14 research outputs found

    GestĂŁo por competĂŞncias na Universidade Federal do Rio Grande do Sul

    Get PDF
    O presente artigo apresenta uma listagem de comp etências desenvolvidas para a Universidade Federal do Rio Grande do Sul (UFRGS) por meio de seu órgão responsável, a Pró-Reitoria de Gestão de Pessoas (PROGESP). Inicialmente é feito uma contextualização das origens do termo “competência” e como o conceito veio a se tornar um modelo de gestão, denominado “Gestão por Competências”. Em seguida é descrita a metodologia do estudo, que abrange consultas na literatura e a execução de levantamento de listas de competências baseados em documentos técnicos e administrativos. Na seção de resultados é apresentado a aplicação da metodologia, demonstrando as listas compiladas de diferentes autores e instituições, realizadas via pesquisas pelos autores. Estas listas de competência fazem parte de uma das etapas do projeto de implantação de gestão por competências à Universidade. Por fim, na conclusão do artigo, listam-se as análises obtidas referentes as listagens gerenciais e técnicas, assim como dificuldades enfrentadas durante o estudo e considerações finais

    Process Control Parameters Evaluation Using Discrete Event Simulation for Business Process Optimization

    Get PDF
    The quest for manufacturing process improvement and higher levels of customer satisfaction mandates that organizations must be equipped with advanced tools and techniques in order to respond towards ever changing internal and external customer demands by maintaining the optimal process performance, lower cost and higher profit levels. A manufacturing process can be defined as a collection of activities designed to produce a specific output for a particular customer or market. To achieve internal and external objectives, significant process parameters must be identified and evaluated to optimize the process performance. This even becomes more important to deal with fierce competition and ever changing customer demands. This paper illustrates an integrated approach using design of experiments techniques and discrete event simulation (Simul8) to understand and optimize the system dynamic based on operational control parameter evaluation and their boundary conditions. Further, the proposed model is validated using a real world manufacturing process case study to optimize the manufacturing process performance. Discrete event simulation tool is used to mimic the real world scenario, which provides a flexible and powerful way to comprehensively understand the manufacturing process variations and allows controlled 'What-If´ analysis based on design of experiments approach. Finally, this paper discusses the potential applications of the proposed methodology in the cable industry in order to optimize the cable manufacturing process by regulating the operational control parameters such as dealing with various product configurations with different equipment settings, different product flows and work in process (WIP) space limitations

    QSAR Modeling: Where Have You Been? Where Are You Going To?

    Get PDF
    Quantitative Structure-Activity Relationship modeling is one of the major computational tools employed in medicinal chemistry. However, throughout its entire history it has drawn both praise and criticism concerning its reliability, limitations, successes, and failures. In this paper, we discuss: (i) the development and evolution of QSAR; (ii) the current trends, unsolved problems, and pressing challenges; and (iii) several novel and emerging applications of QSAR modeling. Throughout this discussion, we provide guidelines for QSAR development, validation, and application, which are summarized in best practices for building rigorously validated and externally predictive QSAR models. We hope that this Perspective will help communications between computational and experimental chemists towards collaborative development and use of QSAR models. We also believe that the guidelines presented here will help journal editors and reviewers apply more stringent scientific standards to manuscripts reporting new QSAR studies, as well as encourage the use of high quality, validated QSARs for regulatory decision making

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    QSAR Modeling: Where Have You Been? Where Are You Going To?

    No full text
    Quantitative Structure-Activity Relationship modeling is one of the major computational tools employed in medicinal chemistry. However, throughout its entire history it has drawn both praise and criticism concerning its reliability, limitations, successes, and failures. In this paper, we discuss: (i) the development and evolution of QSAR; (ii) the current trends, unsolved problems, and pressing challenges; and (iii) several novel and emerging applications of QSAR modeling. Throughout this discussion, we provide guidelines for QSAR development, validation, and application, which are summarized in best practices for building rigorously validated and externally predictive QSAR models. We hope that this Perspective will help communications between computational and experimental chemists towards collaborative development and use of QSAR models. We also believe that the guidelines presented here will help journal editors and reviewers apply more stringent scientific standards to manuscripts reporting new QSAR studies, as well as encourage the use of high quality, validated QSARs for regulatory decision making

    Applicability Domains for Classification Problems: Benchmarking of Distance to Models for Ames Mutagenicity Set

    No full text
    The estimation of accuracy and applicability of QSAR and QSPR models for biological and physicochemical properties represents a critical problem. The developed parameter of \u201cdistance to model\u201d (DM) is defined as a metric of similarity between the training and test set compounds that have been subjected to QSAR/QSPR modeling. In our previous work, we demonstrated the utility and optimal performance of DM metrics that have been basedon the standard deviation within an ensemble of QSAR models. The current study applies such analysis to QSAR models for the Ames mutagenicity data set that were previously reported within the 2009 QSAR challenge. We demonstrate that the DMs based on an ensemble (consensus) model provide systematically better performancethan other DMs. The presented approach identifies 30-60% of compounds having an accuracy of prediction similar to the interlaboratory accuracy of the Ames test, which is estimated to be 90%. Thus, the in silico predictions can be used to halve the cost of experimental measurements by providing a similar prediction accuracy. Thedeveloped model has been made publicly available at http://ochem.eu/models/1
    corecore