47 research outputs found
Development of 3D-printed biodegradable composite scaffolds for tissue engineering applications
The design of smart biodegradable scaffolds plays a crucial role in the regeneration of tissues and restoration of their functionality. Advances in material science and manufacturing and in the understanding on the effects of bio-chemical and bio-physical signals on cell behavior, are leading to a new generation of 3D scaffolds. Recent developments in additive manufacturing, also known as 3D-printing, open new exciting challenges in tissue/organ regeneration by means of the fabrication of complex and geometrically precise 3D structures. This thesis aimed the development and characterization of 3D scaffolds for tissue regeneration. For this, a nozzle-based rapid prototyping system was used to combine polylactic acid and a bioactive CaP glass (coded G5) to fabricate 3-D biodegradable scaffolds. Firstly, optimization of the printing conditions represents a key challenge for achieving high quality 3D-printed structures. Thus, we stress the importance of studying the outcome of the plasticizing effect of PEG on PLA-based blends used for the fabrication of 3D-printed scaffolds. Results indicated that the presence of PEG not only improves PLA processing but also leads to relevant surface, geometrical and structural changes including modulation of the degradation rate of PLA-based 3D printed scaffolds. Secondly, the obtained scaffolds were fully characterized from the physic-chemical point of view. Morphological and structural examinations showed that 3D scaffolds had completely interconnected porosity, uniform distribution of the glass particles, and a controlled and repetitive architecture. In addition, incorporation of G5 particles increased both roughness and hydrophilicity of the scaffolds. Compressive modulus was dependent on the scaffold geometry and the presence of glass. Cell study revealed that G5 glass improved mesenchymal stem cell adhesion after 4 h. Additional biological characterization in terms of the inflammatory response were also carried out. Novel studies have pointed towards a decisive role of inflammation in triggering tissue repair and regeneration, while at the same time it is accepted that an exacerbated inflammatory response may lead to rejection of an implant. Thus, understanding and having the capacity to regulate the inflammatory response elicited by 3D scaffolds aimed for tissue regeneration is crucial. In this context, cytokine secretion and cell morphology of human monocytes/macrophages in contact with biodegradable 3D-printed scaffolds (PLA, PLA/G5 and chitosan ones) with different surface properties, architecture and controlled pore geometry was reported. Results revealed that even though the material itself induced the biggest differences, scaffold geometry also affected on the secretion of cytokines. These findings strengthen the appropriateness of these 3D platforms to study modulation of macrophage responses by specific parameters (chemistry, topography, scaffold architecture). Finally, novel scaffolds composed by two phases (PLA and PLA/G5), for use in guided bone regeneration (GBR) were evaluated. Structural, morphological changes were observed during the in vitro degradation of both PLA and PLA/G5 structures. Although mechanical properties decreased, PLA/G5 scaffolds still showed higher compressive modulus than PLA ones, confirming the reinforcing effect of glass particles after immersion time. In vivo implantation was carried out subcutaneously in mice up to 30 days. Results showed that PLA scaffolds induced mononuclear cell without activating any relevant angiogenic process, while PLA/G5 induced higher presence of multinucleated giant cells and consequently stimulated the vascularization process and further tissue regeneration. The technique/materials combination used in this PhD thesis led to the fabrication of promising fully degradable, mechanically stable, bioactive and biocompatible composite scaffolds with well-defined architectures valuable for TE applications
Cell-Laden 3D Printed GelMA/HAp and THA Hydrogel Bioinks: Development of Osteochondral Tissue-like Bioinks
Osteochondral (OC) disorders such as osteoarthritis (OA) damage joint cartilage and subchondral bone tissue. To understand the disease, facilitate drug screening, and advance therapeutic development, in vitro models of OC tissue are essential. This study aims to create a bioprinted OC miniature construct that replicates the cartilage and bone compartments. For this purpose, two hydrogels were selected: one composed of gelatin methacrylate (GelMA) blended with nanosized hydroxyapatite (nHAp) and the other consisting of tyramine-modified hyaluronic acid (THA) to mimic bone and cartilage tissue, respectively. We characterized these hydrogels using rheological testing and assessed their cytotoxicity with live-dead assays. Subsequently, human osteoblasts (hOBs) were encapsulated in