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RESEARCH ARTICLE
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Abstract

The adverse consequences of herbicide drift towards sensitive crops have been extensively

reported in the literature. However, little to no information is available on the consequences

of herbicide drift onto weed species inhabiting boundaries of agricultural fields. Exposure to

herbicide drift could be detrimental to long-term weed management as several weed spe-

cies have evolved herbicide-resistance after recurrent selection with sublethal herbicide

rates This study investigated the deposition of glyphosate, 2,4-D, and dicamba spray parti-

cle drift from applications with two different nozzles in a low speed wind tunnel, and their

impact on growth and development of Amaranthus spp. Herbicide drift resulted in biomass

reduction or complete plant mortality. Inflection points (distance to 50% biomass reduction)

for Amaranthus tuberculatus were 7.7, 4.0, and 4.1 m downwind distance for glyphosate,

2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these values

corresponded to 2.8, 2.5, and 1.9 m for applications with the air-inclusion nozzle. Inflection

points for Amaranthus palmeri biomass reduction were 16.3, 10.9, and 11.5 m for glypho-

sate, 2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these

values corresponded to 7.6, 5.4, and 5.4 m for applications with the air-inclusion nozzle.

Plants were more sensitive to glyphosate at higher exposure rates than other herbicides,

whereas plants were more sensitive to 2,4-D and dicamba at lower exposure rates com-

pared to glyphosate. Applications with the flat-fan nozzle resulted in 32.3 and 11.5% drift of

the applied rate at 1.0 and 3.0 m downwind, respectively, whereas the air-inclusion nozzle

decreased the dose exposure in the same distances (11.4 and 2.7%, respectively). Herbi-

cide drift towards field boundaries was influenced by nozzle design and exposed weeds to

herbicide rates previously reported to select for herbicide-resistant biotypes.
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Introduction

Spray drift is defined as the part of the application (particles or vapors) that is deflected away

from the target during or following applications [1]. Many environmental and application

technique factors influence spray particle drift, such as wind speed and direction, sprayer

boom height, and spray droplet size [2–4]. Spray droplet size which is directly influenced by

nozzle design, nozzle orifice size, operating pressure, and physicochemical properties of the

solution, is often the focal point of particle drift mitigation efforts [5–7].

Risk assessment of herbicide drift includes the surrounding vegetation characterization, as non-

target sensitive vegetation coexist with agricultural fields [8,9]. The adverse consequences of herbi-

cide drift towards sensitive crops have been extensively reported in the literature [10–13]. However,

little to no information is available on the consequences of herbicide drift on agricultural weed spe-

cies. Weed species including horseweed (Erigeron canadensis L.), waterhemp [Amaranthus tuber-
culatus (Moq.) J. D. Sauer], Palmer amaranth (Amaranthus palmeri S. Wats.), velvetleaf (Abutilon
theophrasti Medik), giant ragweed (Ambrosia trifida L. AMBTR), and others are often abundant in

field boundaries and ditches surrounding agricultural lands in the US Midwest [14–17] (Fig 1).

Exposure to herbicide drift could be detrimental to long-term weed management as several

weed species have evolved resistance after recurrent selection with sublethal herbicide rates [18–

27]. Previous research reported that recurrent selection with low rates of herbicides progressively

selected for herbicide metabolism alleles present within the standing genetic variation of the pop-

ulation, additively leading to herbicide resistance [28–30]. In most recurrent selection studies,

weed populations selected with sublethal rates of a given herbicide also evolved resistance to

other herbicide sites of action [18,22,23,26]. This highlights the nature of non-target site resis-

tance (NTSR) and influence of metabolic alleles selected in weed populations upon recurrent

selection with low herbicides rates [29,31,32]. It has been suggested that recurrent selection with

sublethal doses of herbicides not only select polygenic alleles within the standing genetic varia-

tion of the population, but also could induce new stress-related mutations within surviving indi-

viduals [33]. Furthermore, it has been suggested that sublethal herbicide rates could act as stress

agents inducing DNA mutations, epigenetic alterations, transcriptional remodeling, protein

modifications, and other events that could ultimately confer levels of herbicide resistance [34].

Stress-induced epigenetic changes (DNA methylation, histone modifications, and others) are

normally reverted soon after stress exposure, although in specific cases they can be carried over

for multiple generations [35]. The reproductive system of weed species influences herbicide

resistance evolution. For instance, when plants are recurrently selected with sublethal rates of

herbicides, recombination and accumulation of minor resistance genes can occur at a faster rate

in cross-pollinated species such as waterhemp and Palmer amaranth [20,36].

Despite the potential adverse implications towards resistance evolution from sublethal rate

exposure via herbicide drift, near-field weed populations are often ignored and not managed

in agricultural landscapes [14,15,17,37]. Therefore, the objectives of this study were to investi-

gate the near-field deposition of glyphosate, 2,4-D, and dicamba spray particle drift from appli-

cations with two different nozzles (different droplet spectrum resulting in low and high drift

potentials) in a low speed wind tunnel, and their impact on waterhemp and Palmer amaranth

growth and development under controlled environment.

