NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS SCHOOL OF ENGINEERING OLD DOMINION UNIVERSITY NORFOLK, VIRGINLA

AEROTHERMODYNAMIC ENVIRONMENT OF A TITAN AEROCAPTURE VEHICLE
By N. Tiwari, Principal Investigator
and
H. Chow
Final Report
For the period November 4, 1980 - November 3, 1981

Under

Research Grant NAGI-120
J. N. Moss, Technical Monitor Space Systems Division


```
DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS
SCHOOL OF ENGINEERING
OLD DOMINION UNIVERSITY
NORFOLK; VIRGINIA
```


AEROTHERMODYNAMIC ENVIRONMENT OF A TITAN AEROCAPTURE VEHICLE

By
S. N. Tiwari, Principal Investigator
and
H. Chow

Final Report
For the period November 4, 1980 - November 3, 1981

Prepared for the
National Aeronautics and Space Administration Langley Research Center
Norfolk, Virginia 23665

Under
Research Grant NAG1-120
J. N. Moss, Technical Monitor

Space Systems Division

Submitted by the
Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, Virginia 23508-0369

rreceding page blank not filmed

TABLE OF CONTENTS
Page
FOREWORD ix
SUMMARY 1

1. INTRODUCTION 7
2. BASIC FORMULATION 10
3. BOUNDARY CONDITIONS 21
3.1. Introduction 21
3.2. No-Slip Boundary Conditions 21
3.3. Slip Boundary Conditions 23
4. THERMODYNAMIC AND TRANSPORT PROPERTIES 25
5. CHEMICAL COMPOSITION 28
6. RADIATION TRANSPORT MODEL 33
7. PHYSICAL CONDITIONS AND DATA SOURCE 35
8. METHOD OF SOLUTION 37
9. RESULTS AND DISCUSSION 59
10. CONCLUSIONS 101
REFERENCES 103
APPENDIX: TABLES 105
LIST OF TABLES
Table
1 Constant for polynomial approximations of thermodynamic properties 106
2 Viscosity and thermal conductivity constants 108
3 Altitude and free-stream conditions: Trajectory I 109
4 Altitude and free-stream conditions: Trajectory II 110
5 Altitude and free-stream conditions: Trajectory III 111
6 Altitude and free-atream conditions: Trajectory IV 112
7 Altitude and free-stream conditions: Trajectory V 113
8 Altitude and free-stream conditions: Trajectory VI 114
9 Free-stream thermodynamic values for different gas compositions 115
10
Stagnation results: atmosphere $-99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$, Trajectory I 116
11 Stagnation results: atmosphere $-99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$.Trajectory III118
12 Stagnation results: atmosphere $-99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$, Trajectory IV 120
13 Stagnation results: atmosphere - $95 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$, Trajectory V 122
14 Stagnation results: atmosphere $-90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$, Trajectory I, II 124
15 Stagnation results: atmosphere - 90\% $\mathrm{N}_{2}+10 \% \mathrm{CH}_{4}$,Trajectory III126
16
atmos phere $-90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$,Trajectory IV128
17 Stagnation results: atmosphere $-90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$, Trajectory V 130
18 Stagnation results: atmosphere $-98 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$,Trajectory VI132
19 Downstream results with slip conditions: atmosphere $98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}, \mathrm{Tr}$ ajectory VI, $\mathrm{Z}=196.3 \mathrm{~km}, \varepsilon=0.029$ 134
20 Downstream results with slip conditions: atmosphere -$98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$, Trajectory VI, $Z=241.8 \mathrm{~km}, \varepsilon=0.051 . .136$
21 Downstream results with slip conditions: atmosphere -$98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$, $\operatorname{Trajectory~VI,~} \mathrm{Z}=402.6 \mathrm{~km}, \varepsilon=0.286 . \quad 138$
22
Downstream results with slip conditions: atmosphere -$98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$, Trajectory VI, $Z=465.1 \mathrm{~km}, \varepsilon=0.524$. . 14023 Downstream results with slip conditions: atmosphere -$98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$, $\operatorname{Trajectory~VI,~} \mathrm{Z}=497.6 \mathrm{~km}, \varepsilon=0.719 . .142$
24 Downstream results with slip conditions: atmosphere -$98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$, Trajectory VI, $\mathrm{Z}=530.8 \mathrm{~km}, \varepsilon=0.976$.143LIST OF FIGURES
Figure
1 Aerocapture trajectory 11
2 Titan aerocapture vehicle configuration 12
3 Titan aerocapture for Saturn orbit 13
4 Coordinate system 14
5 Variation in mole fraction of different apecies for $P=0.1$ atm and $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$ 29
6 The altitude history for an aerocapture vehicle 36
7 Finite-difference representation of flow field 48
8(a) Flow chart for solution sequence of viscous shock layer equations 55
8(b) Flow chart for subroutine shock solution procedure 56
8(c) Flow chart for subroutine energy solution procedure 57
8(d) Flow chart for subroutine momentum solution procedure 58
9 Effect of gas composition wh temperature distribution along the stagnation strardine, Trajectory (t ime $=78 \mathrm{~s}$) 60
10 Effect of gas composition on stagnation-point shock temperature, Trajectory I 61
11 Effect of gas composition on stagnation-point convective heating, Trajectory I 62
12 Effect of gas composition on stagnation-point radiative heating 63
13 Variation of stagnation-point shock temperature and convective and radiative heating for $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$ 66
14(a) Effect of entry velocity on stagnation-point shock temperature, $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$ 67
14(b) Effect of entry velocity on stagnation-point shock temperature, $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$ 68
15(a) Effect of entry velocity on stagnation-point convective heating, $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$ 69
15(b) Effect of entry velocity on stagnation-point convective heating, $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$ 70
16(a) Effect of entry velocity on stagnation-point radiative heating, $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$ 71
16(b) Effect of entry velocity on stagnation-point radiative heating, $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$ 72
17 Variation of stagnation point convestive and radiative heating for Trajectories I and II, $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$ 73
18 Effect of body nose radius on stagnation-point convective and radiative heating for $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}, \mathrm{t}=78 \mathrm{~s}$. 75
19 Variation of shock temperature and convective and 76radiative heating along the body for $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$.20(a) Influence of CN on convective and radiative heatingalong the body for $t=78$ and $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$.77
20(b) Influence of CN on convective and radiative heating along the body for $t=78 \mathrm{~s}$ and $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$ 78
21 Variation of shock density and shock-standoff distance with body courdinate for $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$ 80
22 Variation of shock teuperature and enthalpy with body coordinate for $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$ 81
23 Variation of convective and radiative heating along the body for $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$ 82
24 Variation of stagnation-point shock temperature,enthalpy, and convective and radiative heating forTrajectory VI, $98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$.Trajectory VI, $98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$83
25 Variation of shock temperature, shock density,shock-standoff distance, and convective and radiativeheating along the body for Trajectory VI,$98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$84
26 Variation of convective and radiative heating alongthe body for trajectory $\mathrm{I}, 90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}(\mathrm{t}=78 \mathrm{~s})$,and Trajectory VI, $90 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}(\mathrm{t}=78 \mathrm{~s})$. 86
27 Jelocity alip at the body surface as a function of entry time (altitude) on the stagnation point 88
28 Temperature jump and enthalpy shange along the body surface for different entry altitudes 89
29 Velocity variation just behind the shock wave as a function of ξ coordinate 90
30
Temperature variation just behind the shock wave as a function of ξ coordinate for different entry altitudes. 91
31 Enthalpy variation just behind the shock wave as a function of ξ coordinate for different entry altitudes. 92
32 Density variation just behind the shock wave as a function of ξ coordinate for different entry altitudes 93
33 Temperature profile in the shock layer at stagnationpoint with slip conditions for different entryaltitudes94

34 Variation of convective heating along the body surface \quad of different entry altitudes 95
35. Variation of convective heating along the body for different slip conditions at $2=196.349 \mathrm{~km}$ and $Z=241.838 \mathrm{~km}$. 97

36 Variation of convective heating along the body for different slip conditions for $Z=402.595 \mathrm{~km}$ and $Z=465.115 \mathrm{~km}$. 98

37 Temperature profile in the shock layer at stagnation point with body slip conditions for very high altitudes . 99
38 Effect of body slip conditions on surface temperature and the convective heating for very high altitudes near the stagnation region 100

PRECEDING PAGE BLANK NOT FILMED

FOREWORD

This report sumarizes the work completed during the period November 4, 1980 to November 3, 1981 on the research project titled "Analysis of Aerothermodynamic Enviromment of an Aerocapture Vehicle." The work was supported by the NASA/Langley Research Center (Aerothermodynamics Branch of the Space Systems Division) through research grant NAG1-120. The grant was monitored by Dr. James N. Noss of the Space System Division.

AEROTHERMODYNAMIC ENVIROMMENT OP A TITAN AEROCAPTURE VEHICLE

By
S. N. Tiwaril and H. Chow ${ }^{2}$
SUMMARY

The extent of convective and radiative heating for a Titan entry vehicle is investigated. The flow in the shock layer is assumed to be axisymmetric, steady, viscous, and compressible. It is further assumed that the gas is in chemical and local thermodynamic equilibrium and tangent slab approximation is used fur the radiative transport. The effect of slip boundary conditions on the body surface and at the shock wave are included in the analysis of high-altitude entry conditions.

The implicit finite-difference technique is used to solve the viscous shock-layer equations for a 45-degree sphere cone at zero angle of attack. Different compositions fur the Titan's $\mathrm{N}_{2}+\mathrm{CH}_{4}$ atmosphere are assumed, and results are obtained for the entry conditions specified by the Jet Propulsion Laboratory. The results indicate that the heating rate, in general, increases with increasing N_{2} concentration. Both convective and radiative heating increase with incressing initial entry velocity. The radiative heating increases, but the convective heating decreases with increasing body nose radius. The amount of CN concentration in the shocklayer gas determines the extent of radiative heating to the body. Radiative heating will be important for free-atream gas composition with N_{2} concentration between 50% and 90%. For the atwospheric compositions of $99.5 \% \mathrm{~N}_{2}+$ $0.5 \% \mathrm{CH}_{4}$ and $98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$, the radiative heating hear the stagnation region is insignificant in comparison to the convective heating. The resulta indicate that the effect of the slip conditions is important when the altitudea are higher than 402.595 km . Therefore, both the body and shock slip conditions should be included in analyzing the aerothermal environment of the Titan aerocapture vehisle at higher entry altitudes.

[^0]
LIST Of SYMBOLS

\mathbf{B}_{V}	Planck blackbody radiative function, erg/cm ${ }^{2}$
C_{f}	akin friction coefficient
c_{i}	mass fraction of apecies $i, p_{i} / \rho$
$c_{\boldsymbol{l}}$	mass fraction of element i
c_{p}	equilibrium specific heat mixture, $\sum_{i} C_{i} C_{p, i}$
$C_{p, i}$	specific heat of species $i, C_{p, i}^{*} / C_{p, 0}^{*}$
$D_{i j}$	multicomponent diffusion coefficients
${ }_{-1} \mathbf{i}$	binary diffuaion coefficients
F*	free energy of mixture
$\mathrm{E}_{\mathbf{i}}^{*}$	free energy of species i
H	total enthalpy of mixture, $\mathrm{H}^{*} / \mathrm{V}_{\infty}^{*} \mathbf{2}$
h	enthalpy of mixture, $\underset{i}{ } \mathrm{C}_{\mathbf{i}} \mathbf{h}_{\mathbf{i}}$ (also Planck constant)
h_{i}	enthalpy of species $i, h_{i}^{*} / V_{\omega}^{*} 2$
I_{v}	specific incensity, erg/cm ${ }^{2}$
J_{i}	diffusion mass flux of species $i, J_{i}^{*} R_{N /}^{*} / \mu_{\text {ref }}^{*}$
J_{ℓ}	diffusion mass flux of species ℓ
K	thermal conductivity of mixture, $K^{*} / \mu_{\text {ref }}^{*} C_{p, *}^{*}$
$\mathbf{K}_{\mathbf{i}}^{*}$	thermal conductivity of species i
L/D	lift/drag
$\underline{L E}{ }_{i j}$	Lewis number, $\rho^{*} C_{p}^{*} D_{i j} /{ }^{*}$

Le	binary Lewis number, $\mathrm{p}^{*} \mathrm{C}_{\mathrm{p}}^{*} \mathrm{E}_{\mathrm{ij}} / \mathrm{K}^{*}$
M*	molecular weight of species i
N	number of reacting species
n	coordinate measured normal to the body, $\mathrm{n}^{* /} / \mathrm{R}_{N}^{*}$
P	
Pr	Prandtl number, $\mathrm{H}^{*} \mathrm{C}_{\mathrm{p}}^{*} / \mathrm{K}^{*}$
$9 \mathrm{c}, \mathrm{w}$	wall heat-transfer rate, $q^{\star /} /\left(\rho_{\infty}^{*} v_{\infty}^{* 3}\right)$
$9{ }_{5}$	net radiant heat flux, $\mathrm{q}_{\mathbf{r}}^{\star} /\left(\mathrm{q}_{\infty}^{\star} \mathrm{V}_{\infty}^{* 3}\right.$)
- $\mathrm{q}_{\mathbf{r}}^{+}$	adiative heat flux toward shock
$\stackrel{-}{5}$	radiative heat flux toward body
R*	universal gas constant
τ	radius measured from axtis of aymetry to a point on the body surface, $r^{\star} / \mathbb{R}_{N}^{*}$
R_{b}	radius of the body
Re	Reynolds number, $P_{\infty}^{*} V_{\infty}^{*} R_{N} / \mu_{\infty}^{*}$
$\mathrm{R}_{\mathrm{N}}^{*}$	body nose radius
S	coordinate along the body surface, $\mathrm{S}^{*} / \mathrm{R}_{N}^{*}$
St	Stanton number, $\mathrm{q}_{\mathrm{c}, \mathrm{n}}{ }^{\text {i }}$ ($\left.\mathrm{H}_{\infty}-\mathrm{H}_{W}\right)$
T	temperature, $\mathrm{T}^{\star} / \mathrm{V}_{0}^{\star 2} / \mathrm{C}_{\mathrm{pm}}^{*}$)
t	optical coordinate
v_{*}^{*}	freestream velocity
$\mathrm{U}_{\mathbf{E}}$	initial entry velocity

LIST OF SYMBOLS (Cont'd)

\mathbf{u}
velocity component tangent to body surface, u^{*} / V_{∞}^{*} velocity component normal to body surface, v^{*} / v_{∞}^{*} mole fraction of species i
shock angle
extinction coefficient
belliatic coefficient, $W /\left(C_{D} A\right)$
inertial entry angle
number of atoms of 2 th element in species i
Reynolda number parameter, $\left[\mu_{r e f}^{\star} /\left(\rho_{\infty}^{\star} V_{*}^{*} R_{N}\right)\right]^{1 / 2}$
aurface emictance
transformed n coordinate, $\mathbf{n} / \mathbf{n}_{8}$
body angle
body curvature, $K * / R_{N}^{*}$
spectral absorption coefficient
viscosity of mixture, $\mu^{*} / \mu_{\text {ref }}^{*}$
reference viscosity
coordinate measured along the body surface, $\xi=S$
density of mixture, $\rho^{\star} / \rho_{\infty}^{*}$
optical thickness
frequency
i
ith species

LIST OF SYMBOLS (Concl'd)

shock value
free-atream condition
dimensional quantity
total differential
shock-oriented velocity components

1. INTRJDUCTION

The importance of aerobsaking and aerocapture for planetary misaions has been emphasized in the recent yeara. It has been pointed out that aerobraking for circularizing orbits and aerocapture could more than double science payload on some planetary spacecraft and make possible new missions, such as a Saturn orbiter dual probe mission, where the probes would enter the atmospheres of both Saturn and its satellite Titan.

The aerobraking technique uses the aerodynamic drag of the spacecraft during successive passes through the upper atmosphere to circularize a highly elliptical orbit. The aerocapture concept; on the other hand, uses the aerodynamic drag to place the spacecraft in a closed planetary orbit from a hyperbolic flyby trajectory in a single atmospheric entry pass. It is accomplished through an aerodynamically controlled atmospheric entry during which the vehicle's in plane lift-todrag ratio is varied to maintain a constant drag. The aerocapture nct only offers significant gains in payload and choice of orbits, but also significantly decreases interplanetary cruise time; and this concept completely eliminates the fuel-costly retropropulsion module for planetary orbiter mission.

An aerocapture mission is possible for any atmosphere-bearing celestial body. The feasibility of using aerocapture vehicles has been emphasized recently for both inner and outer planetary missions (refs. 1-6). Origirally, the aerocapture study was undertaken for a Mars sample return mission (refs. 3,6). The aerocapture missions under present consideration are the Mars surface sample return (MSSR), Saturn orbiter dual probe (SO2P), and Titan orbiter (TO) missions.

For missions to outer planets, use of the aerocapture concept in a convenient atmosphere-bearing satellite of the target planet has been emphasized. It has been proposed to use the atmosphere of Titan for braking intc a Saturn orbit (ref. 4). The use of Titan's atmosphere would minimize
the entry apeed requirement for aerocapture and this, in turn, would minimize the thermal protection requirementa of the aerocapture vehicle. The Titan's aerocapture concept (for Saturn orbital mission) is expected to cut the interplanetary cruise travel time to Saturn from 8 to 3.5 years. A Titan orbiter mission using anything other than aerocapture is presently impractical (ref. 4). For Titan's aerocapture mission, the need for highperformance entry vehicle geometries and high-performance thermal protection systems has been stressed (refs. 4,5). In partial support of this need, it is essential to provide a complete analysis of the aerothermodynamic environment of the Titan aerocapture vehicle.

The optimum lift/drag (L / D) ratio required for the aerocapture control accuracy is 1.0 to 2.0. The combination of high volumetric efficiency, low ballistic coefficient, and aerocapture control accuracy has led to choosing biconics as the entry vehicle geometry for the aerocapture missions (ref. $4)$.

In order to investigate the aerothermodynamic environment of a Titan aerocapture vehicle, it is essential to know the composition of Titan's atmosphere. Prior to the Voyager 1 mission (November 1980), there was a controversy regarding Titan's atmospheric composition. The problem is still not completely resolved, but it is now evident (ref. 7) that Titan, the largest moon in the solar system, is wrapped essentially in a dense atmosphere of nitrogen vapors (rather than methane, the best guess before Voyager 1). Thus, a realistic composition for Titan's atmosphere would include a fairly high concentration of nitrogen.