GelMA-nHAp, while micropellet chondrocytes were incorporated into THA hydrogels for bioprinting the osteochondral construct. After one week of culture, successful OC tissue generation was confirmed through RT-PCR and histology. Notably, GelMA/nHAp hydrogels exhibited a significantly higher storage modulus (G') compared to GelMA alone. Rheological temperature sweeps and printing tests determined an optimal printing temperature of 20 °C, which remained unaffected by the addition of nHAp. Cell encapsulation did not alter the storage modulus, as demonstrated by amplitude sweep tests, in either GelMA/nHAp or THA hydrogels. Cell viability assays using Ca-AM and EthD-1 staining revealed high cell viability in both GelMA/nHAp and THA hydrogels. Furthermore, RT-PCR and histological analysis confirmed the maintenance of osteogenic and chondrogenic properties in GelMA/nHAp and THA hydrogels, respectively. In conclusion, we have developed GelMA-nHAp and THA hydrogels to simulate bone and cartilage components, optimized 3D printing parameters, and ensured cell viability for bioprinting OC constructs
Pulmonary embolism and patent foramen ovale thrombosis: the key role of TEE
This is a case report of a 35 young man with Klinefelter Syndrome presented breathlessness, palpitations and chest pain. It shows a rare case of a thrombus located through the PFO, in patient with pulmonary and paradoxical embolism, which takes back to exciting hypothesis on thrombus growth. A thrombus, which has grown 'in situ' or trapped through the patent foramen ovale, may be a cause of relapsing pulmonary or systemic embolism during anticoagulation therapy
An anisotropic nanocomposite hydrogel guides aligned orientation and enhances tenogenesis of human tendon stem/progenitor cells
The uniform and aligned arrangement of tendon cells is a marker of tendon tissue morphology and the embodiment of its biological anisotropy. However, most of the hydrogels used for tendon tissue engineering do not present anisotropic structures. In this work, a magnetically-responsive nanocomposite hydrogel composed of collagen type I (COL I) and aligned iron oxide nanoparticles (IOPs) was investigated for potential application in tendon tissue engineering. COL I with a mixture of remotely aligned IOPs (A/IOPs) and human tendon stem/progenitor cells (COL I-A/IOPs-hTSPCs) was prepared and the alignment of IOPs was induced under a remote magnetic field. Following the gelation of COL I, a stable and anisotropic nanocomposite COL I-A/IOPs hydrogel was formed. In addition, hTSPCs embedded in COL I with random IOPs (COL I-R/IOPs-hTSPCs) and in pure COL I (COL I-hTSPCs) were used as control groups. Cell viability, proliferation, morphology, cell row formation, and alignment of IOPs and hTSPCs were evaluated over time. In addition, a comprehensive gene expression profile of 48 different genes, including tendon-related genes and lineage/cross-linking genes, was obtained by implementing designer quantitative RT-PCR plates. The hTSPCs morphology followed the orientation of the anisotropic COL I-A/IOPs hydrogel with increased row formation in comparison to pristine COL I and COL-R/IOPs. Moreover, higher proliferation rate and significant upregulation of tendon gene markers were measured in comparison to hTSPCs cultivated in the COL I-R/IOPs and COL I. Thus, we suggest that providing the cells with aligned focal contact points, namely the aligned IOPs, is sufficient to provoke an immense effect on the formation of aligned cell rows. Taken together, we report a novel strategy for directing stem cell behavior without the use of exogenous growth factors or pre-aligned COL I fibers, and propose that anisotropic nanocomposite hydrogels hold great potential for tendon tissue engineering applications
A Multifunctional Nanocomposite Hydrogel for Endoscopic Tracking and Manipulation
Herein, the fabrication of multi‐responsive and hierarchically organized nanomaterial using core‐shell SrF2 upconverting nanoparticles, doped with Yb3+, Tm3+, Nd3+ incorporated into gelatin methacryloyl matrix, is reported. Upon 800 nm excitation, deep monitoring of 3D‐printed constructs is demonstrated. Addition of magnetic self‐assembly of iron oxide nanoparticles within the hydrogel provides anisotropic structuration from the nano‐ to the macro‐scale and magnetic responsiveness permitting remote manipulation. The present study provides a new strategy for the fabrication of a novel highly organized multi‐responsive material using additive manufacturing, which can have important implications in biomedicine
Echocardiography may help detect pulmonary vasculopathy in the early stages of pulmonary artery hypertension associated with systemic sclerosis