Material and methods

Plant material

A waterhemp population collected from a corn field (Zea mays L.) in northeastern Nebraska

(Cuming County) in the fall of 2014, and a Palmer amaranth population collected from a

Amaranthus spp. exposure to herbicide drift
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sorghum (Sorghum bicolor L.) field in southwestern Nebraska (Hayes County) in the fall of

2015 were used in this study. No specific permissions were required for field seed collections,

and field collections did not involve endangered or protected species. Both waterhemp and

Palmer amaranth populations were previously confirmed susceptible to glyphosate, 2,4-D, and

dicamba with dose-response bioassays (unpublished data). Waterhemp and Palmer amaranth

seeds were sown into plastic tubes (1 L) containing commercial potting mix (Berger BM7 Bark

Mix, Saint Modeste, QC, Canada) and maintained under greenhouse conditions (30/20 C

[day/night] with a 16 h photoperiod) at the Pesticide Application Technology Laboratory

(University of Nebraska-Lincoln, West Central Research and Extension Center, North Platte,

NE). LED growth lights (520 μmol s−1, Philips Lighting, Somerset, NJ, USA) provided supple-

mental lighting to ensure a 16-h photoperiod. Plants were supplied with water including fertil-

izer solution (0.2% v/v) as needed (UNL 5-1-4, Wilbur-Ellis Agribusiness, Aurora, CO, USA).

Droplet size study

A droplet size study was conducted in the low speed wind tunnel at the Pesticide Application

Technology Laboratory. Droplet size distribution data were collected using a Sympatec Helos/

Vario KR laser diffraction system (Sympatec Inc., Clausthal, Germany) measuring at a distance

of 0.3 m from the nozzle tip. The diffraction system was equipped with a R7 lens which detects

droplets ranging from 9 to 3700 μm in diameter. Nozzles were attached to an actuator and tra-

versed vertically at constant speed (0.2 m s-1) to ensure the entire spray plume crossed the laser

diffraction system [38]. Applications were performed with two even (banding) nozzles; a con-

ventional flat-fan nozzle (TP95015EVS) and an air-inclusion (AI) nozzle (AI95015EVS)

Fig 1. Waterhemp (Amaranthus tuberculatus) population located on field border in eastern Nebraska.

https://doi.org/10.1371/journal.pone.0220014.g001
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(TeeJet Technologies Spraying Systems Co., Glendale Heights, IL, USA); and three herbicide

solutions: glyphosate, 2,4-D, and dicamba (Table 1). The glyphosate treatment had the addi-

tion of ammonium sulfate solution at 5% v/v to overcome antagonistic effects of cationic salts

in hard water (Bronc1, Wilbur-Ellis Agribusiness, Aurora, CO, USA). Solutions were pre-

pared at 140 L ha-1 carrier volume. Applications were performed at 230 kPa with constant

wind speed of 6.71 m s-1. The DV0.1, DV0.5, and DV0.9 (droplet diameters which 10, 50, and

90% of the spray volume are contained in droplets of smaller diameter, respectively), and the

percentage of the spray volume in droplets smaller than 150 μm (driftable fines) were recorded.

The relative span (RS), a dimensionless parameter that estimates the distribution spread and

its homogeneity was calculated [39] (Eq 1):

ðDV0:9 � DV0:1Þ

DV0:5

½1�

The treatment design was a factorial arrangement with herbicide solution and nozzle as fac-

tors in a complete randomized experimental design with three replications and repeated.

Droplet size data were subjected to analysis of variance in SAS (SAS v9.4, SAS Institute Inc.,

Cary, NC, USA) and comparisons among treatments were performed using Fisher’s Protected

LSD test (P� 0.05).

Wind tunnel particle drift study

A spray particle drift deposition study was conducted in the low speed wind tunnel at the Pes-

ticide Application Technology Laboratory. Glyphosate, 2,4-D, and dicamba solutions were

prepared as previously described (Table 1) with the addition of 1,3,6,8-pyrene tetra sulfonic

acid tetra sodium salt (PTSA) as a fluorescent tracer (Spectra Colors Corporation, Kearny, NJ,

USA) at 1000 ppm concentration [40]. Herbicide solutions were sprayed at 140 L ha-1 using

two different even nozzles (banding) at 230 kPa (AI95015EVS and TP95015EVS) under a 4.47

m s-1 wind speed. The average air temperature and relative humidity during this study were 25

C and 45%, respectively. Mylar cards (100 mm x 100 mm) (Grafix Plastics, Cleveland, OH)

were used to collect particle drift deposition at different downwind distances: 1.0, 1.5, 2.0, 2.5,

3.0, 4.0, 5.0, 7.0, and 12.0 m from the nozzle. Simultaneously, waterhemp and Palmer ama-

ranth plants (15–20 cm-tall) were also positioned at the same downwind distances (Fig 2).