The main objective of this study is to determine the extent of convective and radiative heating to the aerocapture vehicle under different entry conditions. This essentially can be accomplished by assessing the heating rate in stagnation and windward regions of an equivalent body. The equivelent body configuration considered for this study is a 45 -degree sphere cone at zero angle of attack. Different compositions for the Titan's $\mathrm{N}_{\mathbf{2}}+\mathrm{CH}_{\mathbf{4}}$
atmosphere have been asumed, and the study has been conducted for various entry trajectories suggested by the Jet Propulsion Laboratory (JPL). Specific obectives of this study, therefore, are as follows:

1. For a given free-stream atmospheric composition, determine the important chemical species in the shock-layer gas for different pressure and temperature conditions.
2. Investigate the effect of the free-stream gas composition on the stagnation-point shock temperature and convective and radiative heating rates.
3. Investigate the effect of different entry velocities on the stagna-tion-point shock temperature and convective and radiative heating rates.
4. Determine the effect of body nose radius on the stagnation-point convective and radiative heating rates.
5. Determine the variation of the shock temperature and enthalpy and convective and radiative heating rates along the body for different free-stream atmospheric compositions.
6. Investigate the influence of CN concentration in the shock layer on the convective and radiative heating rates along the body.
7. Investigate the effect of shock as well as body slip conditions on the entire shock-layer flow phenomena and determine the extent of convective and radiative heating rates under these conditions.

Basic formulation of the entire problem is presented in Chapter 2, and boundary conditions are given in Chapter 3. The information on the thermodynamic and transport properties are given in chapter 4, and Chapter 5 discusses the chemical compositons. The radiative transport model for this study is described in Chapter 6. The physical conditions and data sources are given in Chapter 7. The method of solution is duscussed in Chapter 8, and all results are presented in Chapter 9.

2. BASIC FORMULATION

As discuesed in the Introduction, the aerocapture technique transfers the spacecraft into a closed, stable orbit from a hyperbolic flyby trajeccory in a single pass (fig. 1). This requires a high level of technology, but offers a significant gain in the payload and choice of orbits. The Titan aerocapture concept for the Saturn orbital mission is shown in figure 2. For such missions, use of the biconics as the entry vehicle configuration (fig. 3) has been suggested (ref. 4). The preliminary assessment of the aerothermodynamic enviromment of an aerocapture vehicle can be made by investigating the flow field around an equivalent body. The equivalent body configuration considered for this study is a 45-degree sphere cone at zero angle of attack.

The physical model and coordinate system considered for the equivalent body are shown in figure 4. The flow conditions for a radiating and reacting multicomponent gas mixture in the shock layer are considered axisymuetric, steady, viscous, and compressible. It is further assumed that the gas is in chemical and local thermodynamic equilibrium and the tangent slab approximation is used for the radiative transport.

The conservation equations for a reacting multicomponent gas mixture can be found in the literature (refs. 8,9). The viscous shock-layer equations that are valid uniformly throughout the shock-layer region are formur lated in exactly the same manner as the viscous shock-layer equations for a one-component gas presented by Davis (ref. 10). In order to obtain the viscous shock-layer equations, the conservation equations are written in a boundary-layer coordinate system as shown in figure 4 and are nondimensionalized by variables which are of order one in the boundary layer. The same set of equations is then written in variables which are of order one in the inviscid region outside the boundary layer. Terms are kept in each set of equations up to second order in the inverse square root of Reynolds number. The two sets of equations are combined so that terms up to second order in both the inner and outer regions are retained. In this way, a set of

Figure 2. Titan aerocapture vehicle configuration.

Figure 3. Titan aerocapture for Saturn orbit.

Figure 4. Coordinate system.
equations uniformly valid to second order in the entire shock layer is obtained. The nondimensional form of the viscous shock-layer equationa that are applicable in the present case can be written as (refs. 11, 12):

Continuity:

$$
\begin{equation*}
\left(\frac{\partial}{\partial s}\right) \zeta \rho \mu+\left(\frac{\partial}{\partial n}\right)(\Gamma \zeta \rho v)=0 \tag{2.1}
\end{equation*}
$$

s-momentum:

$$
\begin{align*}
\rho & {\left[\left(\frac{u}{\Gamma}\right)\left(\frac{\partial u}{\partial s}\right)+v\left(\frac{\partial u}{\partial n}\right)+\frac{u v k}{\Gamma}+\Gamma^{-1}\left(\frac{\partial \rho}{\partial s}\right)\right] } \\
& =\varepsilon^{2}\left[\left(\frac{\partial}{n}\right)(\mu \psi)+\mu\left(\frac{2 k}{\Gamma}+\frac{\cos \theta}{5}\right)+\psi\right] \tag{2,2}
\end{align*}
$$

n-momentum:

$$
\begin{equation*}
\rho\left[\left(\frac{u}{r}\right)\left(\frac{\partial v}{\partial s}\right)+v\left(\frac{\partial v}{\partial n}\right)-\frac{u^{2} k}{\Gamma}\right]+\frac{\partial p}{\partial n}=0 \tag{2.3}
\end{equation*}
$$

Energy

$$
\begin{align*}
\rho & \frac{u}{\Gamma}\left[\left(\frac{\partial H}{\partial s}\right)+v\left(\frac{\partial H}{\partial n}\right)\right]-v\left(\frac{\partial \rho}{\partial n}\right)+\frac{\rho \kappa u^{2} v}{\Gamma} \\
& =\varepsilon^{2}\left[\frac{\partial \phi}{\partial n}+\left(\frac{k}{\Gamma}+\frac{\cos \theta}{\zeta}\right) \phi\right]-\operatorname{div}{\underset{\sim}{q}}^{r} \tag{2.4}
\end{align*}
$$

Species continuity:

$$
\begin{equation*}
\rho\left[\left(\frac{\mu}{\Gamma}\right)\left(\frac{\partial c_{i}}{\partial s}\right)+v\left(\frac{\partial c_{i}}{\partial n}\right)\right]=-\left\{\left(\frac{\varepsilon^{2}}{\Gamma \zeta}\right)\left(\frac{\partial}{\partial n}\right)\left[\Gamma \omega_{i}\right]\right\} \tag{2.5}
\end{equation*}
$$

State:

$$
\begin{equation*}
P=\rho T\left[\frac{R^{*}}{\left(M_{p}^{*} C_{p}^{*}\right)}\right] \tag{2.6}
\end{equation*}
$$

where

$$
\begin{align*}
& r=1+n \kappa, 5=r+n \cos \theta \\
& \text { (2.7a) } \\
& \varepsilon=\frac{u_{\text {ref }}^{*}}{\left(p_{\omega}^{*} V_{\omega}^{*} R_{N}\right)^{1 / 2}}, \psi=\frac{\partial u}{\partial n}-\frac{u k}{\Gamma} \\
& \phi=\left(\frac{\mu}{P r}\right)\left[\frac{\partial H}{\partial n}-\sum_{i=1}^{N} h_{i}\left(\frac{\partial C_{i}}{\partial n}\right)-\left(\frac{P_{r}}{\mu}\right) \sum_{i=1}^{N} h_{i} J_{i}\right. \\
& \left.+(\operatorname{Pr}-1) \mu\left(\frac{\partial u}{\partial n}\right)-\frac{P_{r} K u^{2}}{\Gamma}\right] \\
& H=h+\frac{u^{2}}{2} \tag{2.7d}\\
& \bar{M}^{*}=\frac{1}{\sum_{i}^{N}\left(\frac{C_{i}}{M_{i}^{*}}\right)} \tag{2.7e}
\end{align*}
$$

The terms used to nondimensionalize the above equations are defined as:

$$
\begin{array}{ll}
u^{*}=u V_{\infty}^{\star} & v^{\star}=v V_{\infty}^{\star} \\
T^{*}=\frac{r v_{\infty}^{*^{2}}}{C_{p, \infty}^{\star}} & p^{*}=p \rho_{\infty}^{*} V_{\infty}^{2}
\end{array}
$$

$$
\begin{align*}
& \rho *=\rho \rho_{\infty}^{*} \quad \mu *=\mu \mu{ }^{*} \text { ref } \\
& K^{*}=K \mu{ }_{r e f} C_{p}^{*} \quad C_{p}^{*}=C_{P}^{C *} C_{p, \infty} \\
& h *=h V_{\infty}{ }^{2} \\
& w_{i}^{*}=w_{i} * \frac{V^{*}}{R_{N}^{*}} \\
& J_{i}^{*}=\frac{J_{i}^{\mu *} \text { ref }}{R_{N}} \\
& s^{*}=8 R_{N}^{*} \\
& \mathrm{n}^{*}=\mathrm{nR}_{\mathrm{N}}{ }^{*} \\
& r *=r R_{N}^{*} \\
& q_{r}=\frac{q_{r}}{p_{\omega}^{\star} V_{\omega}{ }^{3}} \\
& K *=\dot{K} R_{N}^{*} \\
& \operatorname{Pr}=\frac{\mathrm{C}_{\mathrm{P}}^{\mathrm{m}} \boldsymbol{*}}{K_{*}^{*}} \quad L e_{i j}=\rho * \mathrm{C}_{\mathrm{P}} * \frac{\mathrm{D}_{i j}}{K^{*}} \tag{2.8}
\end{align*}
$$

The set of governing equations presented above [eqs. (2.8)] has a hyperbolic-parabolic nature, where the hyperbolic nature comes frow the normal equation. If the shock layer is assumed to be thin, then the normal monentum equation can be expressed as

$$
\begin{equation*}
\frac{\rho \mu^{2} k}{\Gamma}=\frac{\partial p}{\partial n} \tag{2.9}
\end{equation*}
$$

When equation (2.3) is replaced with equation (2.9), then the resulting set of equations is parabolic. These equations can, therefore, be solved by using numerical methods similar to those used in solving boundary-layer
probleme (refe. 10,13). After an initial iteration using equation (2.9), the final flow field solution is obtained by replacing equation (2.9) with equation (2.3); thus, the thin shock-layer approximation is removed.

Since there are no nuclear reactions, the elemental mass fractions remain fixed and unchanged during chemical reactions. The relation between the elemental and species mass fractions is given by

$$
\begin{equation*}
c_{\ell}=\sum_{i=1}^{N} \delta_{i \ell}\left(\frac{M_{l}}{M N_{i}}\right) c_{i} \tag{2.10}
\end{equation*}
$$

The elemental continuity equations for the elements cati be obtained by multiplying equation (2.5) by $s_{i \ell}\left(\frac{m_{l}}{\frac{m_{i}}{i}}\right)$ and summing over i. The resulting elemental continuity equation is

$$
\begin{equation*}
\rho\left[\left(\frac{u}{\Gamma}\right)\left(\frac{\partial c_{\ell}}{\partial s}\right)+v\left(\frac{\partial C_{\ell}}{\partial n}\right)\right]=-\left(\frac{\varepsilon^{2}}{r_{\zeta}}\right)\left\{\left(\frac{\partial}{\partial n}\right)\left[r_{\ell} \tilde{v}_{\ell}\right]\right\} \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{l}=\sum_{i=1}^{N} \delta_{i \ell}\left(\frac{M_{l}}{M_{i}}\right) J_{i} \tag{2.12}
\end{equation*}
$$

Use of the elemental mase fraction reduces the number of equations to be solved. Therefore, equation (2.5) is replaced with (2.11) for equilibrium flow.

The mas flux due to concentration gradients can be written as

$$
\begin{equation*}
J_{i}=-\left(\frac{u}{P r}\right) \sum_{K=1}^{N} \sigma_{i K}\left(\frac{\partial C_{k}}{\partial n}\right) \tag{2.13}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\boldsymbol{\sigma}_{i K}= & L_{i}, \quad i=K \\
& L e_{i}-\left\{\left(\frac{M_{i}}{M}\right) L e_{i K}+1-\left(\frac{M_{i}}{M_{K}}\right) \sum_{j=1}^{M} L e_{i j} C_{j}\right\}, i \neq K
\end{array}
$$

and

$$
L e_{i}=\frac{\sum_{\substack{j=1 \\ j \neq 1}}^{N}\left(\frac{C_{j}}{M_{j}}\right)}{\sum_{\substack{j=1 \\ j \neq i}}^{N} \frac{c_{j}}{M_{j} L_{i j}}}
$$

The relative mass flux for the elements can be written as

$$
\begin{equation*}
J_{l}=-\left(\frac{\mu}{P_{F}}\right)\left[L\left(\frac{\partial C_{\ell}}{\partial n}\right)+\sum_{K=1}^{N} B_{\ell K}\left(\frac{\partial C_{k}}{\partial n}\right)\right] \tag{2.16}
\end{equation*}
$$

where

$$
\begin{align*}
& B_{\ell K}=\sum_{i=1}^{N} \delta_{i \ell}\left(\frac{M_{l}^{*}}{M_{i}^{*}}\right) \Delta b_{i K} \tag{2.17}\\
& \Delta b_{i K}=\left\{\begin{array}{ll}
L_{i} & -L_{i}, \\
\bar{b}_{i K} & , i \neq K
\end{array}\right\} \tag{2.18}
\end{align*}
$$

and L is an arbitrary constant. For binary diffusion, equations (2.13) and (2.16) reduce, respectively, to

$$
\begin{align*}
& J_{i}=-\left(\frac{\mu}{\operatorname{Pr}}\right) \quad \operatorname{Le}\left(\frac{\partial C_{i}}{\partial n}\right) \tag{2.19}\\
& J_{\ell}=-\left(\frac{\mu}{P r}\right) \quad L e\left(\frac{\partial C_{\ell}}{\partial n}\right) \tag{2.20}
\end{align*}
$$

The heat transferred to the wall due to conduction and diffusion is referred to hore as the convective heat flux and is given by the relation (ref. 13):

$$
\begin{equation*}
q_{c, w}=-\varepsilon^{2}\left[R\left(\frac{\partial T}{\partial n}\right)+\left(\mu \frac{L_{e}}{P_{r}}\right) \sum_{i=1}^{N} \frac{\partial C_{i}}{\partial n} h_{i}\right] \tag{2.21}
\end{equation*}
$$

In this study, the Lewis and Prandtl numbers are taken to be 1.1 and 0.72 , reapectively.

The convective heat transfer is also described by a dimensionless parameter called Stanton number. The Stanton number is given by

$$
\begin{equation*}
\text { St }=\frac{q_{c, w}}{\left(H_{\infty}-H_{w}\right)} \tag{2.22}
\end{equation*}
$$

The skin friction coefficient for such flowe is given by

$$
\begin{equation*}
C_{f}=2 \varepsilon^{2}\left[\mu\left(\frac{\partial u}{\partial \mathfrak{a}}\right)\right]_{w} \tag{2.23}
\end{equation*}
$$

In order to solve the preceding set of goveraing equations, it is essential to apecify appropriate boundary conditions at the body surface and at the shock. These are discussed in detail in the next chapter.

3.1. Introduction

Specific boundary conditions used at the body surface and the bow shock are presented here. Since both the slip and no-slip conditions have been used in this study, they will be discussed separately in this chapter.

3.2. No-S1ip Boundary Conditions

At the body surface (wall), no velocity slip and no temperature jump are assumed. Consequently the velocities at the surface are

$$
\begin{equation*}
v=0 \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{u}=0 \tag{3.2}
\end{equation*}
$$

The wall temperature for this study is specified as

$$
\begin{equation*}
T_{w}=\text { constant } \tag{3.3}
\end{equation*}
$$

The surface total enthalpy is given as

$$
\begin{equation*}
H=\sum_{i=1}^{N} h_{i} C_{i} \tag{3.4}
\end{equation*}
$$

The Rankine-Hugoniot relations are used to determine the flow properties immediately behind the shock. The nondimensional shock relations are as follows (refs. 10-13):

Continuity:

$$
\begin{equation*}
\rho_{s} v^{\prime \prime}=-\sin \alpha \tag{3.5}
\end{equation*}
$$

Momentum:

$$
\begin{align*}
& u_{s}^{\prime \prime}=\cos \alpha \tag{3.6}\\
& P_{s}=\frac{1}{Y_{\infty} M_{\infty}^{2}}+\sin ^{2} \alpha \quad 1-\frac{1}{\rho_{s}} \tag{3.7}
\end{align*}
$$

Energy:

$$
\begin{equation*}
h_{s}=\frac{1}{M_{\infty}^{2}\left(\gamma_{\infty}-1\right)}+\frac{\sin ^{2} \alpha}{2} 1-\frac{1}{\rho_{s}^{2}} \tag{3.8}
\end{equation*}
$$

State:

$$
\begin{equation*}
p_{s}=\frac{\rho_{s} T_{s} R^{\star}}{\overline{M_{s}^{*} C_{\rho}^{*}}} \tag{3.9}
\end{equation*}
$$

Enthalpy:

$$
\begin{equation*}
h_{s}=\sum_{i=1}^{N} h_{i} c_{i} \tag{3.10}
\end{equation*}
$$

where α is shown in figure 4 and $u_{s}^{\prime \prime}$ and $v_{s}^{\prime \prime}$ are velocity components expressed in a shock-oriented coordinate system. The transformations used to express $u_{s}^{\prime \prime}$ and $v_{s}^{\prime \prime}$ in terms of the body-oriented coordinate system u_{s} and v_{s} are

$$
\begin{equation*}
u_{s}=u_{s}^{\prime \prime} \sin (\alpha+\beta)+v_{s}^{\prime \prime} \cos (\alpha+\beta) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{s}=-u_{s}^{\prime \prime} \cos (\alpha+\beta)+v_{s}^{\prime \prime} \sin (\alpha+\beta) \tag{3.12}
\end{equation*}
$$

where the angle β is indicated in figure 4.

