1,180 research outputs found

    The Tax Treatment of a Disposition of Professional Good Will

    Get PDF

    N,N'-dimethylperylene-3,4,9,10-bis(dicarboximide) on alkali halide(001) surfaces

    Full text link
    The growth of N,N'-dimethylperylene-3,4,9,10-bis(dicarboximide) (DiMe-PTCDI) on KBr(001) and NaCl(001) surfaces has been studied. Experimental results have been achieved using frequency modulation atomic force microscopy at room temperature under ultra-high vacuum conditions. On both substrates, DiMe-PTCDI forms molecular wires with a width of 10 nm, typically, and a length of up to 600 nm at low coverages. All wires grow along the [110] direction (or [11ˉ\bar{1}0] direction, respectively) of the alkali halide (001) substrates. There is no wetting layer of molecules: Atomic resolution of the substrates can be achieved between the wires. The wires are mobile on KBr surface but substantially more stable on NaCl. A p(2 x 2) superstructure in brickwall arrangement on the ionic crystal surfaces is proposed based on electrostatic considerations. Calculations and Monte-Carlo simulations using empirical potentials reveal possible growth mechanisms for molecules within the first layer for both substrates, also showing a significantly higher binding energy for NaCl(001). For KBr, the p(2 x 2) superstructure is confirmed by the simulations, for NaCl, a less dense, incommensurate superstructure is predicted.Comment: 5 pages, 5 figure

    Dissipative Dynamics with Trapping in Dimers

    Full text link
    The trapping of excitations in systems coupled to an environment allows to study the quantum to classical crossover by different means. We show how to combine the phenomenological description by a non-hermitian Liouville-von Neumann Equation (LvNE) approach with the numerically exact path integral Monte-Carlo (PIMC) method, and exemplify our results for a system of two coupled two-level systems. By varying the strength of the coupling to the environment we are able to estimate the parameter range in which the LvNE approach yields satisfactory results. Moreover, by matching the PIMC results with the LvNE calculations we have a powerful tool to extrapolate the numerically exact PIMC method to long times.Comment: 5 pages, 2 figure

    Diamagnetic pumping near the base of a stellar convection zone

    Full text link
    The property of inhomogeneous turbulence in conducting fluids to expel large-scale magnetic fields in the direction of decreasing turbulence intensity is shown as important for the magnetic field dynamics near the base of a stellar convection zone. The downward diamagnetic pumping confines a fossil internal magnetic field in the radiative core so that the field geometry is appropriate for formation of the solar tachocline. For the stars of solar age, the diamagnetic confinement is efficient only if the ratio of turbulent magnetic diffusivity of the convection zone to the (microscopic or turbulent) diffusivity of the radiative interiour is larger than 10^5. Confinement in younger stars require still larger diffusivity ratio. The observation of persistent magnetic structures on young solar-type stars can thus provide evidences for the nonexistence of tachoclines in stellar interiors and on the level of turbulence in radiative cores.Comment: 4 pages, 5 figure

    On long-term modulation of the Sun’s magnetic cycle

    Get PDF
    We utilize reconstructions based on cosmogenic radionuclides as well as direct observations of solar magnetic activity, to argue that the solar dynamo has operated similarly to the present day for at least the past 10 000 yr. The persistence of the 87-yr Gleissberg cycle throughout supermodulation events suggests that the Hale and Schwabe cycles continue independently of the modulational mechanism for activity. We further analyse behaviour of solar activity during the Spörer and Maunder Minima. Such grand minima recur with the characteristic de Vries period of approximately 208 yr but their incidence is modulated by the Hallstatt cycle with a characteristic period of around 2300 yr.We ascribe the latter to supermodulation, caused by breaking the symmetry of the dynamo pattern. Finally, we emphasize the need for further calculations in order to determine the effects of changes in solar field morphology and symmetry on the solar wind and on cosmic ray deflection

    Ballistic transport in graphene antidot lattices

    Get PDF
    Graphene samples can have a very high carrier mobility if influences from the substrate and the environment are minimized. Embedding a graphene sheet into a heterostructure with hexagonal boron nitride (hBN) on both sides was shown to be a particularly efficient way of achieving a high bulk mobility. Nanopatterning graphene can add extra damage and drastically reduce sample mobility by edge disorder. Preparing etched graphene nanostructures on top of an hBN substrate instead of SiO2 is no remedy, as transport characteristics are still dominated by edge roughness. Here we show that etching fully encapsulated graphene on the nanoscale is more gentle and the high mobility can be preserved. To this end, we prepared graphene antidot lattices where we observe magnetotransport features stemming from ballistic transport. Due to the short lattice period in our samples we can also explore the boundary between the classical and the quantum transport regime

    Efficient time splitting schemes for the monodomain equation in cardiac electrophysiology

    Get PDF
    Approximating the fast dynamics of depolarization waves in the human heart described by the monodomain model is numerically challenging. Splitting methods for the PDE-ODE coupling enable the computation with very fine space and time discretizations. Here, we compare different splitting approaches regarding convergence, accuracy, and efficiency. Simulations were performed for a benchmark problem with the Beeler–Reuter cell model on a truncated ellipsoid approximating the left ventricle including a localized stimulation. For this configuration, we provide a reference solution for the transmembrane potential. We found a semi-implicit approach with state variable interpolation to be the most efficient scheme. The results are transferred to a more physiological setup using a bi-ventricular domain with a complex external stimulation pattern to evaluate the accuracy of the activation time for different resolutions in space and time
    • …
    corecore