Applications were performed at 51 cm height in relation to Mylar cards and plants.

After applications, Mylar cards were collected and placed into pre-labeled plastic zip-top

bags and were immediately transferred to a dark container to avoid PTSA photodegradation.

Spray particle drift deposition was determined for each Mylar card by fluorometric analysis at

the Pesticide Application Technology Laboratory. Mylar cards were washed using 40 ml of a

9:1 solution of distilled water and 91% isopropyl alcohol. With the tracer completely sus-

pended, a 1.5 ml aliquot was transferred to glass cuvette and analyzed using a Trilogy1

Table 1. Herbicide solutions, rates, and product manufacturers for solutions tested in the droplet size and spray particle drift studiesa.

Herbicide Active ingredient Product manufacturer Rate

Clarity1 Dicamba diglycolamine salt BASF Corporation, Research, Triangle Park, NC, USA 280 g ae ha-1

Roundup PowerMax1 Glyphosate potassium salt Bayer CropScience, Research, Triangle Park, NC, USA 867 g ae ha-1

Weedar1 64 2,4-D dimethylamine salt Nufarm Inc, Alsip, IL, USA 532 g ae ha-1

aGlyphosate solution had the addition of ammonium sulfate solution at 5% v/v (Bronc1, Wilbur-Ellis Agribusiness, Aurora, CO, USA).

https://doi.org/10.1371/journal.pone.0220014.t001
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fluorimeter with a PTSA module (Turner Designs, Sunnyvale, CA, USA). Relative fluorescence

units (RFU) data were converted into mg L-1 using a calibration curve for the tracer, and pos-

teriorly to deposition percentage as compared to the theoretical application rate of 140 L ha-1.

The deposition data for each nozzle by herbicide solution combination (nozzle�herbicide) was

estimated with a four-parameter symmetric log-logistic model using the drc package in R soft-

ware (R Foundation for Statistical Computing, Vienna, Austria) (Eq 2):

y ¼ cþ ðd � c=1þ exp ðb ðlog x � log eÞÞÞ ½2�

where y represents deposition (% from applied rate), b is the slope at the inflection point, c is

the lower limit of the model (fixed to 0%), d is the upper limit (applied rate fixed to 100%), and

e is the inflection point (distance to 50% spray drift deposition) [41]. The distance to 5% appli-

cation rate deposition (D5) was estimated for each nozzle�herbicide combination.

Fig 2. Herbicide particle drift study conducted in the low speed wind tunnel with waterhemp (Amaranthus tuberculatus), Palmer amaranth (Amaranthus
palmeri), and drift collectors (Mylar cards) positioned at different downwind distances from the nozzle.

https://doi.org/10.1371/journal.pone.0220014.g002
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After applications, waterhemp and Palmer Amaranth plants were maintained under green-

house conditions as previously described. Above ground plant biomass was harvested 28 days

after treatment (DAT) and oven dried at 65˚C to constant weight. The biomass data were con-

verted into percentage of biomass reduction as compared to the untreated control. The sym-

metric four-parameter log-logistic model was used to describe biomass reduction using the

drc package in R statistical software (Eq 2), where y represents biomass reduction (%), b is the

slope at the inflection point, c is the lower limit of the model (fixed to 0%), d is the upper limit,

and e is the inflection point (distance to 50% biomass reduction).

In swath (0 m distance) plant biomass reduction for each nozzle�herbicide treatment was

estimated with herbicide applications using a research spray chamber calibrated to deliver 140

L ha-1 with the same nozzles, herbicide solutions, and spraying parameters used in the wind

tunnel study.

Results and discussion

Droplet size

A significant interaction between nozzle design and herbicide solution was detected for the

DV0.1 (p = 0.0002), DV0.5 (p< 0.0001), DV0.9 (p< 0.0001), RS (p< 0.0001), and driftable

fines (p< 0.0001). Nozzle design had the greatest influence on droplet size, whereas herbicide

solution had minor impact as previously reported [5,42,43] (Table 2). The preorifice compo-

nent of the AI nozzle is designed to reduce the solution pressure as it exits the nozzle, thereby

increasing the droplet size of the spray [5,42].

Wind tunnel particle drift deposition

The nozzle treatments selected herein created two scenarios: a low drift potential (AI nozzle

producing Ultra Coarse droplets with less than 1% of driftable fines) and a high drift potential

(flat-fan nozzle producing Fine droplets with more than 25% of driftable fines). The estimated

Table 2. Droplet size distribution and spray classification for the two nozzles and three herbicide solutions tested in the droplet size and spray particle drift study

at 230 kPaa.

