88 research outputs found
Approximating the University: The Information Literacy Practices of Novice Researchers
In a seminal essay, David Bartholomae asserts that novice writers need to āinvent the university by assembling and mimicking its language.ā Instructors and librarians who work with beginning academic writers confirm Bartholomaeās assertion. Our research asks how, precisely, novice writer-researchers go about inventing the university before they have an understanding of the disciplines in which they are asked to work. We suggest that novice writers in the first steps of knowledge construction tend to mimic the structures of knowledge, rather than to create coherent narratives of understanding. This finding has implications not only for how we understand student learning, but also for how we teach students to find, make sense of, and compose knowledge
Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management
One of the advantages of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used to maintain electronic components within a controlled temperature range, to warm propulsion tanks and mobility actuators, and to gasify liquid propellants. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated a very large quantity of waste heat due to the relatively low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-watt Stirling Radioisotope Generator (SRG110) will have much higher conversion efficiencies than their predecessors and therefore may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of approx. 6 to 7% and 200 C housing surface temperatures, would need to use large and heavy radiator heat exchangers to transfer the waste heat to the internal spacecraft components. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation by using the heat exchangers or additional shields. The SRG110, with an efficiency around 22% and 50 C nominal housing surface temperature, can use the available waste heat more efficiently by more direct heat transfer methods such as heat pipes, thermal straps, or fluid loops. The lower temperatures allow the SRG110 much more flexibility to the spacecraft designers in configuring the generator without concern of overheating nearby scientific instruments, thereby eliminating the need for thermal shields. This paper will investigate using a high efficiency SRG110 for spacecraft thermal management and outline potential methods in several conceptual missions (Lunar Rover, Mars Rover, and Titan Lander) to illustrate the advantages with regard to ease of assembly, less complex interfaces, and overall mass savings
The antiviral factor APOBEC3G improves CTL recognition of cultured HIV-infected T cells
The cytidine deaminase APOBEC3G (A3G) enzyme exerts an intrinsic antiāhuman immunodeficiency virus (HIV) defense by introducing lethal G-to-A hypermutations in the viral genome. The HIV-1 viral infectivity factor (Vif) protein triggers degradation of A3G and counteracts this antiviral effect. The impact of A3G on the adaptive cellular immune response has not been characterized. We examined whether A3G-edited defective viruses, which are known to express truncated or misfolded viral proteins, activate HIV-1āspecific (HS) CD8+ cytotoxic T lymphocytes (CTLs). To this end, we compared the immunogenicity of cells infected with wild-type or Vif-deleted viruses in the presence or absence of the cytidine deaminase. The inhibitory effect of A3G on HIV replication was associated with a strong activation of cocultivated HS-CTLs. CTL activation was particularly marked with Vif-deleted HIV and with viruses harboring A3G. Enzymatically inactive A3G mutants failed to enhance CTL activation. We also engineered proviruses bearing premature stop codons in their genome as scars of A3G editing. These viruses were not infectious but potently activated HS-CTLs. Therefore, the pool of defective viruses generated by A3G represents an underestimated source of viral antigens. Our results reveal a novel function for A3G, acting not only as an intrinsic antiviral factor but also as an inducer of the adaptive immune system
Viral Protein Fragmentation May Broaden T-Cell Responses to HIV Vaccines
High mutation rates of human immunodeficiency virus (HIV) allows escape from T cell recognition preventing development of effective T cell vaccines. Vaccines that induce diverse T cell immune responses would help overcome this problem. Using SIV gag as a model vaccine, we investigated two approaches to increase the breadth of the CD8 T cell response. Namely, fusion of vaccine genes to ubiquitin to target the proteasome and increase levels of MHC class I peptide complexes and gene fragmentation to overcome competition between epitopes for presentation and recognition.three vaccines were compared: full-length unmodified SIV-mac239 gag, full-length gag fused at the N-terminus to ubiquitin and 7 gag fragments of equal size spanning the whole of gag with ubiquitin-fused to the N-terminus of each fragment. Genes were cloned into a replication defective adenovirus vector and immunogenicity assessed in an in vitro human priming system. The breadth of the CD8 T cell response, defined by the number of distinct epitopes, was assessed by IFN-Ī³-ELISPOT and memory phenotype and cytokine production evaluated by flow cytometry. We observed an increase of two- to six-fold in the number of epitopes recognised in the ubiquitin-fused fragments compared to the ubiquitin-fused full-length gag. In contrast, although proteasomal targeting was achieved, there was a marked reduction in the number of epitopes recognised in the ubiquitin-fused full-length gag compared to the full-length unmodified gene, but there were no differences in the number of epitope responses induced by non-ubiquitinated full-length gag and the ubiquitin-fused mini genes. Fragmentation and ubiquitination did not affect T cell memory differentiation and polyfunctionality, though most responses were directed against the Ad5 vector.Fragmentation but not fusion with ubiquitin increases the breadth of the CD8 T vaccine response against SIV-mac239 gag. Thus gene fragmentation of HIV vaccines may maximise responses
Viral dissemination and immune activation modulate antiretroviral drug levels in lymph nodes of SIV-infected rhesus macaques