<p>Abstract</p> <p>Background</p> <p>Pulmonary arterial hypertension (PAH) in patients with systemic sclerosis is associated with a poor prognosis, but this can be improved by early disease detection. Abnormal pulmonary and cardiac function can be detected early by means of echocardiography, whereas right heart catheterization is usually performed later.</p> <p>Objectives</p> <p>The purpose of this prospective study was to detect early the presence of pulmonary artery vasculopathy in patients with verified systemic sclerosis without significant pulmonary fibrosis, normal lung volumes and a mildly reduced lung diffusion capacity of carbon monoxide (DLCO).</p> <p>Methods</p> <p>Nineteen consecutive female NYHA class I-II patients with scleroderma and a PAPs of < 35 mm/Hg measured by echocardiography, were enrolled between September 2007 and September 2009. They had a mean age of 51 ± 13 years, body mass index of 25 ± 5 kg/m<sup>2</sup>). They all underwent complete Doppler echocardiography, CPET, a pulmonary ventilation test (carbon monoxide lung diffusion, DLCO), HRCT. To investigate PAH by means of complete resting Doppler echocardiography estimates of systolic pulmonary artery pressure (PAPs) derived from tr icuspid regurgitation, mean PAP derived from pulmonary regurgitation, pulmonary vessel resistance (PVR) derived from the acceleration time of the pulmonary outflow tract (ACTpo), and right ventricular function derived from tricuspid annular plane systolic excursion (TAPSE). Right heart catheterisation was conducted only, if pulmonary hypertension was suggested by echocardiography and an abnormal ventilator test.</p> <p>The data are given as mean values ± SD, unless otherwise stated. The correlations between the variables were analysed using Pearson's <it>r </it>coefficient, and the predictive value of the variables was calculated using linear regression analysis. A p value of > 0.05 was considered significant.</p> <p>Results</p> <p>Right heart catheterization detected PAH in 15/19 patients; mean PAP was 30.5 mm/Hg and RVP 3.6 UW. Coronary angiography of the patients aged more than 55 years showed some evidence of significant coronary artery disease. Echocardiography showed high systolic PAP values (46 ± 8 mmHg), whereas right ventricular function was normal (TAPSE 23 ± 3 mm), and in line with the NYHA class. ACTpo was reduced in the patients with a systolic PAP of < 46 mm/Hg (p > 0.001) and positively correlated with DLCO (p > 0.001) and the hemodynamic data.</p> <p>There was a good correlation between ACTpo and PVR (hemodynamic data) (r = -0615; p > 0.01).</p> <p>Conclusions</p> <p>Although they need to be confirmed by studies of larger series of patients, our findings suggest that, in comparison with hemodynamic data, non-invasive echocardiographic measurements are an excellent means of identifying early-stage PAH.</p
Prescription appropriateness of anti-diabetes drugs in elderly patients hospitalized in a clinical setting: evidence from the REPOSI Register
Diabetes is an increasing global health burden with the highest prevalence (24.0%) observed in elderly people. Older diabetic adults have a greater risk of hospitalization and several geriatric syndromes than older nondiabetic adults. For these conditions, special care is required in prescribing therapies including anti- diabetes drugs. Aim of this study was to evaluate the appropriateness and the adherence to safety recommendations in the prescriptions of glucose-lowering drugs in hospitalized elderly patients with diabetes. Data for this cross-sectional study were obtained from the REgistro POliterapie-Società Italiana Medicina Interna (REPOSI) that collected clinical information on patients aged ≥ 65 years acutely admitted to Italian internal medicine and geriatric non-intensive care units (ICU) from 2010 up to 2019. Prescription appropriateness was assessed according to the 2019 AGS Beers Criteria and anti-diabetes drug data sheets.Among 5349 patients, 1624 (30.3%) had diagnosis of type 2 diabetes. At admission, 37.7% of diabetic patients received treatment with metformin, 37.3% insulin therapy, 16.4% sulfonylureas, and 11.4% glinides. Surprisingly, only 3.1% of diabetic patients were treated with new classes of anti- diabetes drugs. According to prescription criteria, at admission 15.4% of patients treated with metformin and 2.6% with sulfonylureas received inappropriately these treatments. At discharge, the inappropriateness of metformin therapy decreased (10.2%, P < 0.0001). According to Beers criteria, the inappropriate prescriptions of sulfonylureas raised to 29% both at admission and at discharge. This study shows a poor adherence to current guidelines on diabetes management in hospitalized elderly people with a high prevalence of inappropriate use of sulfonylureas according to the Beers criteria
The “Diabetes Comorbidome”: A Different Way for Health Professionals to Approach the Comorbidity Burden of Diabetes