Nozzleb Herbicidec Droplet size characteristicsd Spray

classificatione

DV0.1 DV0.5 DV0.9 RS Driftable fines
______________ μm ______________ %

TP95015EVS Glyphosate 89 D 201 D 348 E 1.29 A 30.7 A F

2,4-D 98 C 212 C 360 D 1.23 B 26.2 C F

Dicamba 96 C 209 C 355 DE 1.24 B 26.9 B F

AI95015EVS Glyphosate 392 B 805 A 1212 B 1.02 C 0.6 D UC

2,4-D 408 A 801 A 1223 A 1.02 C 0.4 D UC

Dicamba 411 A 789 B 1166 C 0.96 D 0.4 D UC

aMeans within a column followed by the same letter are not significantly different based on the LSD test (P� 0.05).
bTeeJet Technologies, Spraying Systems Co., Glendale Heights, IL, USA.
cGlyphosate solution had the addition of ammonium sulfate solution at 5% v/v (Bronc1, Wilbur-Ellis Agribusiness, Aurora, CO, USA).
dAbbreviations: DV0.1, DV0.5, and DV0.9: Parameters which represent the droplet size such that 10, 50, and 90% of the spray volume is contained in droplets of lesser

values, respectively

Driftable fines: Percent of spray volume that contains droplets less than 150 μm diameter

RS: Relative span, a dimensionless parameter that estimates the spread of a distribution.
eThe spray classifications for this study were based on reference curves created from reference nozzle data at the Pesticide Application Technology Laboratory as

described by ASABE S572.1 where F = Fine, and UC = Ultra Coarse.

https://doi.org/10.1371/journal.pone.0220014.t002
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particle drift potential of treatments included in this wind tunnel study are consistent with pre-

viously reported field scale particle drift potential, where similar nozzle designs, droplet size

classifications, and study methods were used. A study reported that 5% of applications of

water with PTSA solution (93.5 L ha-1) using an AI nozzle at an average wind speed of 5.7 m s-

1 deposited at 2.3 m downwind, whereas this distance corresponded to 4.5 m for applications

with a flat-fan nozzle [43]. In this wind tunnel study, applications with the AI nozzle had 5% of

the applied rate being deposited at 1.9 m downwind when herbicides were pooled, whereas

this distance corresponded to 6.5 m for applications with the flat-fan nozzle. This indicates

that the wind tunnel drift simulation method reproduced near-field spray drift conditions

(Figs 3 and 4). Herbicide applications with the AI nozzle had smaller e parameter (distance to

50% spray drift deposition), ranging from 0.16 to 0.33 m across herbicides, when compared to

applications with the flat-fan nozzle (0.44 to 0.65 m) (Table 3). The same trend was observed

in the D5 parameter, where applications with the AI nozzle had 5% of the total applied rate

being deposited from 1.57 to 2.27 m across herbicides, whereas these distances are increased to

6.11 and 6.97 m with the flat-fan nozzle. These results indicate the greater spray particle drift

potential of the flat-fan nozzle. The greater b parameter (slope at the inflection point) of appli-

cations with the AI nozzle (ranging from 1.28 to 1.52 across herbicides) when compared to the

flat-fan nozzle (1.10 to 1.24) indicates a faster decay rate of spray deposits resulting in less

spray deposition at further downwind distances.

These findings corroborate the results from a field study investigating spray particle drift

[44], where applications (water plus fluorescent tracer) with AI nozzles resulted in less particle

drift compared to applications with conventional flat-fan nozzles. It has been reported that the

distance where sorghum plants were lethally injured by glyphosate drift decreased 34% for

applications with AI nozzles compared to conventional flat-fan nozzles [45]. Similar wind tun-

nel study results were reported, where applications of dicamba alone and in tank mixtures

with glyphosate using AI nozzles resulted in less herbicide particle drift compared to conven-

tional flat-fan nozzles [46,47].

Plants response to herbicide drift

Herbicide drift exposure subjected waterhemp and Palmer amaranth plants to either physio-

logical stress (biomass reduction) or mortality (Table 4). The parameter estimates for the log-

logistic biomass reduction model for waterhemp and Palmer amaranth are presented in Tables

5 and 6, respectively. The estimated d parameters (in-swath biomass reduction or upper limit)

were greater than 84% biomass reduction for all nozzle�herbicide treatments, confirming that

waterhemp and Palmer amaranth populations used in this study were susceptible to glypho-

sate, 2,4-D, and dicamba. Plants had greater biomass reduction when exposed to herbicide

drift from applications with the flat-fan nozzle (greater drift potential).

Across the herbicides tested, Palmer amaranth had higher biomass reduction compared to

waterhemp. The susceptibility differences between waterhemp and Palmer amaranth were

more evident with glyphosate, corroborating a previous report [17]. Palmer amaranth was

extremely susceptible to glyphosate drift from both nozzles, in which the biomass reduction

curve as influenced by downwind distances did not even reach the e parameter (distance to

50% biomass reduction) for applications with the flat-fan nozzle (Figs 5 and 6). In scenarios

where the weed biotypes are extremely susceptible to a given herbicide, selection pressure will

take place in extended downwind distances from the sprayed area as further distance is

required to plants reach the no observable effect level (NOEL).