3.3. Slip Boundary Conditions

In low Reynolds number hypersonic flows, such as high-altitude or low density flows, the velocity and temperature of the wall are no longer the same as that of the gas immediately adjacent to the wall; these phenomena are referred to as the velocity slip and temperature jump, respectively. The slip flow boundary conditions have been derived by various investigations (refs. 14-17). Shidlovskiy (ref. 14) has shown that at the body surface the velocity slip and temperature jump conditions are of the same order as the Rnudsen number. The Knudsen number K_{n} is defined as the ratio of the particle's mean free path ℓ and the characteristic dimension L of the body. These boundary conditions assume an impermeable surface and zero macroscopic velocity normal to the surface. They also assume that the mean free path ℓ, although small, is large enough so that there is no interaction between incident and reflected molecules at the surface. Thus, for the transitional range, in order to be consistent with the Navier-Stokes equations of motion, a linear relation between the conditions at the wall and flow should be assumed. That this can be done is a semi-macroscopic argument which leads to simple expressions for the velocity slip and temperature jump as (refs. 14, 17):

$$
\begin{align*}
& u=\varepsilon^{2} A_{1}\left(\frac{\mu}{p}\right)\binom{P}{\rho}^{1 / 2}\left(\frac{\partial u}{\partial n}\right) \tag{3.13}\\
& v=0 \tag{3.14}\\
& T=T_{w}+\varepsilon^{2} A_{2}\left(\frac{u}{p}\right)\binom{p}{\rho}^{1 / 2}\left(\frac{\partial T}{\partial n}\right) \tag{3.15a}\\
& h=h_{w}+\varepsilon^{2} A_{2}\left(\frac{\mu}{p}\right)\left(\frac{p}{\rho}\right)^{1 / 2}\left(\frac{\partial h}{\partial n}\right) \tag{3.15b}
\end{align*}
$$

where A_{1} and A_{2} are constants and are given by

$$
\begin{aligned}
& A_{1}=\left[\left(2-\sigma_{1}\right) / \sigma_{1}\right]\left(\frac{\pi}{2}\right)^{1 / 2} \\
& A_{2}=\left[\left(2-\sigma_{2}\right) / \sigma_{2}\right]\left(\frac{15}{8}\right)\left(\frac{\pi}{2}\right)^{1 / 2}
\end{aligned}
$$

The terms σ_{1} and σ_{2} are slip and thermal accommodation coefficients, respectively, and are dependent on the nature of the surface and fluid. However, in actual flight conditions, both σ_{1} and σ_{2} are expected to be 1 .

The boundary conditions used at the shock are the modified RankineHugoniot or "shock slip" conditions, and these are written as (refs. 10, 13):

$$
\begin{align*}
& \rho_{s} v_{s}^{\prime \prime}=-\sin \alpha \tag{3.16}\\
& u_{s}^{\prime \prime}=\cos \alpha-\left(\frac{\varepsilon^{2} \mu_{s}}{\sin \alpha}\right)\left(\frac{\partial u_{s}^{\prime \prime}}{\partial n}\right) \tag{3.17}\\
& p_{s}=p_{\infty}+\sin ^{2} \alpha\left(1-\frac{1}{\rho_{s}}\right) \tag{3.18}\\
& h_{s}=h_{\infty}-\left(\frac{\varepsilon^{2} \mu_{s}}{P_{r} \sin _{\alpha}}\right)\left(\frac{\partial h}{\partial n}\right)+\frac{1}{2}\left[u_{s}^{\prime \prime}-\cos \alpha\right)^{2} \\
& \left.\quad+\sin { }^{2} \alpha-v_{s}^{\prime \prime 2}\right] \tag{3.19}\\
& u_{s}^{\prime \prime} \sin (\alpha+\beta)+v_{s}^{\prime \prime} \cos (\alpha+\beta)=u_{s} \tag{3.20}\\
& -u_{s}^{\prime \prime} \cos (\alpha+\beta)+v_{s}^{\prime \prime} \sin (\alpha+\beta)=v_{s} \tag{3.21}
\end{align*}
$$

As mentioned above, slip boundary conditions are used in investigating the shock-layer flow phenomena at. relatively high entry altitudes.

4. THERMODYNAMIC AND TRANSPORT PROPERTIES

Thermodynamic properties for apecific heat, enthalpy, and free energy and transport properties for viscosity, thermal conductivity, and diffusion coefficients are required for each species considered. Since the multicomr ponent gas mixtures are considered to be mixtures of thermally perfect gases, the thermodynamic and transport properties for each species are calculated by using the local static temperature. The general expressions for total enthalpy, specific enthalpy, and specific heat at constant pressure are given, respectively, by

$$
\begin{equation*}
H=h+\frac{u^{2}}{2} \tag{4.1}
\end{equation*}
$$

$$
\begin{equation*}
h=\sum_{i=1}^{N} h_{i} C_{i} \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
C_{p}=\sum_{i=1}^{N} c_{i} C_{p, i} \tag{4.3}
\end{equation*}
$$

For each species, the values for the thermodynamic properties, as a function of temperature, are obtained by using polynomial curve fits. The following polynomial equations are used:

Specific heat:

$$
\begin{equation*}
\frac{C_{P, i}^{*}}{R^{*}}=a_{1}+a_{2} T *+a_{3} T * 2+a_{4} T * 2+a_{5} T * 4 \tag{4.4}
\end{equation*}
$$

Enthalpy:

$$
\begin{equation*}
\frac{h_{i}^{*}}{R * T *}=a_{1}+\frac{a_{2} T *}{2}+\frac{a_{3} T \star 2}{3}+\frac{a_{4} T \star 3}{4}+\frac{a_{5} T * 4}{5}+\frac{a_{6}}{T *} \tag{4.5}
\end{equation*}
$$

Free energy:

$$
\frac{F_{i}^{*}}{R * T^{*}} \approx a_{1}\left(1-\log _{e} T *\right)-\frac{a_{2} T *}{2}-\frac{a_{3} T *^{2}}{6}-\frac{a_{1} T *^{3}}{12}
$$

$$
\begin{equation*}
-\frac{a_{5} T^{*^{4}}}{20}+\frac{a_{6}}{T *}-a_{7} \tag{4.6}
\end{equation*}
$$

where $F \underset{i}{* 0}$ is the free energy of species at one atmospheric pressure. The development of these curve fits and the values of polynomial constants a_{1} to a_{7} are given in table 1 and are available in reference 18.

For the mixture, viscosity and thermal conductivity are obtained by using the semiempirical formula of Wilke (ref. 8) as

$$
\begin{align*}
& \mu=\sum_{i=1}^{N}\left[\left(\frac{x_{i}^{\mu}{ }_{i}}{\left.\sum_{j=1}^{N} x_{j} \phi_{i j}\right)}\right]\right. \tag{4.7}\\
& K=\sum_{i=1}^{N}\left[\frac{x_{i} K_{i}}{\left(\sum_{j=1}^{N} x_{j} \phi_{i j}\right)}\right] \tag{4,8}
\end{align*}
$$

where

$$
\begin{equation*}
\phi_{i j}=\frac{\left[1+\left(\mu_{i} / \mu_{j}\right)^{1 / 2}\left(M_{j} / M_{i}\right)^{1 / 4}\right]^{2}}{\left\{\sqrt{8}\left[1+M_{i} / M_{j}\right]\right\}^{1 / 2}} \tag{4.9}
\end{equation*}
$$

The general relations for the viscosity and the thermal conductivity are given as

$$
\begin{equation*}
u_{i}=b_{1}+b_{2} T *+b_{3} T *^{2} \tag{4.10}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{X}_{\mathrm{i}}=\mathrm{C}_{1}+\mathrm{c}_{2} \mathrm{~T}^{*} \tag{4.11}
\end{equation*}
$$

The coefficients b_{1}, b_{3}, C_{1}, and C_{2} for different species used in this study are given in table 2, where the value of T^{*} is in degrees K.

5. CHEMICAL COMPOSITION

Analyses of chemically reacting flows are usually simplified by assuming the chemical equilibrium behavior of the gas mixture. In this atudy, the chemical reactions are confined to a system of carbon, hydrogen, and nitrogen. The Aerotherm Chemical Equilibrium (ACE) computer program was used to determine various chemical species under different free-stream atmospheric compositions.

At the initiation of this study, the atmospheric conditions of Titan were not defined clearly. Therefore, different atmospheric compostions were assumed for a parametric study. Voyager 1 data reveals that Titan's atmosphere primarily consists of nitrogen molecules (ref. 7). Thus, a realistic case would be to assume a very high concentration of nitrogen in the freestream gas mixture. However, to study the effect of free-stream gas composition on heating of the entry vehicle, different gas compositions are ass umed.

The equilibrium chemical composition is determined by using a free energy minimization analysis as developed in reference 19. As mentioned above, the ACE computer program was used to determine various chemical species for different pressure, temperature, and free-stream conditions.

For initial study, 68 chemical species for the carbon-hydrogen-nitrogen system were included in the matrix of calculations for a given free-stream atmospheric compostion. The matrix was

Pressure: $0.1,0.5,1.0$ and 0.5 atm)
Temperature: $2,000 \mathrm{~K}$ to $10,000 \mathrm{~K}$ in 500 K increments
Composition: $90 \% \mathrm{~N}_{2}+10 \% \mathrm{Ch}_{4}, 50 \% \mathrm{~N}_{2}+50 \% \mathrm{CH}_{4}, 10 \% \mathrm{~N}_{2}+90 \% \mathrm{CH}_{4}$
For different free-stream gas compositions, the variation in mole fraction of different species, as a function of temperature is illustrated in figures 5(a) to (d) for different pressures. There are about 20 chemical species shown in these figures. However, concentrations of some species are less than 0.05 percent for the range of temperature considered. Therefore, for this study, 17 chemical species $\left(\mathrm{N}_{2}, \mathrm{~N}, \mathrm{~N}^{+}, \mathrm{C}_{3}, \mathrm{C}_{2}, \mathrm{C}, \mathrm{C}^{+}, \mathrm{C}_{4} \mathrm{H}, \mathrm{C} 3 \mathrm{H}\right.$, $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}, \mathrm{CN}, \mathrm{H}_{2}, \mathrm{H}, \mathrm{H}+\mathrm{HCN}_{\text {, }}$ and E^{-}) were considered for the shock-layer gas mixture.

(a)

Figure 5. Variation in mole fraction of different species for $p=0.1$ atm and $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$.

(b)

Figure 5. (Continued.)

(c)

Figure 5. (Continued.)

(d)

Figure 5. (Concluded.)

6. RADLATION TRANSPORT MODEL

An appropriate expression for the radiative $f l u x, \mathbf{q}_{\mathrm{r}}$, is needed for the solution of the energy equation presented in Chapter 2. This requires a suitable transport model and a meningful spectral model for variation of the absorption coefficient of the gas.

In the present analysis the "tangent slab" asamption fisr radiative transfer has been used. This implies that the radiative energy tranafer along the body is negligible in comparison to that tranaferred in the direction normal to the body. It should be noted the tangent alab approximation is used only for radiative transport and not for other flow varisbles. For a nonscattering medium and diffuse noareflecting bounding surfaces, a onedimenaional expression for the spectral radiative flux is given by (refa. 20, 21):

$$
\begin{align*}
q_{r v}\left(\tau_{v}\right) & =2 \pi\left\{E_{v}\left[B_{v}(0) E_{3}\left(\tau_{v}\right)-B_{v}\left(\tau_{o v}\right) E_{3}\left(\tau_{\nu v}-\tau_{v}\right)\right]\right. \\
& \left.+\int_{0}^{\tau} B_{v}(t) E_{2}\left(\tau_{v}-t\right) d t-\int_{\tau_{v}}^{\tau_{0 v}} B_{v}(t) E_{2}\left(t-\varepsilon_{v}\right) d t\right\} \tag{6.1}
\end{align*}
$$

where

$$
\begin{aligned}
& \tau_{v}=\int_{0}^{y} \alpha_{v}\left(y^{\prime}\right) d y^{\prime} \\
& E_{n}(t)=\int_{0}^{1} e \operatorname{xp}\left(\frac{-t}{\mu}\right) \mu^{n-2} d \mu \\
& B_{v}=\left(\frac{h v^{3}}{c^{2}}\right)\left[\exp \left(\frac{h v}{K I}\right)-1\right]
\end{aligned}
$$

The quantities $B_{v}(0)$ and $B_{v}\left(\tau_{o v}\right)$ represent the radiositiee of the body eurface and shock respectively. The expression of tocal rediacive flux is given by

$$
\begin{equation*}
q_{r}=\int_{0}^{\infty} q_{r v}\left(\tau_{v}\right) d v \tag{6.2}
\end{equation*}
$$

In the shock layer, the radiative energy from the bow shock uavally is neglectd in comparison to the energy absorbed and enitted by the gas layer. The expression for net radiative flux in the shock layer, therefore, is given by combining equations (6.1) and (6.2) ae

$$
\begin{align*}
q_{r} & =2 \int_{0}^{\infty}\left[q_{v}(0) E_{3}\left(\tau_{v}\right)+\int_{0}^{T} B_{v}(t) E_{2}\left(\tau_{v}-t\right) d t\right. \\
& \left.-\int_{T_{r}}^{T} B_{v}(t) E_{2}\left(t-\tau_{v}\right) d t\right] d v \tag{6.3}
\end{align*}
$$

where $q_{v}(0)=\varepsilon_{v}{ }^{\Pi_{B}}{ }_{v}\left(T_{s}\right)$.
In this equation, the first two terms on the right represent the radistive energy transfer towards the bow shock while the third cerm represents the energy transfer towards the body. Upon denoting these contributions by $\mathbf{q}_{\mathbf{r}}{ }^{+}$and $\mathbf{q}_{\mathbf{r}^{-}}$, equation (6.3) can be written as

$$
\begin{equation*}
q_{r}=q_{r}^{+}-q_{r}^{-} \tag{6.4}
\end{equation*}
$$

The radiative flux, $\mathbf{q r}_{\mathrm{r}}$ is calculsted with the radiatise transport code RAD (ref. 22) which accounts for detailed nongray radiation absorption and emission processes. The chemical species considered for determining the radiative transport are $\mathrm{N}_{2} \mathrm{~N}_{2}, \mathrm{~N}^{+}, \mathrm{N}, \mathrm{N}_{2}{ }^{+}, \mathrm{H}_{2} \mathrm{H}_{2}, \mathrm{~K}, \mathrm{E}^{-}, \mathrm{C}, \mathrm{C}^{+}, \mathrm{C}^{+}, \mathrm{C}_{2}$, C_{3}, and CN.
7. PHYSICAL CONDITIONS AND DATA SOURCE

As mentioned earlier, the entry body considered for this study is a 45degree sphere cone at a zero degree angle of attack (fig. 4). The body temperature is assumed to be $2,000 \mathrm{~K}$ and, for most cases, the body nose rasilus is taken to be 0.2 m . The free-stream atmospheric compositions are assumed as $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}, 98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}, 90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}, 75 \% \mathrm{~N}_{2}+$ $25 \% \mathrm{CH}_{4}, 50 \% \mathrm{~N}_{2}+50 \% \mathrm{CH}_{4}, 25 \% \mathrm{~N}_{2}+75 \% \mathrm{CH}_{4}$, and $10 \% \mathrm{~N}_{2}+90 \% \mathrm{CH}_{4}$. The high nitrogen concentration case.. will be the realistic compositions for the Titan's atmosphere.

For thr Iitan aerocapture mission, entry trajectories have been gener ated by JPL. The :ltitude history for an aerocaputre vehicle is illustrated in figure 6 for two different (shallow and steep) entry angles. The entry trajectories and free-stream conditions used in this study are given in tables 3 to 9.

8. METHOD OF SOLUTION

A numerical procedure for solving the viscous shock-layer equations for stagnation and downstream regions is given by Davis (ref. 10). Moss (ref. 13) and Tiwari and Szema (ref. 12) applied this method of solution to reacting multicomponent mixtures. A modified form of this procedure is used in this study to obtain solutions of the viscous shock-layer equations. In this method, a transformation is applied to the viscous shock-layer equations in order to simplify the numerical computations. In this transformation most of the variables are normalized with their local shock values; the transformed variables are (refs. 12, 13):
$n=\frac{n}{n}$
$\bar{P}=\frac{P}{P_{s}}$
$\boldsymbol{u}=\frac{\mathrm{u}}{\mathbf{u}_{\mathbf{s}}}$
$\xi=s$
$\bar{\rho}=\frac{\rho}{\rho_{s}}$
$\bar{K}=\frac{K}{\mathbf{K}_{s}}$
$\bar{\mu}=\frac{\mu}{\mu_{s}}$
$T=\frac{T}{T_{s}}$
$\bar{C}_{p}=\frac{C_{p}}{C_{p s}}$
$\stackrel{\rightharpoonup}{v}=\frac{\mathbf{v}}{\mathbf{v}_{s}}$
$\mathrm{H}=\frac{\mathrm{H}}{\mathrm{H}_{\mathrm{B}}}$

The transformations relating the differential quantities are

$$
\begin{align*}
& \frac{\partial()}{\partial x}=\frac{\partial()}{\partial \xi}-\frac{n}{n_{s}} \frac{d n_{s}}{d \xi} \frac{\partial()}{\partial n^{\prime}} \tag{8.2}\\
& \frac{\partial()}{\partial n_{s}}=\frac{1}{n_{s}} \frac{\partial()}{\partial n_{n}} \frac{\partial^{2}}{\partial n_{s}}=\frac{1}{n_{s}} \frac{\partial^{2}()}{\partial n_{n}} \tag{8.3}
\end{align*}
$$

After the governing equations are written in the transformed variables, the resulting second-order partial differential equations can be expressed in the following form:

$$
\begin{equation*}
\frac{\partial^{2} W}{\partial \eta^{2}}+a_{1} \frac{\partial W}{\partial \eta}+a_{2} W+a_{3}+a_{4} \frac{\partial W}{\partial \xi}=0 \tag{8.4}
\end{equation*}
$$

The quantity W represents \bar{u} in the s-momentum equation, \bar{H} in the enthalpy energy equation, $\overline{\mathrm{C}}_{\ell}$ in the elemental continuity equation. The coefficients al to at to be used in this study are exactly the same as given in references 12 and 13.
s-momentum, $W=\bar{u}$:

$$
\begin{align*}
& a_{1}=\frac{1}{\mu} \frac{\partial r^{\prime}}{\partial n}+\frac{n_{s} k}{1+n_{s} n K}+\frac{n_{s} \cos \theta}{r+n_{s} n \cos \theta} \\
& +\frac{n_{s} \rho_{s} u_{s} n_{s}^{\prime}}{\varepsilon^{2} \mu_{s}\left(1+n_{s} n K\right)} \frac{\bar{\rho} \bar{n}}{\bar{\mu}}-\frac{n_{s} \rho v_{s}}{\varepsilon^{2} \mu_{s}} \frac{\bar{\rho} \bar{\mu}}{\bar{\mu}}, \tag{8.5a}\\
& a_{2}=-\frac{k_{n_{s}}}{\left(1+n_{s} \kappa n\right)} \frac{1}{\bar{\mu}} \frac{\partial \bar{\mu}}{\partial n} \frac{k^{2} n_{s}^{2}}{\left(1+n_{s} n K\right)^{2}}-\frac{\cos \theta n_{s}^{2} k}{\left(r+n_{s} \eta \cos \theta\right)\left(1+n_{s} n K\right)} \\
& -\frac{\rho_{s} n^{2} u_{s}^{\prime}}{\varepsilon^{2} \mu_{s}\left(1+n_{s} n K\right)} \frac{\overline{u \rho}}{\bar{\mu}}-\frac{n_{s}^{2} \rho_{s} v_{s} k}{\varepsilon^{2} \mu_{s}\left(1+n_{s} n K\right)} \frac{\overline{\rho v}}{\bar{\mu}}, \tag{8.5b}
\end{align*}
$$

$$
\begin{align*}
& \alpha_{s}=-\frac{P_{s} n_{s}^{2}}{\varepsilon^{2} \mu_{s} U_{s}\left(l+n_{s} n K\right)} \bar{T} \frac{\partial \bar{P}}{\partial \xi}+\frac{P_{s}^{\prime} \bar{P}}{P_{s}}-\frac{n_{s}^{\prime} n}{n_{s}} \frac{\partial \bar{P}}{\partial n} \tag{B.5c}\\
& a^{2}=-\frac{\rho_{s} s_{s} n_{s}^{2}}{\varepsilon^{2} \mu_{s}\left(1+n_{s} n K\right)} \frac{\overline{\rho u}}{\bar{\mu}} \tag{8.5d}
\end{align*}
$$

