2,764 research outputs found

    Quantum Steganography via Coherent and Fock State Encoding in an Optical Medium

    Full text link
    Steganography is an alternative to cryptography, where information is protected by secrecy -- being disguised as innocent communication or noise -- rather than being scrambled. In this work we develop schemes for steganographic communication using Fock and coherent states in optical channels based on disguising the communications as thermal noise. We derive bounds on their efficiency in the case of an all-powerful eavesdropper, and provide explicit methods of encoding and error correction for the noiseless channel case.Comment: 13 pages, 7 figure

    Intramembrane-cleaving aspartic proteases and disease: presenilins, signal peptide peptidase and their homologs

    Get PDF
    Recent studies demonstrate that presenilins (PSs) and signal peptide peptidase (SPP) are members of a novel protease family of integral membrane proteins that may utilize a catalytic mechanism similar to classic aspartic proteases such as pepsin, renin and cathepsin D. The defining features of the PSs and SPP are their ability to cleave substrate polypeptides within a transmembrane region, the presence of two active site aspartate residues in adjacent membrane-spanning regions and a conserved PAL motif near their COOH-terminus. PSs appear to be the catalytic subunit of multiprotein complexes that possess γ-secretase activity. Because this activity generates the amyloid β peptide (Aβ) deposited in the brain of patients with Alzheimer's disease (AD), PSs are considered therapeutic targets in AD. In contrast to PSs that are not active unless part of a larger complex, SPP does not appear to require protein co-factors. Because of its requirement for hepatitis C virus maturation and a possible immune modulatory role, SPP is also considered a potential therapeutic target. Four additional PS/SPP homologs have been identified in humans; yet, their functions have not been elucidated. Herein, we will review the recent advances in our understanding of the PS/SPP family of proteases as well as discuss aspects of intramembrane cleavage that are not well understoo

    Novel insights into the genetic diversity of Balantidium and Balantidium-like cyst-forming ciliates

    Get PDF
    Balantidiasis is considered a neglected zoonotic disease with pigs serving as reservoir hosts. However, Balantidium coli has been recorded in many other mammalian species, including primates. Here, we evaluated the genetic diversity of B. coli in non-human primates using two gene markers (SSrDNA and ITS1-5.8SDNA-ITS2). We analyzed 49 isolates of ciliates from fecal samples originating from 11 species of captive and wild primates, domestic pigs and wild boar. The phylogenetic trees were computed using Bayesian inference and Maximum likelihood. Balantidium entozoon from edible frog and Buxtonella sulcata from cattle were included in the analyses as the closest relatives of B. coli, as well as reference sequences of vestibuliferids. The SSrDNA tree showed the same phylogenetic diversification of B. coli at genus level as the tree constructed based on the ITS region. Based on the polymorphism of SSrDNA sequences, the type species of the genus, namely B. entozoon, appeared to be phylogenetically distinct from B. coli. Thus, we propose a new genus Neobalantidium for the homeothermic clade. Moreover, several isolates from both captive and wild primates (excluding great apes) clustered with B. sulcata with high support, suggesting the existence of a new species within this genus. The cysts of Buxtonella and Neobalantidium are morphologically indistinguishable and the presence of Buxtonella-like ciliates in primates opens the question about possible occurrence of these pathogens in humans

    Infectious Necrotizing Enteritis and Mortality Caused by \u3cem\u3eVibrio carachariae\u3c/em\u3e in Summer Flounder \u3cem\u3eParalichthys dentatus\u3c/em\u3e During Intensive Culture

    Get PDF
    An epizootic causing mortality among cultured summer flounder Paralichthys dentatus occurred in summer of 1998 at a land-based facility on Narragansett Bay, Rhode Island, USA. The disease, flounder infectious necrotizing enteritis (FINE), was characterized by reddening around the anal area, distended abdomens filled with opaque serosanguineous fluid, enteritis and necrosis of the posterior intestine. In extreme cases of the disease, the posterior intestine was detached from the anus and was observed coming out the vent. The intestine of individuals that recovered from the dsease ended in a blind-sac; the abdomens of these fish were distended, due to food and water inside the intestinal blind-sac. A bacterium was isolated from ascites fluid and kidney of moribund flounder and identified as the causative agent in challenge experiments. The pathogen was identified as Vibno carchariae by morphological and biochemical characteristics and sequence of the 16S rRNA. The LD50 estimate was 5 x 105 colony-forming units injected intraperitoneally into 100 to 200 g summer flounder

    Response of \u3ci\u3eAmaranthus\u3c/i\u3e spp. following exposure to sublethal herbicide rates via spray particle drift