Glyphosate was more active at higher exposure rates compared to 2,4-D and dicamba. The

e parameters (distance to 50% biomass reduction) also support this observation. Glyphosate

Amaranthus spp. exposure to herbicide drift

PLOS ONE | https://doi.org/10.1371/journal.pone.0220014 July 18, 2019 7 / 19

https://doi.org/10.1371/journal.pone.0220014


applications had greater e parameter when compared to 2,4-D and dicamba, especially in

applications with the flat-fan nozzle where plants are exposed to higher herbicide rates. Con-

versely, 2,4-D and dicamba were more active than glyphosate under lower exposure rates. This

is more evident in the biomass reduction curves for waterhemp and Palmer amaranth exposed

to herbicide drift from the AI nozzle (Figs 7 and 8). In fact, glyphosate applications had greater

b parameter (slope at the inflection point) in general, indicating that biomass reduction curves

had faster decay rate as the downwind distance was increased when compared to 2,4-D and

dicamba. This indicates that glyphosate would reach no observable effect level at shorter down-

wind distances when compared to 2,4-D and dicamba. This corroborates previous reports

relating low rates of 2,4-D and dicamba to high crop injury potential on soybean (Glycine max
(L.) Merr.), cotton (Gossypium hirsutum L.), tomato (Solanum lycopersicum L.), and other

broadleaf species [48–50].

Herbicide drift and plant exposure to sublethal rates

Estimations of spray drift deposition as influenced by downwind distance and nozzle type

(pooled across herbicides) are provided in Table 7. Applications with the flat-fan nozzle

resulted in near-field spray drift ranging from 32.3 (1.0 m) to 11.5% (3.0 m) of the applied rate.

Fig 3. Glyphosate, 2,4-D, and dicamba particle drift study using an air-inclusion nozzle (AI95015EVS) conducted in a low speed

wind tunnel. Shaded area indicates the 95% confidence limits. Glyphosate solution had the addition of ammonium sulfate solution at

5% v/v (Bronc1, Wilbur-Ellis Agribusiness, Aurora, CO, USA).

https://doi.org/10.1371/journal.pone.0220014.g003
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Fig 4. Glyphosate, 2,4-D, and dicamba particle drift study using a flat-fan nozzle (TP95015EVS) conducted at a low speed wind

tunnel. Shaded area indicates the 95% confidence limits. Glyphosate solution had the addition of ammonium sulfate solution at 5% v/

v (Bronc1, Wilbur-Ellis Agribusiness, Aurora, CO, USA).

https://doi.org/10.1371/journal.pone.0220014.g004

Table 3. Log-logistic model parameters estimates, standard errors, and distance to 5% application rate deposition (D5) as influenced by downwind distance for

each nozzle�herbicide treatment combination tested in the spray particle drift studya.

Nozzleb Herbicide Log-logistic model parametersc

b e D5
_______________ m _______________

TP95015EVS Glyphosate 1.10 ± 0.07 0.44 ± 0.04 6.28 ± 0.60

2,4-D 1.24 ± 0.07 0.65 ± 0.04 6.97 ± 0.56

Dicamba 1.19 ± 0.07 0.52 ± 0.04 6.11 ± 0.53

AI95015EVS Glyphosate 1.36 ± 0.19 0.20 ± 0.05 1.77 ± 0.12

2,4-D 1.52 ± 0.15 0.33 ± 0.05 2.27 ± 0.14

Dicamba 1.28 ± 0.21 0.16 ± 0.06 1.57 ± 0.11

aGlyphosate solution had the addition of ammonium sulfate solution at 5% v/v (Bronc1, Wilbur-Ellis Agribusiness, Aurora, CO, USA).
bTeeJet Technologies, Spraying Systems Co., Glendale Heights, IL.
cb parameter corresponds to the slope at the inflection point; e parameter corresponds to the distance to 50% application deposition; c parameter (lower limit) fixed to

0%; d parameter (upper limit) fixed to 100%; D5 corresponds to the distance to 5% application rate deposition.

https://doi.org/10.1371/journal.pone.0220014.t003
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The use of the AI nozzle decreased the dose exposure in the same distance range, with drift

deposition estimations ranging from 11.4 (1.0 m) to 2.7% (3 m) of the applied rate.

It has been reported that progenies of an initially susceptible population of annual ryegrass

(Lolium rigidum Gaudin) shifted towards glyphosate resistance (up to 2.1-fold in the LD50)

Table 4. Waterhemp and Palmer amaranth mortality and estimations of biomass reduction using a log-logistic model as influenced by downwind distances for

each nozzle�herbicide combination tested in the spray particle drift studyab.