Energy (enthalpy, $\mathrm{W}=\overline{\mathrm{H}}$:
$a_{1}=\frac{1}{\bar{\mu}} \frac{\partial \bar{\mu}}{\partial \eta}-\frac{1}{\overline{P r}} \frac{\partial \overline{P r}}{\partial \eta}+n_{s} \frac{k}{1+n_{s} \eta K}+\frac{\cos \theta}{r+n_{s} \eta \cos \theta}$

$$
\begin{equation*}
+\frac{\rho_{s} P r_{s} \overline{P r}_{n_{s}}}{\varepsilon^{2} \mu_{s} \bar{q}} \frac{n_{s}^{\prime} u_{s} n \varphi \bar{\varphi}}{1+n_{s} n K}-v_{s} \bar{\rho} \bar{v} \tag{8.6a}
\end{equation*}
$$

$a_{2}=a_{4} \frac{H_{s}^{\prime}}{H_{s}}$
$a_{3}=\frac{\operatorname{Pr}_{s} \overline{P r}_{r} n_{s}^{2}}{\mu_{s} \mu_{s}} \frac{1}{n_{s}} \frac{\partial \psi}{\partial \eta}+\frac{K}{1+n_{s} \eta K}+\frac{\cos \theta}{r+n_{s} \eta \cos \theta} \psi+\frac{\operatorname{Prp}_{s} v \bar{v}_{s}}{\varepsilon^{2} \mu_{s} \overline{\mu H} s} \frac{\partial P}{\partial \eta}$

$$
\begin{equation*}
-\frac{\overline{\operatorname{Pr}}_{r, s}}{\varepsilon^{2} \mu_{s} H_{s} \bar{\mu}} \frac{1}{n_{s}} \frac{\partial q_{R}}{\partial n_{n}}+q_{R} \frac{\kappa}{\left.1+n_{s} n K\right)} \frac{\cos \theta}{n_{s} \cos \theta} \tag{8.6c}
\end{equation*}
$$

$\alpha_{4}=-\frac{\operatorname{Pr}_{s} n_{s}^{2} \rho_{s} u_{s} \overline{P r u p}^{--}}{\varepsilon^{2} \mu_{s}\left(1+n_{s} n K\right) \bar{u}}$
where

$$
\begin{align*}
\psi= & \frac{\mu_{s}}{n_{8} P_{s}}\left[-\frac{\bar{\mu}}{\overline{P r}} \sum_{i=1}^{N} h_{i} \frac{\partial C_{i}}{\partial n}+\frac{u^{2} \mu \bar{u}}{\overline{P r}}\left(\operatorname{Pr}_{s} \overline{F r}-1\right) \frac{\partial \bar{u}}{\partial n}\right] \\
& =\frac{\mu_{8} u_{8}^{2} k \overline{\mu u^{2}}}{1+n_{s} n K} \tag{8.6e}
\end{align*}
$$

The preceding energy equation is for the thin shock-layer approximation. When equation (2.3) is used for the n-momentum equation, the following term must be added to equation (8.6c):

$$
\begin{align*}
& -\frac{\operatorname{Pr}_{s} v_{s} n_{s}^{2} \rho_{s}}{\varepsilon^{2} \mu_{s} H_{s}} \frac{\bar{P}_{r} \bar{\rho} \bar{v}}{\bar{T}}\left[\frac{u_{s} \bar{u}}{1+n_{s} n K}\left(\bar{v} v_{s}^{\prime}+v_{s} \frac{\partial \bar{v}}{\partial \xi}-\frac{n_{s}^{\prime} n v_{s}}{n_{s}} \frac{\partial \bar{v}}{\partial n}\right)\right. \\
& \left.+\frac{v_{s}^{2} \bar{v}}{n_{s}} \frac{\partial \bar{v}}{\partial n}\right] \tag{8.6f}
\end{align*}
$$

Elemental continuity, $W=C_{\ell}$:

$$
\begin{align*}
a_{1}= & \frac{1}{\tilde{P}_{L}} \frac{\partial \tilde{P}_{L}}{\partial \eta}+n_{s}\left[\frac{k}{1+n_{s} n K}+\frac{\cos \theta}{r+n_{s} n \cos \theta}\right] \\
& -\frac{\rho_{s} v_{s} n_{s}-\bar{v}}{\varepsilon^{2} \tilde{P}_{L}}+\frac{n_{s} \rho_{s} u_{s} n_{s}^{\prime} \rho u n}{\varepsilon^{2} \tilde{P}_{L}\left(1+n_{s} n K\right)}
\end{align*}
$$

$a_{2}=0$

$$
\begin{equation*}
a_{3}=\frac{1}{\tilde{P}_{L}}\left[\frac{\partial}{\partial n} \tilde{P} M+n_{s} \tilde{P}_{P}\left(\frac{k}{l+n_{s} n K}+\frac{\cos \theta}{r+n_{s} n \cos \theta}\right)\right] \tag{8.7b}
\end{equation*}
$$

$$
\begin{equation*}
a_{4}=-\frac{n_{s}^{2} \rho_{s} u_{s}}{\varepsilon^{2}\left(1+n_{s} n K\right)} \frac{\bar{\rho}}{\tilde{P} L} \tag{8.7d}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{P} L=\frac{\mu_{B} \bar{\mu}_{L}}{P_{r} \overline{F r}} \tag{8.7e}
\end{equation*}
$$

and

$$
\begin{equation*}
P M=\sum_{i=1}^{N S} \delta_{i l} \frac{M_{l}^{*}}{M_{i}^{*}} \sum_{\substack{k=1 \\ \neq 1}}^{N S} \Delta b_{i k} \frac{\partial C_{k}}{\partial n} \tag{8.7£}
\end{equation*}
$$

for multicomponent diffusion and for binary diffusion:

$$
\begin{align*}
& P L=\frac{\mu_{8} \overline{\mu \zeta}}{P_{T_{B}} \overline{P_{I}}} \tag{8.7~g}\\
& \tilde{P M}=0 \tag{8.7~h}
\end{align*}
$$

The remaining equations are written as follows:

Continuity:

$$
\begin{gather*}
\frac{\partial}{\partial \xi}\left[n_{s}\left(r+n_{s} \eta \cos \theta\right) \rho_{s} u_{s} \overline{\rho u}\right]+\frac{\partial}{\partial \eta}\left[\left(r+n_{s} n \cos \theta\right)\right] \\
\left.\left\{\left(1+n_{s} n K\right) \rho_{s} v \bar{p} \bar{v}-n_{s}^{\prime} n \rho_{s} u_{s} \bar{\rho} \bar{u}\right\}\right]=0 \tag{8.8}
\end{gather*}
$$

n-momentum:

$$
\begin{align*}
& \frac{\overline{\rho u}}{1+n_{s} n K} \frac{v_{s}^{\prime}}{v_{s}} \bar{v}+\frac{\partial \bar{v}}{\partial \xi}+\frac{v_{s}}{u_{s}} \frac{\rho \bar{v}}{n_{s}} \frac{\partial \bar{v}}{\partial \eta} \\
& -\sum_{v_{s}}^{u_{s}} \frac{k}{\left(1+n_{s} \eta K\right)} \overline{\rho u^{2}}+\frac{p_{s}}{\rho_{s} u_{s} n_{s} v_{s}} \frac{\partial \bar{P}}{\partial \eta}=0 \tag{8.9a}
\end{align*}
$$

which becomes

$$
\begin{equation*}
\frac{\partial \bar{P}}{\partial \eta}=\frac{n_{s}^{\rho} s_{s} u_{s}^{2} k}{P_{s}\left(1+n_{s} \eta k\right)} \bar{\rho} \bar{u}^{2} \tag{8.9b}
\end{equation*}
$$

if the thin shock-layer approximation is made

State:

$$
\begin{equation*}
\bar{P}=\bar{\rho} T \frac{M^{\star}}{M_{s}^{\star}} \tag{8.10}
\end{equation*}
$$

The boundary conditions at the body surface (the surface boundary conditions) in terms of transformed variables are as follows:

$$
\text { No slip: } \begin{align*}
\bar{u} & =0 \tag{8.11a}\\
\bar{v} & =0 \tag{8.11b}\\
\bar{T} & =\text { const. } \tag{8.11c}\\
\bar{H} & =\sum_{i=1}^{N} h_{i} C_{i} / \sum_{i=1}^{N} h_{i} C_{i} s
\end{align*}
$$

With slip:

$$
\begin{align*}
& \left.\bar{u}=\varepsilon^{2} A_{1}\left(\frac{P_{s}}{\rho_{s}}\right)^{1 / 2}\left(\frac{\mu_{s}}{p_{s}}\right)\left(\frac{1}{n_{s}}\right) \sqrt{\frac{P}{\rho}}\right)^{1 / 2}\left(\frac{\bar{\mu}}{\bar{P}}\right)\left[\left(\frac{\partial \bar{u}}{\partial n}\right)^{-n_{s}} \bar{u}\right] \tag{8.12a}\\
& \bar{v}=0 \tag{8.12b}\\
& \left.\bar{T}=\bar{T}_{w}+\varepsilon^{2} A_{2}\left(\frac{\mu_{B}}{P_{s}}\right)\left(\frac{1}{n_{s}}\right)_{\left(T_{s}\right.}\right)^{1 / 2}\left[(\gamma-1) \frac{\bar{T}}{\gamma}\right]^{1 / 2}\left(\frac{\bar{\mu}}{\bar{P}}\right)\left(\frac{\partial \bar{T}}{\partial n}\right) \tag{8.12c}\\
& \left.\bar{h}=\bar{h}_{w}+\varepsilon^{2} A_{2}\left(\frac{\mu_{s}}{P_{s}}\right)\left(\frac{1}{I_{s}}\right)\left(\frac{\rho_{s}}{\rho_{s}}\right)^{1 / 2}\left(\frac{\bar{u}}{\bar{P}}\right) \frac{\bar{P}}{\frac{\rho}{\rho}}\right)^{1 / 2} \frac{\partial \bar{n}}{\partial n} \tag{8.12d}
\end{align*}
$$

The conditions at the shock (i.e., the transformed shock conditions at η = 1) for slip or no slip cases are

$$
\begin{equation*}
\bar{u}=\bar{T}=\bar{H}=\bar{v}=\bar{P}=\bar{\rho}=1 \tag{8.13}
\end{equation*}
$$

When downstream numerical solutions are required, it is necessary to have an accurate solution for the flow along the stagnation streamline. A truncated series which has the same form as that used by Kao (ref. 23) is used to develop the stagnation streamline equations. The flow variables are expanded about the axis of symmetry with respect to nondimensional distance ξ near the stagnation streamline as

$$
\begin{align*}
& p(\xi, \eta)=p_{1}(n)+p_{2}(\eta) \xi^{2}+\ldots \tag{8.14a}\\
& u(\xi, \eta)=u_{1}(n) \xi+\ldots \tag{8.14b}\\
& v(\xi, n)=v_{1}(n)+\ldots \tag{8.14c}\\
& \rho(\xi, n)=\rho_{1}(n)+\ldots \tag{8.14d}\\
& T(\xi, n)=T_{1}(n)+\ldots \tag{8.14e}
\end{align*}
$$

(cont'd)

$$
\begin{align*}
& h(\xi, n)=h_{1}(\eta)+\ldots \\
& \mu(\xi, n)=\mu_{l}(\eta)+\ldots \\
& K(\xi, n)=K_{l}(\eta)+\ldots \\
& c_{p}(\xi, n)=c_{p, 1}(\eta)+\ldots \\
& \tilde{c}_{\ell}(\xi, n)=\tilde{c}_{\ell, 1}(n)+\ldots
\end{align*}
$$

The shock-standoff distance is expressed by

$$
\begin{equation*}
n_{s}=n_{1, s}+n_{2 s} \xi^{2}+\ldots \tag{8.15}
\end{equation*}
$$

Since ξ is small and the curvature k is approximately of order one in the stagnation region, it is logical to say that (see fig. 4):

$$
\begin{equation*}
B \nexists \tag{8..16}
\end{equation*}
$$

Now, since $\theta=(\pi / 2)-\beta$, one may express

$$
\begin{equation*}
\alpha \approx \frac{\pi}{2}+\xi\left(\frac{2 n_{2 s}}{1+n_{1 s}}-1\right) \tag{8.17}
\end{equation*}
$$

By using equations (8.15) to (8.17), the shock relations, equations (3.3) to (3.8), can be expressed in terms of expanded variables as

$$
\begin{align*}
& v_{s}=v_{1 s}+\ldots m-\frac{1}{\rho_{1 s}} \tag{8.18}\\
& u_{s}=u_{1 s} \xi+\ldots \xi_{\xi}\left[1-\frac{2 n_{2 s}}{1+n_{1 s}}\left(1+\frac{1}{\rho_{1 s}}\right)\right] \tag{8.1y}
\end{align*}
$$

$$
\begin{align*}
& P_{s}=P_{1 s}+P_{2 s} \xi^{2}+\ldots-\frac{1}{\gamma m_{s}^{2}}+\left(\frac{1}{\rho_{1 s}}\right) \\
& -\xi^{2}\left[\left(1-\frac{1}{\rho_{1 s}}\right)\left(1-\frac{2 n_{2 s}}{1+n_{1 s}}\right)^{2}\right] \tag{8.20}\\
& h_{s}=h_{1 s}+\ldots=\frac{1}{M_{\infty}^{2}\left(\gamma_{\infty}-1\right)}+\frac{1}{2}\left(1-\frac{1}{\rho_{1 s}}\right) \tag{8.21}
\end{align*}
$$

Since equations (8.19) and (8.20) involve $n_{2 s}$, these terms cannot be determined from the stagnation solutions. Thus, a value of $n_{2 s}=0$ is assumed to start the solution. This assumption is removed by iterating on the solution by using the previous shock-standoff distances to define $n_{2 s}$.

Along the stagnation streamline, the second-order differential equation is written as

$$
\begin{equation*}
\frac{d^{2} w}{d n^{2}}+a_{1} \frac{d w}{d n}+a_{2}+a_{3}=0 \tag{8,22}
\end{equation*}
$$

The coefficients in equation (8.22) are defined as
s-momentum, $W=\bar{u}$:

$$
\begin{align*}
& a_{1}=\frac{1}{\mathbb{W}_{1}} \frac{d \bar{\mu}_{1}}{d n}+\frac{2 n_{1 s}}{1+n_{1 s} n}-\frac{n_{1 s}{ }_{1 / s} v_{1 s}}{\varepsilon^{2} \mu_{1 s}} \frac{\bar{\rho}_{1} \bar{v}_{1}}{\bar{q}_{1}} \tag{8.23a}\\
& a_{2}=-\frac{n_{1 s}}{1+n_{1 s}{ }^{n}}\left[\frac{1}{\bar{w}_{1}} \frac{d \overline{\mu_{1}}}{d n}+\frac{2 n_{1 s}}{1+n_{1 s}}+\frac{\rho_{1 s}{ }^{n_{1 s}}{ }^{u_{1 s}}}{\varepsilon^{2}{ }_{1 s}} \frac{\bar{u}_{1 s} \bar{\rho}_{1}}{\bar{r}_{1}}\right. \\
& \left.+\frac{n_{1 s} \rho_{1 s} v_{1 s}}{\varepsilon^{2} \mu_{18}} \frac{\bar{\rho}_{1} \bar{v}_{1}}{\bar{\mu}_{1}}\right] \tag{8.23b}
\end{align*}
$$

$$
\begin{equation*}
a s=\frac{-2 P_{1 s} n_{1 s}^{2}}{\left.\varepsilon^{2} \mu_{1 s} 1+n_{1 s} n\right) u_{1 s} \pi} \quad \bar{P}_{2}+\frac{P_{2 s} \bar{P}_{1}}{P_{1 s}}-\frac{n_{1 s}{ }^{n}}{n_{1 s}} \frac{d \bar{P}_{1}}{d n} \tag{8.23c}
\end{equation*}
$$

Energy (enchalpy), $W=\bar{H}:$

$$
\begin{align*}
& a_{2}=0 \tag{8.24b}\\
& a_{3}=\frac{P_{r_{1 s}} \mathrm{t}_{1 \mathrm{~s}}}{\mu_{1 s} \mathrm{H}_{1 s}} \frac{\overline{P r}_{1}}{\Gamma_{1}} \frac{1}{n_{1 s}} \frac{d \psi}{d n}+\frac{2 \psi}{1+\eta_{1 s} n_{1 s}} \tag{8.24c}
\end{align*}
$$

Elemental continuity, $W=C_{\ell}$:

$$
\begin{align*}
& a_{1}=\frac{1}{\tilde{P}_{L}} \frac{d \tilde{P}_{L}}{d n}+2\left[\frac{n_{1 s}}{1+n_{n}}-\frac{n_{1 s} \rho_{1 s} v_{18} \bar{\rho}_{1} \bar{v}_{1}}{\varepsilon^{2} \tilde{P}_{L}}\right] \tag{8.25a}\\
& a_{2}=0 \tag{8.25b}\\
& a_{3}=\frac{1}{\tilde{P}_{L}}\left[\frac{d \tilde{P}_{M}}{d n}+2 \frac{n_{1 s} \tilde{P} M_{1}^{1+n n_{1 s}}}{}\right]
\end{align*}
$$

The remaining equations are written as follows:

Continuity:

$$
\begin{equation*}
\frac{d}{d n}\left[\left(1+n_{1 s} n\right)^{2} \rho_{1 s} v_{1 s} \bar{\rho}_{1} \bar{v}_{1}\right]=-2 n_{1 s}\left(1+n_{1 s} n\right) \rho_{1 s} u_{1 s} \bar{\rho}_{1} \bar{u}_{1} \tag{8.26}
\end{equation*}
$$

n-momentum:

$$
\begin{equation*}
\frac{d \bar{P}_{1}}{d n}=-\frac{v_{18}^{2} \rho_{1 s}}{P_{1}} \bar{\rho}_{1} \bar{v}_{1} \frac{d \bar{v}_{1}}{d n} \tag{8,27}
\end{equation*}
$$

