9,657 research outputs found

    Classical Electron Model with Negative Energy Density in Einstein-Cartan Theory of Gravitation

    Full text link
    Experimental result regarding the maximum limit of the radius of the electron \sim 10^{-16} cm and a few of the theoretical works suggest that the gravitational mass which is a priori a positive quantity in Newtonian mechanics may become negative in general theory of relativity. It is argued that such a negative gravitational mass and hence negative energy density also can be obtained with a better physical interpretation in the framework of Einstein-Cartan theory.Comment: 12 Latex pages, added refs and conclusion

    Feasibility of quasi-random band model in evaluating atmospheric radiance

    Get PDF
    The use of the quasi-random band model in evaluating upwelling atmospheric radiation is investigated. The spectral transmittance and total band adsorptance are evaluated for selected molecular bands by using the line by line model, quasi-random band model, exponential sum fit method, and empirical correlations, and these are compared with the available experimental results. The atmospheric transmittance and upwelling radiance were calculated by using the line by line and quasi random band models and were compared with the results of an existing program called LOWTRAN. The results obtained by the exponential sum fit and empirical relations were not in good agreement with experimental results and their use cannot be justified for atmospheric studies. The line by line model was found to be the best model for atmospheric applications, but it is not practical because of high computational costs. The results of the quasi random band model compare well with the line by line and experimental results. The use of the quasi random band model is recommended for evaluation of the atmospheric radiation

    A conservative approach for flow field calculations on multiple grids

    Get PDF
    In the computation of flow fields about complex configurations, it is very difficult to construct body-fitted coordinate systems. An alternative approach is to use several grids at once, each of which is generated independently. This procedure is called the multiple grids or zonal grids approach and its applications are investigated in this study. The method follows the conservative approach and provides conservation of fluxes at grid interfaces. The Euler equations are solved numerically on such grids for various configurations. The numerical scheme used is the finite-volume technique with a three-state Runge-Kutta time integration. The code is vectorized and programmed to run on the CDC VPS-32 computer. Some steady state solutions of the Euler equations are presented and discussed

    A second-order accurate parabolized Navier-Stokes algorithm for internal flows

    Get PDF
    A parabolized implicit Navier-Stokes algorithm which is of second-order accuracy in both the cross flow and marching directions is presented. The algorithm is used to analyze three model supersonic flow problems (the flow over a 10-degree edge). The results are found to be in good agreement with the results of other techniques available in the literature

    An analytical approach to grid sensitivity analysis for NACA four-digit wing sections

    Get PDF
    Sensitivity analysis in computational fluid dynamics with emphasis on grids and surface parameterization is described. An interactive algebraic grid-generation technique is employed to generate C-type grids around NACA four-digit wing sections. An analytical procedure is developed for calculating grid sensitivity with respect to design parameters of a wing section. A comparison of the sensitivity with that obtained using a finite difference approach is made. Grid sensitivity with respect to grid parameters, such as grid-stretching coefficients, are also investigated. Using the resultant grid sensitivity, aerodynamic sensitivity is obtained using the compressible two-dimensional thin-layer Navier-Stokes equations

    Aerothermodynamic environment of a Titan aerocapture vehicle

    Get PDF
    The extent of convective and radiative heating for a Titan aerocapture vehicle is investigated. The flow in the shock layer is assumed to be axisymmetric, steady, viscous, and compressible. It is further assumed that the gas is in chemical and local thermodynamic equilibrium and tangent slab approximation is used for the radiative transport. The effect of the slip boundary conditions on the body surface and at the shock wave are included in the analysis of high-altitude entry conditions. The implicit finite difference techniques is used to solve the viscous shock-layer equations for a 45 degree sphere cone at zero angle of attack. Different compositions for the Titan atmosphere are assumed, and results are obtained for the entry conditions specified by the Jet Propulsion Laboratory

    Conservative finite volume solutions of a linear hyperbolic transport equation in two and three dimensions using multiple grids

    Get PDF
    The feasibility of the multiple grid technique is investigated by solving linear hyperbolic equations for simple two- and three-dimensional cases. The results are compared with exact solutions and those obtained from the single grid calculations. It is demonstrated that the technique works reasonably well when two grid systems contain grid cells of comparative sizes. The study indicates that use of the multiple grid does not introduce any significant error and that it can be used to attack more complex problems

    Grid sensitivity for aerodynamic optimization and flow analysis

    Get PDF
    After reviewing relevant literature, it is apparent that one aspect of aerodynamic sensitivity analysis, namely grid sensitivity, has not been investigated extensively. The grid sensitivity algorithms in most of these studies are based on structural design models. Such models, although sufficient for preliminary or conceptional design, are not acceptable for detailed design analysis. Careless grid sensitivity evaluations, would introduce gradient errors within the sensitivity module, therefore, infecting the overall optimization process. Development of an efficient and reliable grid sensitivity module with special emphasis on aerodynamic applications appear essential. The organization of this study is as follows. The physical and geometric representations of a typical model are derived in chapter 2. The grid generation algorithm and boundary grid distribution are developed in chapter 3. Chapter 4 discusses the theoretical formulation and aerodynamic sensitivity equation. The method of solution is provided in chapter 5. The results are presented and discussed in chapter 6. Finally, some concluding remarks are provided in chapter 7
    corecore