Nozzlec Distance Waterhemp mortality

(biomass reduction)

Palmer amaranth mortality (biomass reduction)

TP95015EVS Glyphosate 2,4-D Dicamba Glyphosate 2,4-D Dicamba

m _________________________________________ % ____________________________________

1.0 100 (89) 83 (83) 83 (74) 100 (93) 0 (75) 67 (86)

1.5 83 (87) 83 (75) 50 (67) 100 (93) 0 (72) 83 (83)

2.0 17 (85) 0 (69) 17 (62) 100 (93) 0 (69) 17 (79)

2.5 17 (82) 17 (63) 0 (57) 83 (92) 0 (66) 17 (77)

3.0 0 (78) 0 (57) 0 (53) 83 (92) 0 (64) 0 (74)

4.0 17 (71) 0 (49) 0 (46) 83 (91) 0 (60) 0 (69)

5.0 0 (63) 0 (42) 0 (40) 67 (89) 0 (56) 0 (65)

7.0 0 (50) 0 (32) 0 (33) 33 (83) 0 (50) 0 (58)

12.0 0 (27) 0 (19) 0 (22) 0 (64) 0 (41) 0 (47)

AI95015EVS 1.0 100 (91) 0 (60) 17 (54) 100 (94) 0 (59) 0 (59)

1.5 67 (80) 17 (53) 0 (49) 83 (91) 0 (55) 0 (56)

2.0 0 (67) 0 (48) 0 (45) 100 (87) 0 (53) 0 (54)

2.5 0 (55) 0 (44) 0 (42) 33 (83) 0 (50) 0 (52)

3.0 0 (44) 0 (41) 0 (39) 33 (79) 0 (49) 0 (50)

4.0 0 (28) 0 (35) 0 (35) 17 (71) 0 (46) 0 (48)

5.0 0 (19) 0 (32) 0 (33) 0 (64) 0 (44) 0 (46)

7.0 0 (9) 0 (26) 0 (28) 0 (52) 0 (40) 0 (43)

12.0 0 (3) 0 (19) 0 (22) 0 (32) 0 (35) 0 (39)

aGlyphosate solution had the addition of ammonium sulfate solution at 5% v/v (Bronc1, Wilbur-Ellis Agribusiness, Aurora, CO, USA).
bBiomass reduction as compared to the untreated control.
cTeeJet Technologies, Spraying Systems Co., Glendale Heights, IL.

https://doi.org/10.1371/journal.pone.0220014.t004

Table 5. Log-logistic model parameters estimates and standard errors for waterhemp biomass reduction as influenced by downwind distance for each noz-

zle�herbicide combinations tested in the spray particle drift studyab.

Nozzlec Herbicide Log-logistic model parametersd

b d (%) e (m)

TP95015EVS Glyphosate 1.92 ± 0.38 91.04 ± 4.00 7.71 ± 0.69

2,4-D 1.28 ± 0.17 96.79 ± 4.58 4.04 ± 0.45

Dicamba 1.07 ± 0.16 90.32 ± 4.87 4.10 ± 0.59

AI95015EVS Glyphosate 2.44 ± 0.33 98.18 ± 4.24 2.75 ± 0.16

2,4-D 0.83 ± 0.14 87.96 ± 4.93 2.48 ± 0.43

Dicamba 0.61 ± 0.12 90.80 ± 5.04 1.91 ± 0.46

aGlyphosate solution had the addition of ammonium sulfate solution at 5% v/v (Bronc1, Wilbur-Ellis Agribusiness, Aurora, CO, USA).
bBiomass reduction as compared to the untreated control.
cTeeJet Technologies, Spraying Systems Co., Glendale Heights, IL.
dc parameter (lower limit) fixed to 0%; b parameter corresponds to the slope at the inflection point; d parameter corresponds to the upper limit, e parameter corresponds

to the distance to 50% biomass reduction.

https://doi.org/10.1371/journal.pone.0220014.t005
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Table 6. Log-logistic model parameters estimates and standard errors for Palmer amaranth biomass reduction as influenced by downwind distance for each noz-

zle�herbicide combinations tested in the spray particle drift studyab.

Nozzlec Herbicide Log-logistic model parametersd

b d (%) e (m)

TP95015EVS Glyphosate 2.55 ± 0.83 93.13 ± 1.92 16.31 ± 2.24

2,4-D 0.86 ± 0.14 84.76 ± 3.55 10.91 ± 1.98

Dicamba 0.91 ± 0.14 95.59 ± 3.75 11.50 ± 1.82

AI95015EVS Glyphosate 1.53 ± 0.19 98.28 ± 3.09 7.55 ± 0.63

2,4-D 0.46 ± 0.10 85.85 ± 4.27 5.38 ± 1.53

Dicamba 0.37 ± 0.09 90.98 ± 4.28 5.37 ± 1.80

aGlyphosate solution had the addition of ammonium sulfate solution at 5% v/v (Bronc1, Wilbur-Ellis Agribusiness, Aurora, CO, USA).
bBiomass reduction as compared to the untreated control.
cTeeJet Technologies, Spraying Systems Co., Glendale Heights, IL.
dc parameter (lower limit) fixed to 0%; b parameter corresponds to the slope at the inflection point; d parameter corresponds to the upper limit, e parameter corresponds

to the distance to 50% biomass reduction; D5 corresponds to the distance with 5% application rate deposition.