When the thin shock-layer approximation is made, the n-momentur equation becomes

$$
\begin{equation*}
\frac{d \bar{P}}{d n}=0 \tag{8.28}
\end{equation*}
$$

The governing second-order partial differential equations are solved by employing an implicit finite-difference method. A variable grid apacing (fig. 7) is used in the η-direction so that the grid apacing can be made amall in the region of large gradients. In the figure, m is atation measured along the body surface and n denotes the station normal to the body surface. The derivatives are converted to finite-difference form by usiag Taylor's series expansions. Thus, unequal space central difference equations in the n-direction at point $m_{1} n$ can be written as

$$
\begin{align*}
\frac{\partial W}{\partial n_{n}} & =\frac{\Delta n_{n-1}}{\Delta n_{n}\left(\Delta n_{n-1}+\Delta n_{n}\right)} W_{m, n+1}-\frac{\Delta n_{n}}{\Delta n_{n-1}\left(\Delta n_{n-1}+\Delta n_{n}\right)} W_{m, n-1} \\
& +\frac{\Delta n_{n}-\Delta n_{n-1}}{\Delta n_{n} \Delta n_{n-1}} W_{m, n} \tag{8.29a}\\
\left.\frac{\partial^{2} W}{\partial n^{2}}\right)_{n} & =\frac{2}{\Delta n_{n}\left(\Delta n_{n}+\Delta n_{n-1}\right)} W_{m, n+1}-\frac{2}{\Delta n_{n} \Delta n_{n-1}} W_{m, n} \\
& +\frac{2}{\Delta n_{n-1}\left(\Delta n_{n}+\Delta n_{n-1}\right)} W_{m, n+1} \tag{8.29b}
\end{align*}
$$

Figure 7. Finite-difference represeniation of flow field.

$$
\begin{equation*}
\frac{\partial W_{1}}{\partial \xi} m=\frac{W_{m, n}-W_{m-1, n}}{\Delta \xi} \tag{8.29c}
\end{equation*}
$$

A typical finite-difference expansion of the standard differential equation is obtained by substituting the above equations in equation (8.4) as

$$
\begin{equation*}
A_{n} W_{m, n+1}+B_{n} W_{m, n}+C_{n m, n-1} W_{n}=0 \tag{8.30}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{n}=\frac{2+a_{1} \Delta n_{n-1}}{\Delta n_{n}+\Delta n_{n-1}} \tag{8.31a}\\
& B_{n}=-\frac{2-a_{1}\left(\Delta n_{n}-\Delta n_{n-1}\right)}{\Delta n_{n} \Delta n_{n-1}}-\frac{a_{2}-a_{4}}{\Delta \xi_{m-1}} \tag{8.31b}\\
& C_{n}=\frac{2-a_{1} \Delta n_{n}}{\Delta n_{n-1}\left(\Delta n_{n}+\Delta n_{n-1}\right)} \tag{8.31c}\\
& D_{n}=\frac{a_{3}-a_{4}^{W}}{\Delta \xi_{m-1, n}}
\end{align*}
$$

If it is assumed that

$$
\begin{equation*}
W_{m, n}=E_{n} W_{m, n+1}+F_{n} \tag{8.32}
\end{equation*}
$$

or

$$
\begin{equation*}
W_{m, n-1}=E_{n-1} W_{m, n}+F_{n-1} \tag{8.33}
\end{equation*}
$$

then substituting (8.33) into equation (8.30) yields

$$
\begin{align*}
W_{m, n} & =\left[\frac{-A n}{B_{n}+C_{n} E_{n-1}}\right] W_{m, n+1} \\
& +\frac{-D_{n}-C_{n} F_{n-1}}{B_{n}+C_{n} E_{n-1}} \tag{8.34}
\end{align*}
$$

By comparing equations (8.32) and (8.33), one finds

$$
\begin{align*}
& E_{n}=\frac{-A_{n}}{B_{n}-C_{n} E_{n-1}} \tag{8.35}\\
& F_{n}=\frac{-D_{n}-C_{n} F_{n-1}}{B_{n}+C_{n} E_{n-1}} \tag{8.36}
\end{align*}
$$

Now, since E_{1} and F_{1} are known from the boundary conditions, E_{n} and F_{n} can be calculated from equations (8.35) and (8.36). The quantities $W_{n, n}$ at point m, n can now be calculated from equation (8.32).

The overall solution procedure starts with evaluation of the flow pro perties immediately behind the shock by using the Rankine-Hugonioit relations. With known shock and body surface conditions, the solutions are obtained first for the stagnation streamline. With this solution providing the initial conditions, the solution is marched downstream to the desired body location. Each of the second-order partial differential equations is integrated numerically by using the tridiagonal formalism of equation (8.4) and following the procedure described by equations (8.30) to (8.36). The first solution pass provides only an approximate flow-field solution. This is because, in the first solution, pass, the thin shock-layer form of the normal momentum equation is used, the stagnation streamline solution is
assumed to be independent of downstream influence, the term $d n_{s} / d \xi$ is equal to zero at each body station, and the shock angle α is assumed to be the same as the body angle θ. These assumptions are removed by making oue or more additional solution passes.

The shock solution procedure at any location is identical for the first and subsequent solution passes. However the shock angle α is defined differently for the first and subsequent solution passes. For the first solution pass, $\alpha=\theta$. For subsequent solution, the shock angle is defined as

$$
\begin{equation*}
\alpha=\theta+\tan ^{-1}\left[\frac{n_{s}^{\prime}}{1+K n_{s}}\right] \tag{8.37}
\end{equation*}
$$

In the first solution pass, the viscous shock-layer equations are solved at any location m after obtaining the shock conditions. The converged solutions at station $m-1$ are used as the initial guess for the solutions at station m. The solution is then iterated-locally until convergence is achieved. For the stagnation streamline, guess values for dependent variables are used to start the solution.

In the first local iteration, both $\partial n_{s} / \partial \xi$ and $\partial w / \xi$ are assumed to be zero. The energy equation is integrated numerically to obtain a new temperature. By using this temperature, new values of thermodynamic and transport properties are calculated. Next, the x momentum equation is inegrating to find the \bar{u} component of velocity. The continuity equation is used to obtain both the shock-standoff distance and the $\overline{\mathbf{v}}$ component of velocity. The pressure $\overline{\mathbf{p}}$ is determined by integrating the normal momentum equation. The equation of state is used to determine the density. For example, the integration of the stagnation streamline continuity equation from 0 to η results in

$$
\begin{equation*}
\left[\left(1+n_{1 s} n\right){ }^{2} \rho_{1 s} v_{1 s} \rho_{1}\right] v_{1}=\left(-2 n_{1 s} \rho_{1 s} u_{1 s}\right) A \tag{8.38}
\end{equation*}
$$

where

$$
A=\int_{0}^{n}\left(1+n_{1 s} \eta\right) \bar{p}_{1} \bar{u}_{1} d \eta
$$

This equation give the v-velocity component along the stagnation streamline. However, integration of the continuity equation from $\eta=0$ to $\eta=1$ results in

$$
\begin{equation*}
1+n_{1 s} \quad 2 \rho_{1 s}{ }^{\mathrm{V}} 1 \mathrm{~s}=-2 \rho_{1 s^{U}}{ }_{1 s^{n}}=(B+C) \tag{8.39}
\end{equation*}
$$

where

$$
B=\int_{0}^{1} \bar{\rho}_{1} \overline{u d n}, c=n_{1 s} \int_{0}^{1} \bar{\rho}_{1} \bar{u}_{1} \eta d n
$$

The shock-standoff distance can be obtained from the solution of equation (8.39) as

$$
\begin{equation*}
n_{1 s}=\frac{-\left(2 v_{1 s}+2 \mathrm{Bu}_{1 \mathrm{~s}}\right)+\left[\left(2 v_{1 s}+2 \mathrm{Bu}_{1 \mathrm{~s}}\right)^{2}-4\left(v_{1 s}+2 \mathrm{Cu}_{1 \mathrm{~s}}\right) \mathrm{v}_{1 \mathrm{~s}}\right]^{1 / 2}}{2\left(v_{18}+2 \mathrm{Cu}_{1 \mathrm{~s}}\right)} \tag{8.40}
\end{equation*}
$$

Integration of the downtream continuity equation from $\eta=0$ to η results in

$$
\begin{align*}
& \frac{\partial}{\partial \xi}\left[\int_{0}^{\eta} n_{s m}\left(r+n_{s m} \eta \cos \theta\right) \rho_{s} u_{s} \rho^{-\overline{u d} \eta}\right] \\
& +\left(r+n_{s m} \eta \cos \theta\right)\left[\left(1+\eta n_{s \mathbb{L}} k\right)\left(\rho_{s} v_{s} \rho v\right)-n_{s m}^{\prime} \eta \rho_{s} u_{s} \rho u\right]=0 \tag{8.41}
\end{align*}
$$

This can be expressed in terms of the difference equation as

$$
\begin{equation*}
\frac{\left[(G G)_{m}-(G G)_{m-1}\right]}{\Delta \xi}+(F F)_{m} \bar{v}+(E E)_{m}=0 \tag{8.42}
\end{equation*}
$$

where

$$
\begin{aligned}
& (E E)_{m}=\left(r+n_{s m} \eta \cos \theta\right)\left(1+n_{s m} \eta K\right) \rho_{s} v_{s} \bar{\rho} \\
& (F F)_{m}=-\left(r+n_{s m} \eta \cos \theta\right) n_{s m}^{\prime} n \rho_{s} u_{s} \overline{p u} \\
& (G G)_{m}=0 \int^{n} n_{s m}\left(r i \cdot n_{s m} \eta \cos \theta\right) \rho_{s} u_{s} \rho^{-\bar{u}} \eta \eta
\end{aligned}
$$

Now, the v-velocity component at each point on the station I can be obtained from equation (8.42).

For the downstream shock-standoff distance, integration of the continuity equation from $\eta=0$ to $\eta=1$ gives

$$
\begin{align*}
& \frac{\partial}{\partial \xi}\left[n_{s}^{2} \cos \theta \rho_{s} u_{s} \int_{0}^{1--\bar{\rho} \eta_{d}+n_{s} r \rho_{s} u_{s} \int_{0}^{\eta--} \rho u d \eta}\right. \\
& =\left(r+n_{s} \cos \theta\right)\left[n_{s} \rho_{s} u_{s}-\left(1+n_{s} k\right) \rho_{s} v_{s}\right] \tag{8,43}
\end{align*}
$$

By defining, for station m

$$
D_{1}=\cos \theta \rho_{s} u_{s} \int_{0}^{1-\bar{p} u \eta d \eta}, D_{2}=r \rho_{s} u_{s_{0}} \int_{\rho}^{1-\bar{p} u d \eta}
$$

and denoting the same relations by D_{3} and D_{4} for station m, equation (8.43) can be expressed in terms of a difference equation as

$$
\begin{align*}
& {\left[\left(D_{1} n_{s}^{2}+D_{2} n_{s}\right)_{m}-\left(D_{3} n_{s}+D_{4} n_{s}\right)_{m-1}\right](\Delta \xi)^{-1}} \\
& =r \rho_{s} u_{s} n_{s m}^{\prime}+\cos \theta \rho_{s} u_{s} n_{s m}^{\prime} n_{s m}-r \rho_{s} v_{s} \\
& -r \rho_{s} v_{s} k n_{8 m}-\cos \theta \rho_{s} v_{s} n_{s m}-\cos \theta \rho_{s} v_{s} k n_{s}{ }^{2} \tag{8.44}
\end{align*}
$$

This can be expressed in a quadratic form as

$$
\begin{equation*}
(I I) n_{s m}^{2}+(J J) n_{s m}+(K K)=0 \tag{8.45}
\end{equation*}
$$

where

$$
\begin{aligned}
& I I=D_{1}+\cos \theta K \rho_{s} v_{s} \Delta \xi \\
& J J=D_{2}+r \rho_{s} v_{s} k \Delta \xi-\cos \theta \rho_{s} u_{s} n_{s}^{\prime} \Delta \xi \\
& K K=-\left[D_{3}\left(n_{s}\right)_{m-1}^{2}+D_{4}\left(n_{s}\right)_{m-1}+\tau \rho_{s} u_{s} n_{s}^{\prime} \Delta \xi-r \rho_{s} v_{s} \Delta \xi\right]
\end{aligned}
$$

Then, the shock-standoff distance at station m is obtained from equation (8.45) as

$$
\begin{equation*}
n_{s m}=\left\{-(F F)+\left[(J J)^{2}-4(I I)(K K)\right]^{1 / 2}\right\}[2(I I)]^{-1} \tag{8.46}
\end{equation*}
$$

The flow diagrams for computation procedure are shown in figures 8 (a) to $8(d)$.

Figure 8(a). Flow chart for solution sequence of viscous shock-layer equation.

Figure 8(b). Flow chart for subroutine shock solution procedure.

Figure 8(c). Flow chart for subroutine energy solution procedure.

[^1]
9. RESULTS AND DISCUSSION

The entry body considered for this study is a 45-degree sphere cone at zero degree angle of attack. The body urface temperature is taken to be uniform at $2,000 \mathrm{~K}$ and the body nose radius is 0.2 m . The entry trajactor ies and free-stream conditions are given in tables 3 to 9 . Results have been obtained to investigate the effects of different gas composition, entry velocity and body nose radius on the stagnation point convective and radiative heating. Specific results were obtained to determine the extent of convective and radiative heating along the hody for free-atrean gas composition of $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}, 98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$, and $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$. The results for Trajectories I to VI with different free-stream gas compositions are given in tables 10 to 18 . For the slip boundary conditions, some impor cant results are presented in this section to show the effects of both the body and shock slips on the convective neating; these results are given in tables 19 to 24.

Por Trajectory I, the effects of free-stream gas composition on the shock temperature are illustrated in figures 9 and 10 . The results show that the shock temperature as well as the temperature in the shock layer increases with increasing N_{2} concentration. This is because N_{2} provides less energy accomodation in comparison to CH_{4}. The stagnation shock temper atures are relatively higher for early entry time (fig. 10); this, however, would be expected because of relatively higher free atream velocities. The results of figure 9 show that che temperature gradient in the shock layer is restricted essentially in the regions near the body surface for all freestream gas compositions.

The effects of gas composition on the stagnation point convective and radiative hesting for Trajectory I are illustrated in figures 11 and 12. The convective heating is seen to increase with increasing N_{2} concentration (fig. 11), and peak heating occurs at antry time of about 70 s . This is a direct consequence of the variation in the shock temperature. The situr tion, however, is not the same with respect to the radiative heating [figs.

Figure 9. Effect of gas couposition on temperature distribution along the stagnation streamine, Trajectory $I(t i m e=78 \mathrm{~s}$).

Figure 10. Effect of gas composition on stagnation-point shock temerature, Trajectory I.

Figure 11. Effect of gas composition on atagnation-point convective heating: Trajectory I.

(a)

Figure 12. Effect of gas composition on stagnation-point radiative
heating.

(b)

Figure 12. (Concluded.)

12(a) and (b)], i.e.) the radiative heating does not necessarily increase with increasing N_{2} concentration. This is because, for given set of conditions, the radiative transfer strongly depends on the presence of absorb-ing-emitting species in the gas mixture. It is also evident from figures 12(a) and (b) that the peak radiative heating occurs at different entry times for different freestrean gas compositions. For \mathcal{N}_{2} concentrations between 50% and 90%; the maximum heating is noted for $75 \% \mathrm{~N}_{2}$ concentration. The freestream compositions of $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{Ch}_{4}$ and $98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$ are considered to be the realistic compositions for Titan's atmosphere. The results for stagnation point shock temperature and convective and radiative heatings are illustrated in figure 13 for Trajectory I and for $99.5 \% \mathrm{~N}_{\mathbf{2}}$ + $0.5 \% \mathrm{CH}_{4}$. It is noted that for this case, the radiative heating is negligible as compared to the convective heating. The radiative heating is not more than seven percent of the total heating.

The effect of entry velocity on the stagnation-point shock temperature and convective and radiative heating rates are illustrated in figures 14 to 16. For the free-stream gas composition of $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$, the results presented in figures 14 (a), 15(a) and 16(a) show that the shock temperature and heating rates, in general, increase with increasing entry velocity for a fixed entry altitude (time). It is seen that the extent of convective heating is considerably higher than the radiative heating for all cases. The results also show a similar trend for the gas composition of $99.5 \% \mathrm{~N}_{2}+0.5$ CH_{4} [figs. $14(\mathrm{~b}), 15(\mathrm{~b})$, and $16(\mathrm{~b})$]. For this gas composition, the radiative heating is negligible in comparison to the convective heating. One exception to this, however, is noted from the results presented in figure 16(b). The radiative heating rate for an entry velocity of $13 \mathrm{~km} / \mathrm{s}$ is considerably higher than for other velocities. Thus, for the entry speed of 13 km / s (and for an entry time between 30 and 60 s), it is possible to have physical conditions in the shock layer to produce a higher concentration of radiating species.

For the free-stream atmospheric composition of $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$, the results for stagnation point convective and sadiative heating are shown in figure 17 (and also in table 14 for Trajectories I and II). The results

Figure 13. Variation of stagnation-point shock temperature and Convective and radiative heating for $99.5 \% \mathrm{~N}_{2}+0.5 \%$

Figure 14(a). Effect of entry velocity on stagnation-point shock temperature, $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$.

Figure $14(\mathrm{~b})$. Effect of entry velocity on stagnation-point shock temperature, $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$.

Figure 15(a). Effect of entry velocity on stagnation-point convective heating, $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$.

Figure 15(b). Effect of entry vilocity on stagnation-point convective heating, $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$.

Figure 16(a). Effect of entry velocity on stagnation-point radiative heating, $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$.

Figure $16(b)$. Uffect of entry velocity on stagnation-point radiative heating, $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$.

Figure 17. Variation of stagnation-point convective and radiative. heating for Trajectories I and $\mathrm{II}, 90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$.
show that the extent of both convective and radiative heating is considerably higher for Trajectory I (a ateeper entry angle trajectory) than for Trajectory II. This, however, is expected aince the rate of viscous disaipation will be higher for the steeper trajectory, resulting in a relative ly higher shock temperature.