    Get PDF
    The adverse consequences of herbicide drift towards sensitive crops have been extensively reported in the literature. However, little to no information is available on the consequences of herbicide drift onto weed species inhabiting boundaries of agricultural fields. Exposure to herbicide drift could be detrimental to long-term weed management as several weed species have evolved herbicide-resistance after recurrent selection with sublethal herbicide rates This study investigated the deposition of glyphosate, 2,4-D, and dicamba spray particle drift from applications with two different nozzles in a low speed wind tunnel, and their impact on growth and development of Amaranthus spp. Herbicide drift resulted in biomass reduction or complete plant mortality. Inflection points (distance to 50% biomass reduction) for Amaranthus tuberculatus were 7.7, 4.0, and 4.1 m downwind distance for glyphosate, 2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these values corresponded to 2.8, 2.5, and 1.9 m for applications with the air-inclusion nozzle. Inflection points for Amaranthus palmeri biomass reduction were 16.3, 10.9, and 11.5 m for glyphosate, 2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these values corresponded to 7.6, 5.4, and 5.4 m for applications with the air-inclusion nozzle. Plants were more sensitive to glyphosate at higher exposure rates than other herbicides, whereas plants were more sensitive to 2,4-D and dicamba at lower exposure rates compared to glyphosate. Applications with the flat-fan nozzle resulted in 32.3 and 11.5% drift of the applied rate at 1.0 and 3.0 m downwind, respectively, whereas the air-inclusion nozzle decreased the dose exposure in the same distances (11.4 and 2.7%, respectively). Herbicide drift towards field boundaries was influenced by nozzle design and exposed weeds to herbicide rates previously reported to select for herbicide-resistant biotypes

    The Calibration and Data Products of the Galaxy Evolution Explorer

    Full text link
    We describe the calibration status and data products pertaining to the GR2 and GR3 data releases of the Galaxy Evolution Explorer (GALEX). These releases have identical pipeline calibrations that are significantly improved over the GR1 data release. GALEX continues to survey the sky in the Far Ultraviolet (FUV, ~154 nm) and Near Ultraviolet (NUV, ~232 nm) bands, providing simultaneous imaging with a pair of photon counting, microchannel plate, delay line readout detectors. These 1.25 degree field-of-view detectors are well-suited to ultraviolet observations because of their excellent red rejection and negligible background. A dithered mode of observing and photon list output pose complex requirements on the data processing pipeline, entangling detector calibrations and aspect reconstruction algorithms. Recent improvements have achieved photometric repeatability of 0.05 and 0.03 mAB in the FUV and NUV, respectively. We have detected a long term drift of order 1% FUV and 6% NUV over the mission. Astrometric precision is of order 0.5" RMS in both bands. In this paper we provide the GALEX user with a broad overview of the calibration issues likely to be confronted in the current release. Improvements are likely as the GALEX mission continues into an extended phase with a healthy instrument, no consumables, and increased opportunities for guest investigations.Comment: Accepted to the ApJS (a special GALEX issue

    The UV-Optical Galaxy Color-Magnitude Diagram. I. Basic Properties

    Get PDF
    We have analyzed the bivariate distribution of galaxies as a function of ultraviolet-optical colors and absolute magnitudes in the local universe. The sample consists of galaxies with redshifts and optical photometry from the Sloan Digital Sky Survey (SDSS) main galaxy sample matched with detections in the near-ultraviolet (NUV) and far-ultraviolet (FUV) bands in the Medium Imaging Survey being carried out by the Galaxy Evolution Explorer (GALEX) satellite. In the (NUV − r)_(0.1) versus M_(r,0.1) galaxy color-magnitude diagram, the galaxies separate into two well-defined blue and red sequences. The (NUV − r)_(0.1) color distribution at each M_(r,0.1) is not well fit by the sum of two Gaussians due to an excess of galaxies in between the two sequences. The peaks of both sequences become redder with increasing luminosity, with a distinct blue peak visible up to M_(r,0.1) ~ − 23. The r_(0.1)-band luminosity functions vary systematically with color, with the faint-end slope and characteristic luminosity gradually increasing with color. After correcting for attenuation due to dust, we find that approximately one-quarter of the color variation along the blue sequence is due to dust, with the remainder due to star formation history and metallicity. Finally, we present the distribution of galaxies as a function of specific star formation rate and stellar mass. The specific star formation rates imply that galaxies along the blue sequence progress from low-mass galaxies with star formation rates that increase somewhat with time to more massive galaxies with a more or less constant star formation rate. Above a stellar mass of ~10^(10.5) M_☉, galaxies with low ratios of current to past averaged star formation rate begin to dominate
    corecore