https://doi.org/10.1371/journal.pone.0220014.t006

Fig 5. Waterhemp (Amaranthus tuberculatus) biomass reduction as influenced by glyphosate, 2,4-D, and dicamba particle drift

using a flat-fan nozzle (TP95015EVS) in a low speed wind tunnel. Glyphosate solution had the addition of ammonium sulfate

solution at 5% v/v (Bronc1, Wilbur-Ellis Agribusiness, Aurora, CO, USA).

https://doi.org/10.1371/journal.pone.0220014.g005
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after being recurrently selected with sublethal rates of glyphosate [21]. These authors exposed

three generations of Lolium rigidum plants to sublethal rates of glyphosate ranging from 150 g

ae ha-1 to 350 g ae ha-1 (17 to 40% of the 867 g ae ha-1 commonly adopted field rate in glypho-

sate tolerant crops). In a similar study, it was reported that a glyphosate-susceptible Palmer

amaranth population evolved glyphosate resistance (2.2-fold in the LD50) after being recur-

rently selected under sublethal rates of glyphosate for four generations [25]. The author

reported that glyphosate doses of 105, 126, 210, and 420 g ae ha-1 (12, 15, 24, and 48% of the

867 g ae ha-1 commonly adopted field rate in glyphosate tolerant crops, respectively) were used

as generations progressed during the recurrent selection study. In a Raphanus raphanistrum L.

population, the plants evolved 2,4-D resistance (8.6-fold in the LD50) after being recurrently

selected during four generations [18]. The authors exposed plants to 125, 250, and 750 g 2,4-D

ae ha-1 (12, 24, and 73% of the 1065 g ae ha-1 recommended rate for 2,4-D-tolerant soybean) as

generations progressed. Another study reported that a 2,4-D and dicamba-susceptible Palmer

amaranth population had its susceptibility reduced to both herbicides (2.8 and 2.0-fold in the

LD50 for dicamba and 2,4-D, respectively) after recurrent selection with sublethal rates of

dicamba for three selection generations [26]. The authors exposed plants to 140, 280, and 420

g dicamba ae ha-1 (25, 50, and 75% of the 560 g ae ha-1 recommended rate for dicamba-tolerant

Fig 6. Palmer amaranth (Amaranthus palmeri) biomass reduction as influenced by glyphosate, 2,4-D, and dicamba particle drift

using a flat-fan nozzle (TP95015EVS) in a low speed wind tunnel. Glyphosate solution had the addition of ammonium sulfate

solution at 5% v/v (Bronc1, Wilbur-Ellis Agribusiness, Aurora, CO, USA).

https://doi.org/10.1371/journal.pone.0220014.g006
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soybean) during the selection generations. Recurrent selection studies with sublethal rates of

pyroxasulfone and diclofop-methyl were also associated with resistance evolution in weeds in

previous studies [19,20,22,23,27].

Despite similar dose ranges, herbicide drift exposure differs from previously reported suble-

thal rate studies in terms of spray deposition pattern on plants and herbicide concentration

within spray droplets. Unlike an intentional sublethal rate application with a constant carrier

volume (usually ranging from 94 to 188 L ha-1), spray drift deposition is not consistent across

field edges, which could influence plant response to the herbicide exposure. The higher herbi-

cide concentration of spray drift droplets at lower carrier volumes could also influence plant

response to herbicide exposure. Previous research indicated that glyphosate was more active at

lower carrier volumes (more concentrated droplets) on oat (Avena sativa L.), wheat (Triticum
aestivum L.), and several annual grass weed species such as Echinochloa crusgalli L., Panicum
dichotomiflorum Michx., Setaria viridis (L.) Beauv., Setaria pumila (Poir.) Roem. et Schult, and

Digitaria sanguinalis (L.) Scop., especially when lower glyphosate rates were compared [51,52].

Another study reported that carrier volume also influenced glyphosate activity on corn,

whereas soybean was not affected [53,54]. It has also been reported that carrier volume influ-

enced low rates of 2,4-D activity on cotton plants with lower carrier volumes (more

Fig 7. Waterhemp (Amaranthus tuberculatus) biomass reduction as influenced by glyphosate, 2,4-D, and dicamba particle drift

using an air-inclusion nozzle (AI95015EVS) in a low speed wind tunnel. Glyphosate solution had the addition of ammonium

sulfate solution at 5% v/v (Bronc1, Wilbur-Ellis Agribusiness, Aurora, CO, USA).

https://doi.org/10.1371/journal.pone.0220014.g007
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concentrated droplets) resulting in more herbicide injury [53]. Similarly, lower rates of 2,4-D

and dicamba were more active on cotton when lower carrier volumes with more concentrated

droplets were used [50]. A study highlighted that the active ingredient concentration within

droplets could influence the diffusion process of herbicide foliar uptake [55]. However, the

authors mentioned that glyphosate foliar uptake has been investigated more than other herbi-

cides. Additionally, it has been suggested that carrier volume could influence glyphosate activ-

ity because of water hardness, surfactant concentration, and spray droplet dynamics [52].