For the atmospheric comporition of $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$, the variation of atagnation point convective and radiative heating with body nose radius is given in figure 18 for Trajectory I and an entry time of 78 ($2=50.9$ km). Although the ertent of radiative heating is mall, it is seen to increase with increasing nose radius. The convective heating rate, however, is seen to decrease with increasing nose radius. For a given set of entry conditions, the shock-standoff distance generally increases with incressing nose radiua (ref. 4). This, in turn, reaults in different temperature, pressure, and species distributions in the shock layer. A combination of these changes influences the trend exhibited.

The results of heating rate along the body are illustrated in figures 19 and 20 for Trajectory I and for the entry conditions at 78 . Variations in shock temperature and heating rates are shown in figure 19 for the atmos pheric composition of $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$. The results show that both convective and radiative heating essen ally follow the trend of the shock temperature from the stagnation point to the rangency point (at about $\mathrm{s} / \mathrm{R}_{\mathrm{N}}=$ 0.8). Beyond this point, the convective heating continues the sarae trend, but the radiative heating is seen to increase with the body location. This is because the pressure and temperature conditions near such location are conducive for production of the radiating $C N$ speciea over a large portion of the shock-layer thickness (see fig. 5), and also because the optical thickness of the shock-layer gas is relatively higher in the downstream regions. The variation in heating rates along the body is illustrated in figures 20 (a) and $20(b)$ for the cases with and without $C N$ concentration in the shock-leyer gas. The results show that while rite presence of CN has little influence on the convective heating, the radiative heating is increased considerably by its presence. It is irportant to nocs that after the tangency point, the rate of radiative teating in the presence of CN is significantly higher than the convective heating for the free-stream composition

Figure 18. Effect of body nose radius on stagnation-point convective and radiative heating for $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}, t=78 \mathrm{~s}$.

Figure 19. Variation of shock temperature, convective and radiative heating along the body for $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$.

Figure 20(a). Influence of CN on convective and radiative heating along the body for $t=78 \mathrm{~s}$ and $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$.

Figure $20(\mathrm{~b})$. Influence of CN on convective and radiative heating along the body for $t=78 \mathrm{~s}$ and $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$.
of $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$ [(fig. 20(a)]. The same trend is seen in figure 20 (b) for the atmospheric composition of $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$; but the extent of radiative heating is considerably small.

For the free-stream atmospheric composition of $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$, variations in important results with distance along the body surface are illustrated in figures 21 to 23 for Trajectory I and for critical entry times (altitudes). The results for shock density and shock-standoff distance presented in figure 21 show that, for a given entry altiture, the shock-standoff distance increases as density decreases. The shock-standoff distance is seen to decrease with increasing altitude; this is because higher free-strean velocities are associated with higher altitudes (see table 1). The results for shock temperature and enthalpy presented in figure 22 show that both decrease along the body until the tangency point, and they remain essentially sonstant beyond that point. Because of higher freestream velocities, the shock temperature and enthalpy are greater for higher altitudes. The variation in heating rates is shown in figure 23. As discussed earlier, the peak convective heating occurs for entry conditions at t $=70 \mathrm{~s}(\mathrm{z}=70.4 \mathrm{~km})$ and peak radiative heating at $\mathrm{t}=78 \mathrm{~s}(\mathrm{z}=50.9 \mathrm{~km})$. These results clearly show that the radiative heating is not important in the stagnation region if Titan's atmospheric composition is considered to be $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$.

Trajectory VI is the latest trajectory specified for the Titan mission, and there appears to be a general agreemunt to consider the atmospheric composition as $98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$. Results for this case are shown in figures 24 and 25 . The results for stagnation point shock temperature, enthalpy, and convective and radiative heating rates are shown in figure 24 for different entry times. The results show that the extent of radiative heating for this trajectory is small compared to the corvective heating. It is noted that the radiative peak heating occurs at an entry time of 70 s (2 $=$ 204.570 km), whereas the convective peak heating ($20.276 \mathrm{MW} / \mathrm{m}^{2}$) occurs at 73 $s(2=196.349 \mathrm{~km})$. The variations in shock temperature, shock density, shock-standoff distance, and heating rates along the body are shown in figure 25 for an entry time of 73 s . These results exhibit essentially the same trend as noted in figures 19 and 21 for Trajectory I with $99.5 \% \mathrm{~N}_{2}$ + $0.5 \% \mathrm{CH}_{4}$.

Figure 21. Variation of shock density and shock-standoff distance with body coordinate for $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$.

Figure 22. Variation of shock temperature and enthalpy with body coordinate for $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$.

Figure 23. Variation of convective and radiative heating along the body for $99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$.

Figure 24. Variation of stagnation-point shock temperature, enthalpy, and convective and radiative heating for Trajectory VI, $98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$.

Figure 25. Variation of shock temperature, shock density, shockstandoff distance, and convective and radiative heating along the body for Trajectory VI, $98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$.

Thus, for atmospheric compositions with very high N_{2} concentration, the radiative heating is not important in the stagnation region.

The extent of convective and radiative heating over the entire length of the aerocapture vehicle is shown in figure 26 for the free-strean gas composition of $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$ and $98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$. For the free-stream composition of $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$, the results clearly show that, while the convective heating rate continues to decrease in the downstream region, the radiative heating rate is considerably higher in this region. As discussed before, the reason for this trend is the combined influence of shock-temper ature density and pressure variations in this region and the relatively higher optical thicknesses of the radiating shock layer. A similar trend in heating rates is noted also for the gas composition of $98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$, but the extent of radiative heating is found to be relatively lower. However, it is important to note that the radiative heating approaches the convective heating in the downstream region.

To investigate the effects of body and shock slip conditions on the entire shock-layer flow phenomena, the results were obtained for the recently specified Trajectory IV (Table 6), with a free stream atmospheric composition of $98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$. Since chemical equilibrium is assumed and the thickness effect is of higher order, the concentration slip and thickness effects were neglected in this study. The results were obtained specifically for the higher altitude entry conditions where the influence of slip conditions was anticipated. Some important results of this investigation are presented here. In discussion of these results (and in figures), the word "slip" implies both the body and shock slip conditions. Results are presented first for the velocity slip and temperature jump at the body surface. Following this, results are presented for the properties immediately behind the shock. Next, the effects of slip conditions on the temperature distribution in the shock layer and on the convective heating along the body are discussed. The results are then presented for selected entry altitudes to show the separate effects of body and shock slip conditions on the convective heating along the body. Finally the results are presented for the temperature distribution and convective heating fcr very high entry altitudes.

Figure 26. Variation of convective and radiative heating along the body for Trajectory $\mathrm{I}, 90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}(\mathrm{t}=78 \mathrm{~s})$, and Trajectory VI, $98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}(\mathrm{t}=73 \mathrm{~s})$.

The variation in the surface-slip velocity is illustrated in figure 27 as a function of the entry time. The results clearly illustrate that the condition of no slip is not satisfied at higher altitudes (earlier entry time). The magnitude of velocity slip ($u_{w, s}$) is expressed as a percent of the velocity just behind the shock. It is evident frum the figure that about 7 percent velocity sif occurs at the entry time of 20 ($2=465.115$ km), and only 0.12 percent at the entry t ime of $73 \mathrm{~s}(z=196.349 \mathrm{~km})$.

The temperature jump and enthalpy change at the body surface are shown in figure 28 for different entry altitudes. The body surface temperature was taken to be $2,000 \mathrm{R}$. A temperature jump of about 1.2 times the surface temperature (i.e, $\Delta T=2,500 \mathrm{~K}$) is seen along the $b x: y$ surface near the stagnation point for entry altitude $Z=465.115 \mathrm{~km}$. At lower altitudes, however, the temperature jump is seen to be relatively smaller. For examr ple, at $Z=196.349 \mathrm{~km}$ the temperature jump is about 150 K . A similar trend is noted for enthalpy change at the body surface.

Figures 29 to 32 show the velocity sif, temperature jump, enthalpy change, and density change just behind the shock. The results illustrated in figure 29 show that both the u and v velocity components are influr enced by the slip conditions. It is evident from figures 30 to 32 that, when the altitude is lower than 402.595 km , the effects of slip conditions are not important. However, a significant temperature jump is noted at $2=$ 465.115 km (see fig. 30). Since both the temperature and velocity components decrease just behind the shock, the slip conditions result in a decrease in enthalpy and an increase in density; these are clearly evident from the results in figures 31 and 32.

The temperature distribution in the shock layer, along the stagnation streamline, is shown in figיre 33 for different altitude entry conditions. It is evident from the figure that, when the altitude is lower than 402.595 km , the effect of slip conditions is not important.

The effects of slip conditions on the convective heating along the body are shown in figure 34 for different entry conditions. The effects are seen to be lower for lower altitudes. It is important to note that at lower

Figure 27. Velocity slip at the body surface as a function of entry time (alticude) on the stagnatior point.

Figure 28. Temperature fump and enthalpy change along the body surface fcr different entry altitudes.

Figure 29. Velocity variation fust behind tise shock wave as a function of ξ coordinate.

Figure 30. Temperature variation just behind the shock wave as a function of ξ coordinate for different entry altitudes.

Figure 31. Enthalpy variation just behind the shock wave as a function of ξ coordinate for different entry altitudes.

Figure 32. Density variation fust behind the shock wave as a function of ξ coordinate for different entry altitudes.

Figure 33. Temperature profile in the shock layer at stagnation point with slip conditions for different entry altitudes.

Figure 34. Variation of convective heating along the body surface for different entry altitudes.
altitudes the slip conditions result in an increase in the convective heating, whereas the reverse is true for the higher altitudes. For example, about a 1 percent inctease in convective heating is noted for $2=196.349 \mathrm{~km}$ and about 6 percent increase for $2=241.838 \mathrm{~km}$; however, a reduction of about 48 percent is observed for entry conditions at $Z=465.115 \mathrm{~km}$.

Separate effects of the body and shock slips on the -onvective heating are shown in figures 35 and 36 along with the slip íbody as well as shock slip) and no slip solutions. As would be expected, the results obtained by considering only the body or shock slip fall, in general, between the results of slip and no-slip conditions. The effects of slip, of course, are higher for higher altitude entry conditions. The results clearly indicate that both the body and shock slips are equally important in influencing the extent of convective heating to the body.

In order to assess the effets of slip conditions on the convective heating for very high entry altitudes, the results were obtained by considering only the body-slip conditions because of the computational convenience. The temperature distribution along the stagnation streamline is illastrated in figure 37 for entry conditions at $Z=497.656 \mathrm{~km}$ and $Z=$ 531.004 km . The results show that, while the no-slip temperature distribution is essentially the same for both altitudes, the oody-slip temperature distributions are entirely different. The wall temperature jump and convective heating variation along the body are illustrated in figure 38. These are seen to be influenced greatly by the slip-body conditions. For entry conditions at $Z=531.004 \mathrm{~km}$, the results show temperature jump of about 150 percent and a decrease in convective heating by about 30 percent.

The results for slip conditions clearly indicate that both the body and shock slip conditions should be included in analyzing the aerothermal enviroment of the Titan's aerocapture vehicle at higher entry altitudes. However, during most of the heating pulse (where the heating is aignificant compared with peak heating), this study indicates that accurate results can be obtained without including slip boundazy conditions while using the assumption of equilibrium flow.

Figure 35. Variation of convective heating along the body for different slip condition at $Z=196.349 \mathrm{~km}$ and $\mathrm{Z}=241.838 \mathrm{~km}$.

Figure 36. Variation of convective heating along the body for different slip conditions at $2=402.595 \mathrm{~km}$ and $Z=465.115 \mathrm{~km}$.

Figure 37. Temperature profile in the shock layer at stagnation point with body slip condition for very high altitudes.

Figure 38. Effect of body slip condition on surface temperature and convective heating for very high altitudes near the stagnation region.

The main objective of this study was to asess tice extent of convective and radiative heating that would be experienced by en aerocapture vehicle in a Titan mission. Different compositions for Titan's atmosphere were assumed and results were obtained for the entry trajectories specified by JPL. The influences of slip boundary conditions (both at the shock and the body) were investigated for important cases. Specific results were obtained for freeatream atmospheric compositions of $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}, 99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$, and $98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$.

Results show that both the convective and radiative heating rates are quite sensitive to the gas composition used. The convective heating increases aignificantly as the N_{2} concentration increases. Rowever, this, in general, is not the case with regard to the radiative heating. The radirtive heating is negligible for the shallow entry $\left(\gamma=-25^{*}\right)$ condition regardless of the freestrean gas composition. But, for the steepest entry angle ($\gamma=-45^{\circ}$), the radiative heating will be important only if the freestrean gas is assumed to contain N_{2} concentrations between 50% and 90%. For the gas composition of $90 \% \mathrm{~N}_{2}$, the radiative heating is important in the stagnation region (as well as in the downetrean region) with the peak radiative heating rate being 30 percent of the corresponding convective heating rate (about $13 \mathrm{MW} / \mathrm{m}^{2}$). For the free-strem gas composition of $99.5 \% \mathrm{~N}_{2}+$ $0.5 \% \mathrm{CH}_{4}$, the radiative heating, in the stagnation region, is negligible (less than 6\%) in comparison to the convective heating for all cases considered. For this gas composition, the peak convective heating is found to be about $15 \mathrm{MW} / \mathrm{m}^{2}$. The mount of CN concentration in the shock-layer gas determines the extant of the radiative heating. For a given free-atrean gas composition, the radiative heating downtrem of the stagnation region increases due to an increase in the $C N$ concentration and the optical thickness of the shock layer.

Other results obtained in this study show that higher initial entry epeeds produce higher shock temperature which, in turn, results in higher heating rate. Results for the gas composition with $99.5 \% \mathbf{N}_{2}$ indicate that, while the convective heating decreases, the radiative heating increases with
increasing body nose radius. Specific resulte obtained for more recent trajectory (Trajectory VI with freesstrean gas compoaition of $98 \% \mathrm{~N}_{2}+2 \pi$ CR_{4}) indicace that radiative heating becones comparable to the convective heating in the far downstream region of the aerocapture vehicle.

Results of slip conditions (for the recent trajectory with free atream gas composition of $\left.98 \% N_{2}+2 \% \mathrm{CH}_{4}\right)$ clearly indicate that both body and shock slip ere important in influencing the ehock-layer flow phenomena for high-altitude conditions. As such, these should be considered in determir ing the extent of heating rates to the aerocapture vehicle at higher entry altitudes.

For further study, it is augested to consider the influence of chemical as well as radiative nonequilibrium in analyzing the aerothermal envir oment of the aerocapture vehicle. At this time, it might be advisable also to include the effecte of thickness and concentration slip. However, during moat of the heating pulse, this atudy indicates that accurate results can be obtained without including slip boundary conditions while using the assumption of equilibrium flow.

REPERENCES

1. French, J.R.; and Cruz, M.I.: Nerobreaking and Aerocapture for Planetary Misaiona. Astronautica and Aeronautica, Feb. 1980, pp. 48-71.
2. Cruz, M.I.: Aerocapcure Vehicle Mission Design Concept. AIAA Paper 79-0893, May 1979.
3. Cruz, M.I.: Aerocapture Vohicle Miesion Design Concepte for the Inner and Outer Planets. AIM Paper 79-115, June 1079.
4. Armento, R.P.: Mars Aerocapture Vehicle Definition Study Fital Report. G.E. Document No. 798 R 2258 , Sept. 1979.
5. Cruz, M.I.: Techwology Requirements for aeneric Aerocapture Syatem. AIAA Paper 80-1493, July 1980.
6. Florence, D.E.: Aerotherwodynamic Desig: Feasibility of a Mars Aarocapture/Aeromener Vehicle. AIMA Paper 81-0350, Jan. 1981.
7. Golden, F.: Visit to Lerge Plenet: A Thousand Rings lound Saturn, Icy Moons and Lakes of Liquid Nitrogen. Time Magazine, Vol. 116, No. 21, Nov. 24, 1980, pp. 32-41.
8. Bird, R.B.; Stewart, W.E.; and Lightfoot, E.N.: Tranaport Fhenomena. John Wiley \& Sons, Inc. (N.Y.), 1960.
9. Williams, Forman A.: Combustion Theory. Addison-Wesley Pub. Co., Inc. 1965.
10. Davis, R.T.: Numerical Solution of the Hypersonic Viscous-Shock-Layer Equations. AlAA J., Vol. 8, May 1970, pp. 843-845.
11. Mose, J.N.: Stagnation and Domastream Viscous-Shock-Layer Solution with Rediation and Coupled Ablation Injection. AIMA Paper 74-73, Jan. 1974; also AIAA J., Vol. 14, Sept. 1976, pp. 1311-1317.
12. Tiwari, S.N.; and Szeme, K.Y.: Influence of Precursor Heating on Viscous flow Around a Jovian Entry Body. Progress in Astronautice and Aeroasutics: Outer Planet Entry Heating and Thermal Protection. Vol. 64, edited by R. Viskanta, AIM. (N.Y.), 1979, pp. 80-107.
13. Moss, J.N.: Reacting Viscous-Shock-Layer Solutions with Multicomponent Diffusion and Mass Injection. NASA TR-411, June 1974.
14. Shidlovakiy, V.P.: Introduction to Rarefield Gases. American Elaevier Publishing Company, Inc. (N. Y.), 1967.
15. Patterson, G.N.: Molecular Flow Gases. John Wiley and Sons, Inc. (N.Y), 1965.
16. Street, R.E.: Pruilem of Slip Flow in Aerodynamics. NASA RM S-7Aj0, 1957.
17. Scott, C.D.: Reacting Shock Layer with Slip and Catalytic Boundary Condition. ALAA J., Vol. 13, Oct. 1957, pp. 1271-1278.
18. Esch, D.D.; Siripong, A.; and Pike, R.W.: Thermodynamic Properties in Polynomial Form for Carbon, Hydrogen, Nitrogen, and Oxygen Systems From 300 to 15,000 K. NASA CR-111989, Nov. 1970.
19. Stroud, C.W.; and Brinkley, K.L.: Chemical Equilibrium of Ablation Materials Including Condensed Species. NASA TN D-5391, Aug. 1969.
20. Vincenti, W.G.; and Kruger, C.H.: Introduction to Physical Gas Dynamics. John Wiley and Sons, 1965.
21. Sparrow, E.M.; and Cess, R.D.: Radiation Heat Transfer. Brooks/Cole Publishing Co. (Belment, Calif.), 1966.
22. Nicolet, W.E.: User's Manual for the Generalized Radiation Transfer Code (RAD/EQUIL). NASA CR-116353, Oct. 1969; also User's Manial for RAD/EQIL/1973, A General Purpose Radiation Transport Program. NASA CR132470, Nov. 1973.
23. Kao, Hsiao C.: Hypersonic Viscous Flow Near the Stagnation Streamline of a Blunt Body. I-A Test of Local Similarity, AIAA J., Vol. 2, No. 11, Nov. 1964, pp. 1892-1897.
24. Tiwari, S.N.; and Szema, K.Y.: Effects of Precursor Heating on Radiative and Chemically Reacting Visc Jus Flow Around a Jovian Entry Body. NASA CR-3186, Oct. 1979.