(1) Background: The disease burden related to diabetes is increasing greatly, particularly in older subjects. A more comprehensive approach towards the assessment and management of diabetes’ comorbidities is necessary. The aim of this study was to implement our previous data identifying and representing the prevalence of the comorbidities, their association with mortality, and the strength of their relationship in hospitalized elderly patients with diabetes, developing, at the same time, a new graphic representation model of the comorbidome called “Diabetes Comorbidome”. (2) Methods: Data were collected from the RePoSi register. Comorbidities, socio-demographic data, severity and comorbidity indexes (Cumulative Illness rating Scale CIRS-SI and CIRS-CI), and functional status (Barthel Index), were recorded. Mortality rates were assessed in hospital and 3 and 12 months after discharge. (3) Results: Of the 4714 hospitalized elderly patients, 1378 had diabetes. The comorbidities distribution showed that arterial hypertension (57.1%), ischemic heart disease (31.4%), chronic renal failure (28.8%), atrial fibrillation (25.6%), and COPD (22.7%), were the more frequent in subjects with diabetes. The graphic comorbidome showed that the strongest predictors of death at in hospital and at the 3-month follow-up were dementia and cancer. At the 1-year follow-up, cancer was the first comorbidity independently associated with mortality. (4) Conclusions: The “Diabetes Comorbidome” represents the perfect instrument for determining the prevalence of comorbidities and the strength of their relationship with risk of death, as well as the need for an effective treatment for improving clinical outcomes
Antidiabetic Drug Prescription Pattern in Hospitalized Older Patients with Diabetes
Objective: To describe the prescription pattern of antidiabetic and cardiovascular drugs in a cohort of hospitalized older patients with diabetes. Methods: Patients with diabetes aged 65 years or older hospitalized in internal medicine and/or geriatric wards throughout Italy and enrolled in the REPOSI (REgistro POliterapuie SIMI—Società Italiana di Medicina Interna) registry from 2010 to 2019 and discharged alive were included. Results: Among 1703 patients with diabetes, 1433 (84.2%) were on treatment with at least one antidiabetic drug at hospital admission, mainly prescribed as monotherapy with insulin (28.3%) or metformin (19.2%). The proportion of treated patients decreased at discharge (N = 1309, 76.9%), with a significant reduction over time. Among those prescribed, the proportion of those with insulin alone increased over time (p = 0.0066), while the proportion of those prescribed sulfonylureas decreased (p < 0.0001). Among patients receiving antidiabetic therapy at discharge, 1063 (81.2%) were also prescribed cardiovascular drugs, mainly with an antihypertensive drug alone or in combination (N = 777, 73.1%). Conclusion: The management of older patients with diabetes in a hospital setting is often sub-optimal, as shown by the increasing trend in insulin at discharge, even if an overall improvement has been highlighted by the prevalent decrease in sulfonylureas prescription
Goodbye Hartmann trial: a prospective, international, multicenter, observational study on the current use of a surgical procedure developed a century ago
Background: Literature suggests colonic resection and primary anastomosis (RPA) instead of Hartmann's procedure (HP) for the treatment of left-sided colonic emergencies. We aim to evaluate the surgical options globally used to treat patients with acute left-sided colonic emergencies and the factors that leading to the choice of treatment, comparing HP and RPA. Methods: This is a prospective, international, multicenter, observational study registered on ClinicalTrials.gov. A total 1215 patients with left-sided colonic emergencies who required surgery were included from 204 centers during the period of March 1, 2020, to May 31, 2020. with a 1-year follow-up. Results: 564 patients (43.1%) were females. The mean age was 65.9 ± 15.6 years. HP was performed in 697 (57.3%) patients and RPA in 384 (31.6%) cases. Complicated acute diverticulitis was the most common cause of left-sided colonic emergencies (40.2%), followed by colorectal malignancy (36.6%). Severe complications (Clavien-Dindo ≥ 3b) were higher in the HP group (P < 0.001). 30-day mortality was higher in HP patients (13.7%), especially in case of bowel perforation and diffused peritonitis. 1-year follow-up showed no differences on ostomy reversal rate between HP and RPA. (P = 0.127). A backward likelihood logistic regression model showed that RPA was preferred in younger patients, having low ASA score (≤ 3), in case of large bowel obstruction, absence of colonic ischemia, longer time from admission to surgery, operating early at the day working hours, by a surgeon who performed more than 50 colorectal resections. Conclusions: After 100 years since the first Hartmann's procedure, HP remains the most common treatment for left-sided colorectal emergencies. Treatment's choice depends on patient characteristics, the time of surgery and the experience of the surgeon. RPA should be considered as the gold standard for surgery, with HP being an exception