Herbicides tested in this study (glyphosate, 2,4-D, and dicamba) have systemic activity and can

still be effective at lower carrier volumes and coverage, whereas contact herbicides usually

require higher carrier volumes and adequate coverage [56–58]. Therefore, spray drift and

injury potential from contact herbicides needs to be further investigated.

The results of this study indicate that herbicide drift towards field edges expose weeds to a

range of herbicide rates reported to select for herbicide resistance. A previous study reported

that only 3% of a total of 215 Palmer amaranth populations collected from roadsides, ditches,

and field borders in eastern Arkansas were completely susceptible to glyphosate [14]. Glypho-

sate resistance was also confirmed in waterhemp and Palmer amaranth populations located on

field borders and ditches in Nebraska [17]. Similarly, the presence of herbicide-resistant giant

Fig 8. Palmer amaranth (Amaranthus palmeri) biomass reduction as influenced by glyphosate, 2,4-D, and dicamba particle drift

using an air-inclusion nozzle (AI95015EVS) in a low speed wind tunnel. Glyphosate solution had the addition of ammonium

sulfate solution at 5% v/v (Bronc1, Wilbur-Ellis Agribusiness, Aurora, CO, USA).

https://doi.org/10.1371/journal.pone.0220014.g008
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ragweed (Ambrosia trifida L.) in crop fields throughout the U.S. Corn Belt and Ontario (Can-

ada) was strongly correlated to the species presence on crop field edges such as railroad sid-

ings, ditch banks, and fencerows [15].

This study confirmed that nozzle selection influenced spray drift and consequent herbicide

dose exposure on field edges, although spray drift could also be influenced by other parameters

not tested, such as wind speed and boom height. The distance range with herbicide exposure

and selection pressure is further increased for applications with the flat-fan nozzle (higher drift

potential). It has been suggested that plants exposed to low doses of herbicides experience

physiological stress, whereas plants exposed to even lower rates (hormetic doses) could also be

subjected to stress [34]. Therefore, further studies are necessary to investigate if weeds could

evolve herbicide resistance after recurrent selection with different exposure ranges of herbicide

drift.

Despite the herbicide drift exposure and its potential implications on resistance evolution

and weed management, near-field weed populations are often neglected and not properly

managed in agricultural landscapes [14,15,17,37]. It has been reported that unmanaged field

margins with resistant-prone weeds can exacerbate the risk of resistance, especially when out-

crossing occurs with resistant populations near field [37]. Having plants under selection pres-

sure for herbicide resistance on field borders could be detrimental for in-field weed

management as pollen-mediated gene flow plays an important role in dispersing herbicide

resistance alleles in cross-pollinated species such as waterhemp and Palmer amaranth [59–61].

Preventing resistance-prone weeds on field margins is an important best management practice

(BMP) to delay herbicide resistance, although the additional management costs and time con-

straints pose a challenge for growers [18,62]. Growers should consider additional strategies to

Table 7. Spray drift deposition estimations with 95% confidence intervals (CI 95%) as influenced by downwind distance and nozzle type (pooled herbicides) using a

log-logistic non-linear regression model in the spray particle drift study.

Nozzlea Distance Spray depositionb CI 95%

m _________________________ % _________________________

TP95015EVS 1.0 32.3 (31.1–33.5)

1.5 22.8 (22.1–23.5)

2.0 17.4 (16.8–18.0)

2.5 13.9 (13.3–14.5)

3.0 11.5 (10.9–12.1)

4.0 8.5 (7.9–9.1)

5.0 6.7 (6.1–7.2)

7.0 4.6 (4.1–5.1)

12.0 2.5 (2.1–2.8)

AI95015EVS 1.0 11.4 (10.1–12.8)

1.5 6.8 (6.1–7.5)

2.0 4.7 (4.0–5.3)

2.5 3.4 (2.8–4.1)

3.0 2.7 (2.1–3.3)

4.0 1.8 (1.3–2.4)

5.0 1.3 (0.9–1.8)

7.0 0.8 (0.5–1.2)

12.0 0.4 (0.2–0.6)

aTeeJet Technologies, Spraying Systems Co., Glendale Heights, IL.
bSpray drift deposition (%) in relation to the applied rate of 140.3 L ha-1.

https://doi.org/10.1371/journal.pone.0220014.t007
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mitigate near-field spray drift [43,63], and implement appropriate control strategies to manage

weed populations on field borders, such as mowing, using boomless nozzles for weed control

in areas of difficult access (fencerows, electrical lines), or planting and maintaining field bor-

ders to a less-weedy and easier to manage species [37].
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