PRECEDING PAGE BLANK NOT FILMED

Table 1. Constant for polynomial approximations of ther

SPECIES	a_{1}	a_{2}	a_{3}	a_{4}	as	$\mathbf{a b}_{6}$	a]	T
N	.2503E+01	-. 2180E-04						
	$.2450 \mathrm{E}+01$	$.1066 \mathrm{E}-03$	$.5420 \mathrm{E}-07$ $-.7465 \mathrm{E}-07$	$-.5647 \mathrm{E}-10$ $.1879 \mathrm{E}-10$. $2099 \mathrm{E}-13$. $560989 \mathrm{E}+05$.4167E+01	300
	.2748E+01	$-.3909 \mathrm{E}-03$	$-.7465 \mathrm{E}-07$ $.1338 \mathrm{E}-06$.1879E-10	-. $1025 \mathrm{E}-14$	$.561160 \mathrm{E}+05$.4448E+01	300 1000
					5	$.560900 \mathrm{E}+05$	$.2872 \mathrm{E}+01$	6000
N_{2}	$.3674 \mathrm{E}+01$	-. 1208E-02	. $2324 \mathrm{E}-05$	-.6321E-09				
	-. 2896E+01	.1515E-02	-. $5723 \mathrm{E}-06$	$.6321 E-09$ $.9980 \mathrm{E}-10$	-. $2257 \mathrm{E}-12$	-. $106116 \mathrm{E}+04$	$.2358 \mathrm{E}+01$	300
	. $3727 \mathrm{E}+01$. $4684 \mathrm{E}-03$	-. $1140 \mathrm{E}-06$	$.9980 \mathrm{E}-10$ $.1154 \mathrm{E}-10$	-. $6522 \mathrm{E}-14$	-.905862E+03	.6161E+01	1000
N^{+}	. 2727E+01					04300E+04	. $1294 \mathrm{E}+01$	6000
	.2727E+01	$-.2820 E-03$ $-.2820 E-03$.1105E-06	-. $1551 \mathrm{E}-10$.7847E-15	. 225400E+06	. $3645 \mathrm{E}+01$	300
	. 2499E+01	$-.3725 \mathrm{E}-05$.1105E-06	-. $1551 \mathrm{E}-10$.7847E-15	. $225400 \mathrm{E}+06$. $3645 \mathrm{E}+01$	1000
				-.1102E-11	.30788-16	.225400E+06	$.4950 \mathrm{E}+01$	6000
C	. 2532E+01	-. 1588E-03	. $3068 \mathrm{E}-06$	-.26778-09				
	. $2581 \mathrm{E}+01$	-. 1469E-03	.7438E-07	-. $7948 \mathrm{E}-11$.8748E-13	$.852404 \mathrm{E}+05$	$.4606 \mathrm{E}+01$	300
	.2141E+01	. $3219 \mathrm{E}-03$	-. 5498E-07	. $3604 \mathrm{E}-11$	$.5890 \mathrm{E}-16$ $-.5564 \mathrm{E}-16$	$.852163 \mathrm{E}+05$ $.854200 \mathrm{E}+05$.4312E+01	1000
C_{2}	. $7451 \mathrm{E}+01$	-. 1014E-01					.6874E+01	6000
	. $4043 \mathrm{E}+01$	$.2057 \mathrm{E}-03$.8587E-05	.8732E-09	-. 2442E-11	.989:20E+05	-. $1584 \mathrm{E}+02$	300
	. $4026 \mathrm{E}+01$.4857E-03	. $.7026 \mathrm{E}-07$	-. 3642E-10	. 3412E-14	.997095E+05	.1277E+01	1000
				4666E	. $1142 \mathrm{E}-13$.978700E+05	$.1090 \mathrm{E}+01$	6000 K
C_{3}	$.5740 \mathrm{E}+01$	-.8428D-02	.1862E-04	-. $1451 \mathrm{E}-07$				6000 K
	-3681E+01	. 2416E-02	-.8434E-06	. $1450 \mathrm{~F}-09$	-.3967E-11	.971575E+05	-. 2383E+01	300 K
	. 2213E+01	-. 1759E-01	. $5565 \mathrm{E}-05$	-. $6758 \mathrm{E}-09$	-.9569E-14	. $974140 \mathrm{E}+05$.6837E+01	1000 K
C^{+}	. $2595 \mathrm{E}+01$.942300E+05	-. $1021 \mathrm{E}+03$	6000 R
	.2511E+01	. 4068	.6892E-06	-. 5266E-09	. 1508E- 12	.216663E+06	8895	
	.2528E+01	. $4869 \mathrm{E}-05$. 9504	-.2218E-11	.1862E-15	.216677E+06	. $4286 \mathrm{E}+01$	300 K
			-.9816E-05	$.6537 \mathrm{E}-08$	-. 3476E-16	.216800E+06	$.4286 \mathrm{E}+01$ $.4139 \mathrm{E}+01$	6000 K
$\mathrm{C}_{2} \mathrm{H}$	$\begin{aligned} & .2649 E+01 \\ & .4420 E+01 \\ & .5307 E+01 \end{aligned}$	$\begin{aligned} & .8491 E-02 \\ & .2211 E-02 \\ & .8966 E-G 3 \end{aligned}$					-41398+01	
			-.5929E-06	$\begin{aligned} & .6537 \mathrm{E}-08 \\ & .9419 \mathrm{E}-10 \end{aligned}$	$-.1735 \mathrm{E}-11$	$.562758 \mathrm{E}+05$	$.7689 \mathrm{R}+01$	300 K
			-. 1378E-06	. $9419 \mathrm{E}-10$	-.6852E-14	. $558354 \mathrm{E}+05$	-. $1158 \mathrm{E}+01$	1000 K
			-.1378 06	-9251E-11	-.2278E-15	. $580900 \mathrm{E}+05$	-.5288E+01	6000 K

SPECIES	a_{1}	a_{2}	as	a4	a_{3}	a_{6}	97	T
$\mathrm{C}_{2} \mathrm{H}_{2}$. 1410E+01	. $1905 \mathrm{E}-01$	-. 2450E-04	. 1639E-07	-. $4134 \mathrm{E}-11$.261882E+05	.1139E+02	300 R
	$.4575 \mathrm{E}+01$. $5123 \mathrm{E}-02$	-. $1745 \mathrm{E}-05$.2867E-09	-. $1795 \mathrm{E}-13$.256074E+05	-. $3573 \mathrm{E}+01$	1000 K
	$.6789 E+01$.1503E-02	-. 2295E-06	. 1534E-10	-. $3763 \mathrm{E}-15$.259000E+05	-. $1539 \mathrm{E}+02$	6000 K
$\mathrm{C}_{3} \mathrm{H}$. $3344 \mathrm{E}+01$. $1068 \mathrm{E}-01$	-. $1331 \mathrm{E}-04$.1338E-07	-. 5698E-11	. $625819 \mathrm{E}+05$.6000E+01	300 K
	-. $3877 \mathrm{E}+01$.6724E-02	-. 2605E-05	.4416E-09	-. 2708E-13	.625643E+05	. 3826E+01	1000 k
	. 3877E+01	. $6724 \mathrm{E}-02$	-. $2605 \mathrm{E}-05$.4416E-09	-. 2708E-13	. $635643 \mathrm{E}+05$. $3826 \mathrm{E}+01$	6000 K
$\mathrm{C}_{4} \mathrm{H}$.4968E+01	.1727E-01	-. 2994E-04	. $3246 \mathrm{E}-07$	-. $1366 \mathrm{E}-10$. $754546 \mathrm{E}+05$	$-.8769 \mathrm{E}+00$	300 K
	.6531E+01	.6506E-02	-. $2251 \mathrm{E}-05$.3329E-09	-. $1721 \mathrm{E}-13$.753505E+05	$-.7446 \mathrm{E}+01$	1000 K
	.6531E+01	.6506E-02	-. $2251 \mathrm{E}-05$.3329E-09	-. $1721 \mathrm{E}-13$. $753504 \mathrm{E}+05$	-I	6000 K
CN	. $3738 \mathrm{E}+01$	-. 1923E-02	. $4703 \mathrm{E}-05$	-. 3111E-08	.6167E-12	. $512709 \mathrm{E}+05$. $3449 \mathrm{E}+01$	300 K
	. $3603 \mathrm{E}+01$. $3364 \mathrm{E}-03$.1002E-06	-. 1631E-10	-. 3628E-15	. $511598 \mathrm{E}+05$. $3545 \mathrm{E}+01$	1000 K
	. $3473 \mathrm{E}+01$.7337E-03	-.9088E-07	.4847E-11	-. 1018E-15	. $542000 \mathrm{E}+05$.4152E+01	6000 K
H	.2500E+01	0.	0.	0.	0.	. $254716 \mathrm{E}+05$	-. $4601 \mathrm{E}+00$	300 K
	. 2500E+01	0.	0.	0.	0.	.254716E+05	$-.4601 E+00$	1000 K
	. $2475 \mathrm{E}+01$. $7366 \mathrm{E}-04$	-. 2537E-07	.2386E-11	-. $4551 \mathrm{E}-16$.252363E+05	$-.3749 \mathrm{E}+00$	6000 K
H_{2}	. $3057 \mathrm{E}+01$. 2676E-02	-. 5809E-05	. $5521 \mathrm{E}-08$	-. 1812E-11	$-.988905 \mathrm{E}+03$	-. 2299E+01	300 K
	.3100E+01	. $5111 \mathrm{E}-03$.5264E-07	-.3491E-10	. $3694 \mathrm{E}-14$	-.877380E+03	-. 1962E+01	1000 K
	. $3363 \mathrm{E}+01$.4656E-03	.5127E-07	.2802E-11	-. $4905 \mathrm{E}-16$	-. 101800E+04	-. 3716E+01	6000 K
\mathbf{H}^{+}	. 2500E+01	0.	0.	0.	0.	.184033E+06	-. 1153E+01	300 K
	. 2500E+01	0.	0.	0.	0.	.184033E+06	-. $1153 \mathrm{E}+01$	1000 K
	. 2500E+01	0.	0.	0.	0.	. $184033 \mathrm{E}+06$	-. $1153 \mathrm{E}+01$	6000 K
HCN	. $2451 \mathrm{E}+01$.8720E-02	-. 1009E-04	.6725E-08	-. 1762E-11	. $152130 \mathrm{E}+00$. $5080 \mathrm{E}+02$	300 R
	. $3706 \mathrm{E}+01$. $3338 \mathrm{E}-02$	-. $1191 \mathrm{E}-05$.1999E-09	-. $1282 \mathrm{E}-13$.149626E+05	.2079E+01	1000 K
	.3706E+01	. $3338 \mathrm{E}-02$	-. 1191E-05	.1999E-09	-. 1282E-13	. $149626 \mathrm{E}+05$.2079E+01	6000 K
E-	.2500E+01	0.	0.	0.	0.	-. $745375 \mathrm{E}+03$	-. $1173 \mathrm{E}+02$	300 R
	.2500E+01	0.	0.	0.	0.	-. $745375 \mathrm{E}+03$	-. $1173 \mathrm{E}+02$	1000 K
	$.2508 \mathrm{E}+01$	$-.6332 \mathrm{E}-05$. $1364 \mathrm{E}-08$	-. 1094E-12	.2934E-17	$-.754000 E+03$	$-.1208 \mathrm{E}+02$	6000 R

Table 2. Viscosity and thermal conductivity constants.

SPECIES	b_{1}	b_{2}	bs	c1	c2
N	. 253000E-05	. 220600E-07	-. 373700E-12 *	.128100E-04	.859300E-08
N_{2}	.9.0000®-05	. 161300E-07	-. 191600E-12 *	.654000E-05	.645700e-08
N^{+}	0.	. 500000E-08	-. 100000E-12*	.2600008-03	0.
C	.199700E-04	.177200E-07	-. 337800E-12 *	. 250600E-04	.7479008-08
C_{2}	.193100E-04	.139300E-07	-. 257500E-12 *	.859000E-05	.623300E-08
C_{3}	.201900E-04	.117900E-07	-. 165500E-12 *	.630000E-05	. 580400E-08
C^{+}	0.	. 500000E-08	-. 100000E-12*	.260000E-03	0.
$\mathrm{C}_{2} \mathrm{H}$.240400E-04	. 136300E-07	-. 218400E-12*	. 112600E-04	.743900E-08
$\mathrm{C}_{2} \mathrm{H}_{2}$. 139600E-04	.842000E-08	-. 693900E-12 *	. 112600E-04	.743900E-08
$\mathrm{C}_{3} \mathrm{H}$.201900E-04	.1179008-07	-. $165500 ¢-12$ *	.630000E-05	. $580400 \mathrm{E}-08$
$\mathrm{CH}_{4} \mathrm{H}$. 201900E-04	.117900E-07	-. 165500E-12 *	.630000E-05	.580400E-08
CN	. 240400E-04	.136300E-07	-. 218400E-12*	. $859000 \mathrm{E}-05$.623300E-08
H	. 294000E-05	. 889000E-08	-.811000E-03 *	.249600E-04	. $512900 \mathrm{E}-07$
H^{2}	-. $790000 \mathrm{E}-06$. 791000\%-08	-.886000E-13 *	. 321100E-04	. $534400 \mathrm{E}-07$
H^{+}	0.	. 500000E-08	-. $100000 \mathrm{E}-12$ *	.260000E-03	0.
HCN	.137800E-04	.965000E-08	-.948000E-13 *	.486000E-05	. 580400E-08
E	0 .	. $500000 \mathrm{E}-08$	-. $100000 \mathrm{E}-12$ *	. 260000E-03	0.

Table 3. Altitude and free-stream conditions: Trajectory I $\left(L / D=1.2, Y=-45^{\circ}, B=800 \mathrm{~kg} / \mathrm{m}^{2}, U_{E}=10 \mathrm{~km} / \mathrm{s}\right)$.

TIME (s)	ALTITUDE (km)	$\begin{gathered} \rho_{\infty_{3}} \\ (\mathrm{~g} / \mathrm{cm}) \end{gathered}$	$\begin{gathered} \rho_{\infty} \\ (m b) \end{gathered}$	T_{∞} (K)		MACH NO.
40	230.965	0.1265E-6	0.10355	159.10	9.929	29.13
50	169.824	$0.3473 \mathrm{E}-6$	0.24562	139.44	9.803	30.72
60	114.238	0.1022E-5	0.64627	119.17	9.431	31.90
70	70.409	0.3197E-5	1.5836	103.16	8.448	30.78
78	50.922	0.5157E-5	2.5901	96.28	7.185	27.10
90	48.539	0.5512E-5	2.7449	95.56	5.502	20.83
100	60.654	0.3944E-5	1.9738	99.26	4.727	17.56
150	95.613	0.1604E-5	0.89555	112.46	3.406	11.89
220	173.831	0.3728E-6	0.23159	140.84	3.015	9.40

Table 4. Altitude and free-stream conditions: Trajectory II $\left(\mathrm{L} / \mathrm{D}=1.2, \gamma=-25^{\circ}, \beta=800 \mathrm{~kg} / \mathrm{m}^{2}, \mathrm{U}_{\mathrm{E}}=10 \mathrm{~km} / \mathrm{s}\right)$.

TIME (B)	ALTITUDE (km)	$\left(\begin{array}{c} \rho_{\infty_{3}} \\ \left(g / \mathrm{cm}^{m}\right) \end{array}\right.$	$\begin{gathered} \rho_{\infty} \\ (m b) \end{gathered}$	T_{∞} (K)	$\begin{gathered} V_{\infty} \\ (\mathrm{km} / \mathrm{s}) \end{gathered}$	MACH NO.
50	321.264	0.3952x-7	0.3249E-1	160.00	9.953	29.11
100	213.217	0.1654E-6	$0.1335 \mathrm{E}+0$	155.60	9.689	28.74
110	198.471	0.2063E-6	$0.1638 E+0$	150.30	9.583	28.91
120	185.306	0.2694E-6	$0.1967 \mathrm{E}+0$	145.10	9.451	29.03
130	173.617	0.3288E-6	$0.2323 E+0$	140.76	9.286	28.96
140	163.335	$0.3812 \mathrm{E}-6$	$0.2683 \mathrm{E}+0$	137.16	9.100	28.75
150	154.339	0.4687E-6	$0.3139 \mathrm{E}+0$	134.02	8.889	28.41
170	141.502	0.6712E-6	$0.3909 \mathrm{E}+0$	129.53	8.358	27.18
175	139.412	0.7052E-6	$0.4053 \mathrm{E}+0$	128.79	8.210	26.77
180	137.610	$0.7213 \mathrm{E}-6$	$0.4215 \mathrm{E}+0$	128.16	8.062	26.36
200	130.832	0.7855E-6	$0.4875 E+0$	125.79	7.445	24.73

Table 5. Altitude and free-stream conditions: Trajectory III $\left(L / D=1.2, Y=-45^{\circ}, B=800 \mathrm{~kg} / \mathrm{m}^{2}, U_{E}=6 \mathrm{kco} / \mathrm{s}\right)$.

TIME (s)	altitude (km)	$\begin{gathered} \rho_{\omega_{3}} \\ (\mathrm{~g} / \mathrm{cm}) \end{gathered}$	$\underset{(m b)}{\rho_{\infty}}$	$\begin{aligned} & \mathrm{T}_{\boldsymbol{\infty}} \\ & (\mathrm{K}) \end{aligned}$	$\underset{(\mathrm{km} / \mathrm{s})}{V_{\infty}}$	MACH ill
90	144.674	0.6142E-6	0.3719	130.00	5.847	18.93
100	111.891	0.1076E-5	0.6732	118.70	5.681	19.29
110	83.284	0.2349E-5	1.1359	108.10	5.379	19.14
120	61.655	0.38j9E-5	1.9338	99.60	4.872	18.06
129	49.822	$0.5318 \mathrm{c}-5$	2.6615	95.90	4.327	16.35
140	45.041	0.6079E-5	2.9723	94.50	3.690	14.04
150	47.699	$0.5643 \mathrm{E}-5$	2.7995	95.30	3.245	12.30
160	54.496	0.4666E-5	2.3577	97.30	2.934	11.01
170	63.709	0.3693E-5	1.8516	$\cdot 100.50$	2.724	10.05

Table 6. Altitude and free-stream conditions: Trajectory IV $\left(L / D=1.2, Y=-45^{\circ}, B=800 \mathrm{~kg} / \mathrm{m}^{2}, U_{E}=8 \mathrm{~km} / \mathrm{s}\right)$.