Introduction and methodsTo understand the relationship between immunovirological factors and antiretroviral (ARV) drug levels in lymph nodes (LN) in HIV therapy, we analyzed drug levels in twenty-one SIV-infected rhesus macaques subcutaneously treated with daily tenofovir (TFV) and emtricitabine (FTC) for three months.ResultsThe intracellular active drug-metabolite (IADM) levels (TFV-dp and FTC-tp) in lymph node mononuclear cells (LNMC) were significantly lower than in peripheral blood mononuclear cells (PBMC) (Pā¤0.005). Between Month 1 and Month 3, IADM levels increased in both LNMC (Pā¤0.001) and PBMC (Pā¤0.01), with a steeper increase in LNMC (Pā¤0.01). The viral dissemination in plasma, LN, and rectal tissue at ART initiation correlated negatively with IADM levels at Month 1. Physiologically-based pharmacokinetic model simulations suggest that, following subcutaneous ARV administration, ART-induced reduction of immune activation improves the formation of active drug-metabolites through modulation of kinase activity and/or through improved parent drug accessibility to LN cellular compartments.ConclusionThese observations have broad implications for drugs that need to phosphorylate to exert their pharmacological activity, especially in the settings of the pre-/post-exposure prophylaxis and efficacy of antiviral therapies targeting pathogenic viruses such as HIV or SARS-CoV-2 replicating in highly inflammatory anatomic compartments
The FAT10- and ubiquitin-dependent degradation machineries exhibit common and distinct requirements for MHC class I antigen presentation
Like ubiquitin (Ub), the ubiquitin-like protein FAT10 can serve as a signal for proteasome-dependent protein degradation. Here, we investigated the contribution of FAT10 substrate modification to MHC class I antigen presentation. We show that N-terminal modification of the human cytomegalovirus-derived pp65 antigen to FAT10 facilitates direct presentation and dendritic cell-mediated cross-presentation of the HLA-A2 restricted pp65495ā503 epitope. Interestingly, our data indicate that the pp65 presentation initiated by either FAT10 or Ub partially relied on the 19S proteasome subunit Rpn10 (S5a). However, FAT10 distinguished itself from Ub in that it promoted a pp65 response which was not influenced by immunoproteasomes or PA28. Further divergence occurred at the level of Ub-binding proteins with NUB1 supporting the pp65 presentation arising from FAT10, while it exerted no effect on that initiated by Ub. Collectively, our data establish FAT10 modification as a distinct and alternative signal for facilitated MHC class I antigen presentation
Standardization of cytokine flow cytometry assays
BACKGROUND: Cytokine flow cytometry (CFC) or intracellular cytokine staining (ICS) can quantitate antigen-specific T cell responses in settings such as experimental vaccination. Standardization of ICS among laboratories performing vaccine studies would provide a common platform by which to compare the immunogenicity of different vaccine candidates across multiple international organizations conducting clinical trials. As such, a study was carried out among several laboratories involved in HIV clinical trials, to define the inter-lab precision of ICS using various sample types, and using a common protocol for each experiment (see additional files online). RESULTS: Three sample types (activated, fixed, and frozen whole blood; fresh whole blood; and cryopreserved PBMC) were shipped to various sites, where ICS assays using cytomegalovirus (CMV) pp65 peptide mix or control antigens were performed in parallel in 96-well plates. For one experiment, antigens and antibody cocktails were lyophilised into 96-well plates to simplify and standardize the assay setup. Results (CD4(+)cytokine(+ )cells and CD8(+)cytokine(+ )cells) were determined by each site. Raw data were also sent to a central site for batch analysis with a dynamic gating template. Mean inter-laboratory coefficient of variation (C.V.) ranged from 17ā44% depending upon the sample type and analysis method. Cryopreserved peripheral blood mononuclear cells (PBMC) yielded lower inter-lab C.V.'s than whole blood. Centralized analysis (using a dynamic gating template) reduced the inter-lab C.V. by 5ā20%, depending upon the experiment. The inter-lab C.V. was lowest (18ā24%) for samples with a mean of >0.5% IFNĪ³ + T cells, and highest (57ā82%) for samples with a mean of <0.1% IFNĪ³ + cells. CONCLUSION: ICS assays can be performed by multiple laboratories using a common protocol with good inter-laboratory precision, which improves as the frequency of responding cells increases. Cryopreserved PBMC may yield slightly more consistent results than shipped whole blood. Analysis, particularly gating, is a significant source of variability, and can be reduced by centralized analysis and/or use of a standardized dynamic gating template. Use of pre-aliquoted lyophilized reagents for stimulation and staining can provide further standardization to these assays
Targeting of EBNA1 for rapid intracellular degradation overrides the inhibitory effects of the Gly-Ala repeat domain and restores CD8+T cell recognition
Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) includes a unique glycine-alanine repeat domain that inhibits the endogenous presentation of cytotoxic T lymphocyte (CTL) epitopes through the class I pathway by blocking proteasome-dependent degradation of this antigen. This immune evasion mechanism has been implicated in the pathogenesis of EBV-associated diseases. Here, we show that cotranslational ubiquitination combined with N-end rule targeting enhances the intracellular degradation of EBNA1, thus resulting in a dramatic reduction in the half-life of the antigen. Using DNA expression vectors encoding different forms of ubiquitinated EBNA1 for in vivo studies revealed that this rapid degradation, remarkably, leads to induction of a very strong CTL response to an EBNA1-specific CTL epitope. Furthermore, this targeting also restored the endogenous processing of HLA class I-restricted CTL epitopes within EBNA1 for immune recognition by human EBV-specific CTLs. These observations provide, for the first time, evidence that the glycine-alanine repeat-mediated proteasomal block on EBNA1 can be reversed by specifically targeting this antigen for rapid degradation resulting in enhanced CD8+ T cell-mediated recognition in vitro and in vivo
- ā¦