years payback period • Somewhat moderate payback period
• >80% reduction in SO2 emission • Increased environmental benefit
• 25–30% more throughput • Increased productivity
• Commercial grade Na2SO4

• Reduction in slag generated
U1 + A1 + A3 +
U3 + U5

• >99% efficiency Moderate High High • Very high in efficiency
• 10–12% energy savings • Moderate energy savings
• 4–5 years payback period • Somewhat moderate payback period
• >80% reduction in SO2 emission • Increased environmental benefit
• 25–30% more throughput • Increased productivity
• Reduction in slag generated

U1 + A1 + A3 +
U3 + U4

• 95–99% efficiency Very Low Somewhat
Moderate

Somewhat
Moderate

• High in efficiency
• 3% energy savings • Little/no energy savings

Appedix C (continued )

Electric
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(continued)

Type Technology/
practice bundles

Benefits Cost Benefit Compatibility Comments

• 3.5 years payback period • Somewhat moderate payback period
• 75–80% reduction in SO2 emission • Increased environmental benefit
• 25–30% more throughput • Increased productivity
• Reduction in slag generated
• Commercial grade Na2SO4

U1 + A1 + A3 + U3 • 95–99% efficiency Very Low Very Low Low • High in efficiency
• 3% energy savings • Little/no energy savings
• 1 year payback period • Moderate payback period

• No increase in environmental benefit
• No increase in productivity

Footnote:

• Appendix C is constructed based on input information from Tables A1 and A3 in Appendix A.
• It is assumed that there are no changes in in-processing technologies.
• Only pre-processing technologies and processes are considered for environmental improvement management.
• The most significant benefits are only reported for technology bundles.
• U1 – Battery breaking and hydro-separation.
• U2 – Air separation of metal and non-metallic components.
• U3 – Drying of lead scrap extracted from hydro-separation.
• U4 – Desulfurization of battery paste for lead extraction.
• U5 – Hydro-metallurgical processing of slag, battery paste and sludge.
• A1 – Reverberatory furnace.
• A2 – Blast furnace.
• A3 – Electric furnace.
• A4 – Rotary furnace.

Appedix C (continued )

Reverberatory +
Electric
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