329 research outputs found

    A Fixed Point Theorem for Weakly C - Contraction Mappings of Integral Type

    Get PDF
    In the present paper, we shall prove a fixed point theorem by using generalized weak C- contraction of integral type. Our result is generalization of  very known results. Key words: Metric space, fixed point, weak C- contraction. AMS Subject Classification: 54H2

    On the Thermodynamic Geometry of BTZ Black Holes

    Get PDF
    We investigate the Ruppeiner geometry of the thermodynamic state space of a general class of BTZ black holes. It is shown that the thermodynamic geometry is flat for both the rotating BTZ and the BTZ Chern Simons black holes in the canonical ensemble. We further investigate the inclusion of thermal fluctuations to the canonical entropy of the BTZ Chern Simons black holes and show that the leading logartithmic correction due to Carlip is reproduced. We establish that the inclusion of thermal fluctuations induces a non zero scalar curvature to the thermodynamic geometry.Comment: 1+17 pages, LaTeX, 4 eps figure

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Measurement of σ(Λb)/σ(B0)×BR(ΛbΛcπ)/BR(B0D+π)\sigma(\Lambda_b)/\sigma(B^0) \times BR(\Lambda_b\to\Lambda_c\pi^-) / BR(B^0\to D^+\pi^-) in ppˉp\bar{p} Collisions at s=1.96\sqrt{s}=1.96 TeV

    Get PDF
    We present the first observation of the baryon decay ΛbΛcπ\Lambda_b\to\Lambda_c\pi^- followed by ΛcpKπ+\Lambda_c\to p K^-\pi^+ in 106 pb-1 of ppˉp\bar{p} collisions at s=1.96\sqrt{s} = 1.96 TeV in the CDF experiment. In order to reduce systematic error, the measured rate for Λb\Lambda_b decay is normalized to the kinematically similar meson decay B0D+πB^0\to D^+\pi^- followed by D+π+Kπ+D^+\to\pi^+K^-\pi^+. We report the ratio of production cross sections (σ\sigma) times the ratio of branching fractions (BR) for the momentum region integrated above pT>6p_T > 6 GeV/c and pseudorapidity range η<1.3|\eta| < 1.3: σ(ppˉΛbX)/σ(ppˉB0X)×BR(ΛbΛcπ)/BR(B0D+π)=0.82±0.08(stat)±0.11(syst)±0.22(BR(ΛcpKπ+))\sigma(p\bar{p}\to \Lambda_b X) / \sigma (p\bar{p}\to B^0 X) \times BR(\Lambda_b\to\Lambda_c\pi^-) / BR(B^0\to D^+\pi^-) = 0.82 \pm 0.08(stat) \pm 0.11(syst) \pm 0.22 (BR(\Lambda_c\to p K^-\pi^+)).Comment: Submitted to Phys.Rev.Let

    Leprosy post-exposure prophylaxis with single-dose rifampicin

    Get PDF
    _Objective:_ Leprosy post-exposure prophylaxis with single-dose rifampicin (SDRPEP) has proven effective and feasible, and is recommended by WHO since 2018. This SDR-PEP toolkit was developed through the experience of the leprosy postexposure prophylaxis (LPEP) programme. It has been designed to facilitate and standardise the implementation of contact tracing and SDR-PEP administration in regions and countries that start the intervention. _Results:_ Four tools were developed, incorporating the current evidence for SDRPEP and the methods and learnings from the LPEP project in eight countries. (1) th

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Measurement of the ttbar Production Cross Section in ppbar collisions at sqrt s = 1.96 TeV in the All Hadronic Decay Mode

    Get PDF
    We report a measurement of the ttbar production cross section using the CDF-II detector at the Fermilab Tevatron. The analysis is performed using 311 pb-1 of ppbar collisions at sqrt(s)=1.96 TeV. The data consist of events selected with six or more hadronic jets with additional kinematic requirements. At least one of these jets must be identified as a b-quark jet by the reconstruction of a secondary vertex. The cross section is measured to be sigma(tbart)=7.5+-2.1(stat.)+3.3-2.2(syst.)+0.5-0.4(lumi.) pb, which is consistent with the standard model prediction.Comment: By CDF collaboratio
    corecore