TIME (s)	ALTITUDE (km)	$\begin{gathered} \rho_{\infty_{3}} \\ (\mathrm{~g} / \mathrm{cm}) \end{gathered}$	$\begin{gathered} \rho_{\infty} \\ (m b) \end{gathered}$	T_{∞} (K)	$\underset{(\mathrm{km} / \mathrm{s})}{\mathrm{V}_{\infty}}$	MACH NO.
60	181.218	0.2927E-6	0.2070	143.48	7.883	24.35
70	134.830	0.7469E-6	0.4464	127.19	7.709	25.30
80	93.931	0.16898-5	0.9283	111.87	7.329	25.63
90	63.296	0.3726E-5	1.868	100.32	6.515	24.07
97	50.882	0.5162E-5	2.59\%	96.26	5.783	21.81
110	46.913	0.5768E-5	2.850	95.07	4.554	17.28
120	54.841	0.4621E-5	2.335	97.17	3.961	14.84
130	67.354	$0.3413 \mathrm{E}-5$	1.706	101.94	3.603	13.20
150	98.351	$0.1473 E-5$	0.8421	113.42	3.240	11.25

Table 7. Altitude and freestream conditions: Trajectory V $\left(L / D=1.2, \gamma=-45^{\circ}, \beta=800 \mathrm{~kg} / \mathrm{m}^{2}, \mathrm{U}_{\mathrm{E}}=13 \mathrm{~km} / \mathrm{s}\right)$.

TIME (s)	ALTITUDE (km)	$\begin{gathered} \rho_{\omega_{3}} \\ \left(\mathrm{~g} / \mathrm{cm}_{\mathrm{m}}\right) \end{gathered}$	$\begin{gathered} \rho_{\infty} \\ (m b) \end{gathered}$	T_{∞} (K)	$\begin{gathered} \mathbf{V}_{\infty} \\ (\mathrm{km} / \mathrm{m}) \end{gathered}$	MACH NO.
30	237.512	0.1143E-6	0.0937	159.75	12.905	37.77
40	158.551	0.4165E-6	0.2887	135.49	12.672	40.28
50	90.769	0.1863E-5	0.9899	110.77	11.777	41.40
60	51.374	$0.5092 \mathrm{E}-5$	2.560	96.41	9.361	35.28
61	49.676	0.5339E-5	2.671	95.90	9.084	34.33
70	49.557	$0.5357 \mathrm{E}-5$	2.678	95.86	7.047	26.64
80	67.533	0.3401E-S	1.698	102,01	5.912	21.66
100	101.803	$0.1345 \mathrm{E}-5$	0.7892	114.72	5.083	17.56
120	124.659	0.8488E-6	0.5381	123.63	4.762	15.84

Table 8. Altitude and free-stream conditions: Trajectory VI $\left(L / D=1.4, \gamma=-36^{\circ}, \beta=800 \mathrm{~kg} / \mathrm{m}^{2}, U_{E}=12 \mathrm{~km} / \mathrm{s}\right)$.

TIME (a)	ALTITUDE (km)	$\begin{gathered} \rho_{\omega_{3}} \\ (\mathrm{~g} / \mathrm{cm}) \end{gathered}$	$\underset{(m b)}{\rho_{a}}$	T. (K)	$\underset{(\mathrm{km} / \mathrm{s})}{V_{\infty}}$	$\begin{aligned} & \text { MACH } \\ & \text { NO. } \end{aligned}$
10	531.004	0.1282E-08	0.846E-03	177	11.994	44.09
15	497.656	0.2366E-08	0.185E-02	$177{ }^{\circ}$	11.996	44.10
20	465.115	0.4441E-08	0.432E-02	177	11.997	44.11
30	402.595	0.1489E-07	0.904E-02	177	11.995	44.10
60	241.838	0.4396E-06	0.42798	177	11.664	42.88
70	204.570	0.1019E-05	0.7567	177	11.096	40.79
73	196.349	0.1227E-05	0.8292	177	10.843	39.86
77	187.956	0.1483E-05	0.9033	177	10.459	38.45
81	182.652	0.1672E-05	0.9501	177	10.043	36.92
90	181.525	0.1715E-05	0.9600	177	9.144	33.62
100	192.414	0.13418-05	0.8640	177	8.405	30.90
110	200.836	0.11098-05	0.7897	177	7.902	29.05
120	204.913	0.1012E-05	0.7537	177	7.510	27.61
130	205.759	0.9926E-06	0.7462	177	7.175	26.37

Table 9. Free-strean thermodynamic values for different gas compositions.

MOLE PRACTION	MIXTURE molecular WEIGHT (\bar{M})	MIXTURE SPECIPIC $\left(\mathrm{ft}{ }^{2} / \mathrm{HE}^{\text {HEAT }}-\mathrm{R}\right)$	mixture ENTHALPY (Btu/lbu)
10\% $\mathrm{N}_{4}+90 \% \mathrm{CH}_{4}$	17.238	11816.0	1935.22
25\% $\mathrm{N}_{2}+75 \% \mathrm{CH}_{4}$	19.035	10884.6	1622.04
$50 \% \mathrm{~N}_{2}+50 \% \mathrm{CH}_{4}$	22.030	9326.5	1103.42
75\% $\mathrm{N}_{2}+25 \% \mathrm{CH}_{4}$	25.025	7771.2	584.80
$90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$	26.822	6836.5	273.62
$98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$	27.780	6338.2	107.66
$99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$	27.960	6235.2	76.54

Table 10. Stagnation results (aphere cone, $\mathbb{R}_{\mathrm{N}}=0.2 \mathrm{~m}, \mathrm{~T}_{\mathrm{w}}=2,000 \mathrm{~K}$): atmosphere $-99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$, Trajectory I .
(a)

$\begin{aligned} & \text { TIME } \\ & (-) \end{aligned}$	$\begin{gathered} \rho_{\infty} \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \mathbf{P}_{\mathrm{B}} \\ (\mathrm{~atm}) \end{gathered}$	ρ_{s} / ρ_{∞}	T (K)	$\begin{aligned} & n_{s} \\ & (\mathrm{~cm}) \end{aligned}$	$\begin{gathered} q_{c, \infty} \\ \left(M W / w^{2}\right) \end{gathered}$	$\begin{gathered} q_{r, W} \\ \left(M W / m^{2}\right) \end{gathered}$
40	0.126x-3	0.1163	18.13	8508	0.7963	5.783	0.0044
50	$0.3473 \mathrm{E}-3$	0.3112	17.93	8498	0.8241	8.558	0.0155
60	0.1022E-2	0.8473	17.76	8262	0.8381	12.265	0.0576
70	0.3197E-2	2.1194	16.75	7902	0.8927	14.818	0.2391
78	0.5157E-2	2.4560	15.08	7354	1.0011	11.188	0.3136
90	0.5512E-2	1.5121	12.10	6412	1.2341	4.688	0.2249
100	0.3944E-2	0.7888	10.48	5813	1.4109	2.290	0.1387

Table 10. (Concluded.)
(b)

TIME (s)	$\begin{gathered} h_{w} \\ \left(k J / k_{g}\right) \end{gathered}$	$\begin{gathered} h_{s} \\ (k J / k g) \end{gathered}$	St	Re
40	$2.0458+03$	48.7995+03	0.97978-01	$0.1065+04$
50	$2.045 \mathrm{E}+03$	47.6298+03	0.54978-01	$0.2867 \mathrm{E}+04$
60	$2.045 \mathrm{E}+03$	44.0828 +03	0.3013-01	$0.8317 \mathrm{t}+04$
70	$2.045 \mathrm{E}+03$	$35.275 \mathrm{E}+03$	0.1640E-01	$0.2438 \mathrm{E}+05$
78	2.04.54 +03	25.445E+03	0.1280z-01	0.37832+05
90	$2.045 \mathrm{E}+03$	$14.799 \mathrm{E}+03$	0.1200E-01	$0.3679 \mathrm{E}+05$
100	$2.045 \mathrm{E}+03$	10.873E +03	0.1374E-01	$0.25132+05$

Table 11. Stagnation reaults (aphere cone, $R_{N}=0.2 \mathrm{~m}, \mathrm{~T}_{\mathrm{w}}=2,000 \mathrm{~K}$): atmosphere $-99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$, Trajectory III.

Table 11. (Concluded.)
(b)

T DME (8)	$\begin{gathered} h_{w} \\ (k J / k g) \end{gathered}$	$\begin{gathered} h_{8} \\ (k J / k g) \end{gathered}$	St	Re
90	$2.045 E+03$	16.764E+03	0.3820 -01	$0.45335+04$
100	$2.045 \mathrm{E}+03$	$15.840 \mathrm{E}+03$	$0.2844 \mathrm{E}-01$	$0.7693 \mathrm{E}+04$
110	$2.045 \mathrm{E}+03$	$14.161 \mathrm{E}+03$	0.1876E-01	$0.1598 \mathrm{E}+05$
120	$2.045 \mathrm{E}+03$	$11.550 \mathrm{E}+03$	$0.1406 \mathrm{E}-01$	$0.2488 \mathrm{E}+05$
129	2.045E+03	$9.045 \mathrm{E}+03$	0.1135E-01	$0.3262 \mathbb{T}+05$
140	$2.045 \mathrm{E}+03$	$6.512 \mathrm{E}+03$	$0.9842 \mathrm{E}-02$	$0.3618 \mathrm{E}+05$
150	2.045E+03	$4.982 E+03$	0.9514E-02	$0.3456 E+05$
160	$2.045 \mathrm{E}+03$	$4.038 \mathrm{E}+03$	0.9694E-02	$0.2984 \mathrm{E}+05$

Table 12. Stagnation results (sphere cone, $R_{N}=0.2 \mathrm{~m}, T_{w}=2,000 \mathrm{~K}$): atmosphere $-99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$, Trajectory IV.
(a)

TIME (s)	$\begin{gathered} \rho_{\infty} \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$	P_{8} (atm)	ρ_{8} / ρ_{∞}	T_{8} (K)	$\begin{aligned} & \mathbf{n}_{8} \\ & (\mathrm{~cm}) \end{aligned}$	$\begin{gathered} q_{C, W} \\ \left(\mathrm{MW} / \mathrm{m}^{2}\right) \end{gathered}$	$\begin{gathered} q_{r, W} \\ \left(M W / m^{2}\right) \end{gathered}$
60	0.2923E-03	0.1696	18.07	6658	0.8557	4.039	0.0047
70	0.7460E-02	0.4219	17.26	6942	0.8921	6.032	0.0191
80	0.1687E-02	0.8398	16.05	7004	0.9536	7.233	0.0589
90	0.3722E-02	1.4520	14.27	6866	1.0610	7.118	0.1549
97	0.5156E-02	1.5700	12.71	6561	1.1805	5.527	0.2061
110	0.57:0E-02	1.0640	9.95	5759	1.4780	2.385	0.2291
120	0.4616E-02	0.6349	8.67	5147	1.6800	1.205	0.1618
130	0.3410E-02	0.3844	8.03	4640	1.8060	0.667	0.1037

Table 12. (Concluded.)

(b)

TINE (8)	$\begin{gathered} h_{w} \\ (k J / k g) \end{gathered}$	$\begin{gathered} h_{s} \\ (k J / k g) \end{gathered}$	St	Re
60	$2.0455+03$	30.707E+03	0.6080E-01	$0.2475 \mathrm{E}+04$
70	$2.045 \mathrm{E}+03$	$30.027 \mathrm{E}+03$	0.3680E-01	$0.6063 E+04$
80	$2.0454+03$	26.496E+03	0.2970E-01	$0.13038+05$
90	$2.045 \mathrm{E}+03$	$20.873 \mathrm{E}+03$	$0.1540 \mathrm{E}-01$	$0.2681 \mathrm{E}+05$
97	$2.045 E+03$	$16.374 E+03$	0.1279E-01	$0.3516 E+05$
110	$2.045 \mathrm{E}+03$	$10.051 \mathrm{E}+03$	$0.1117 \mathrm{E}-01$	$0.3588 \mathrm{E}+05$
120	2.045E+03	$7.534 \mathrm{E}+03$	0.1174E-01	$0.2784 \mathrm{E}+05$
130	$2.045 \mathrm{E}+03$	$6.193 E+03$	$0.1275 E-01$	$0.2050 \mathrm{E}+05$

Table 13. Stagnation results (sphere cone, $R_{N}=0.2 \mathrm{~m}, T_{w}=2,000 \mathrm{~K}$): atmosphere $-99.5 \% \mathrm{~N}_{2}+0.5 \% \mathrm{CH}_{4}$, Trajectory V.
(a)

TIME (s)	$\begin{gathered} \rho_{\infty} \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$		ρ_{8} / ρ_{∞}	$\begin{array}{r} T_{8} \\ (K) \end{array}$	\mathbf{n}_{8} (cm)	$\begin{gathered} q_{c, w} \\ \left(\mathrm{MW} / \mathrm{m}^{2}\right) \end{gathered}$	$\begin{gathered} q_{r, W} \\ \left(M W / m^{2}\right) \end{gathered}$
30	0.1141E-03	0.1770	17.77	11938	0.8026	12.601	0.5307
40	0.416 LE-03	0.6200	16.70	12606	0.8689	21.193	3.5369
50	0.1860E-02	2.3840	15.55	12628	0.8778	31.959	9.6454
60	0.5086E-02	4.1380	16.67	8881	0.8786	24.967	1.0094
61	0.5333E-02	4.0860	16.64	8630	0.8866	23.314	0.8945
70	0.5350E-02	2.4490	14.87	7290	1.0150	10.687	0.3173
80	0.3397E-02	1.0850	13.18	6507	1.1430	4.881	0.1143
100	$0.1343 E-02$	0.3143	11.77	5791	1.2758	1.769	0.0327

Table 13. (Concluded.)

(b)

TIME (8)	$\begin{gathered} h_{w} \\ (k J / k g) \end{gathered}$	$\begin{gathered} h_{8} \\ (k J / k g) \end{gathered}$	St	Re
30	2.045E+03	82.571E+03	0.1056	$0.1451 E+04$
40	$2.045 \mathrm{E}+03$	$79.543 \mathrm{E}+03$	$0.5154 \mathrm{E}-01$	$0.4664 \mathrm{E}+04$
50	2.045E+03	$68.739 \mathrm{E}+03$	0.2175E-01	$0.1636 E+05$
60	$2.045 \mathrm{E}+03$	$43.342 \mathrm{E}+03$	$0.1261 \mathrm{E}-01$	$0.3902 \mathrm{E}+05$
61	$2.045 E+03$	40.801E +0?	0.1233E-01	0.4089 +05
70	$2.045 \mathrm{E}+03$	$24.443 \mathrm{E}+03$	$0.1255 \mathrm{E}-01$	$0.3898 \mathrm{E}+05$
80	$2.045 E+03$	$17.144 \mathrm{E}+03$	0.1595E-01	0.2371E+05
100	$2.045 \mathrm{E}+03$	$12.612 \mathrm{E}+03$	$0.24255 \mathrm{E}-01$	$0.9115 \mathrm{E}+04$

Table 14. Stagnation results (sphere cone, $\mathrm{K}_{\mathrm{N}}=0.2 \mathrm{~m}, \mathrm{~T}_{\mathrm{w}}=2,000 \mathrm{~K}$): atmosphere - 90\% $\mathrm{N}_{2}+10 \% \mathrm{CH}_{4}$.
(a)

TIME (8)	$\begin{gathered} \rho_{\infty} \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{s}} \\ (\mathrm{~atm}) \end{gathered}$	ρ_{s} / ρ_{∞}	$\begin{gathered} \mathrm{T}_{\mathrm{s}} \\ (\mathrm{~K}) \end{gathered}$	$\begin{aligned} & \mathrm{n}_{\mathrm{s}} \\ & (\mathrm{~cm}) \end{aligned}$	$\begin{gathered} q_{c, w} \\ \left(M W / \mathbb{m}^{2}\right) \end{gathered}$	$\begin{gathered} q_{r, w} \\ \left(\mathrm{MW} / \mathrm{m}^{2}\right) \end{gathered}$
	Atmosphere - 90\% $\mathrm{N}_{2}+10 \% \mathrm{CH}_{4}$, Trajectory I						
40	0.1265E-3	0.1165	18.56	7259	0.8029	5.247	0.0177
50	0.3473E-3	0.3112	17.95	7460	0.8440	8.126	0.0713
60	0.1022E-2	0.8455	17.15	7544	0.8880	11.637	0.3569
70	0.3197E-2	2.1108	15.74	7342	0.9619	13.498	2.0398
78	$0.515 \pi-2$	2.443	14.08	6733	1.0642	9.687	3.7697
90	0.5512E-2	1.512	12.10	5269	1.2120	3.543	3.8894
100	0.3944E-2	0.7999	12.10	4127	1.2208	1.683	1.5915

Atmosphere - $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$, Trajectory I

140	$0.3812 \mathrm{E}-3$	0.2942	17.78	6953	0.8586	6.437	0.0862
150	$0.4687 \mathrm{E}-3$	0.3449	17.49	6895	0.8731	6.523	0.1190
170	$0.6712 \mathrm{E}-3$	0.4355	16.75	6729	0.9111	6.242	0.2044
175	$0.705 \mathrm{E}-3$	0.4413	16.58	6665	0.9201	6.061	0.2206
180	$0.7213 \mathrm{E}-3$	0.4350	16.39	6596	0.9300	5.747	0.2287
200	$0.7855 \mathrm{E}-3$	0.4081	15.63	6330	1.9723	4.589	0.2728

Table 14. (Concluded.)
(b)

TIME (s)	$\begin{gathered} h_{w} \\ (k J / k g) \end{gathered}$	$\begin{gathered} h_{g} \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$	St	Re
	Atmosphere - 90\% $\mathrm{N}+10 \% \mathrm{CH}_{4}$, Trajectory I			
40	$2.877 \mathrm{t}+03$	48.397E +03	0.9140c-01	0.1221E+04
50	$2.877 \mathrm{E}+03$	47.175E+03	0.5365E-01	$0.3250 \mathrm{E}+04$
60	$2.877 E+03$	43.5955+03	0.2949E-01	0.92298+04
70	$2.877 \mathrm{E}+03$	$38.804 \mathrm{E}+03$	$0.1554 \mathrm{E}-01$	$0.2736 \mathrm{E}+05$
78	2.877E+03	$25.002 \mathrm{~F}+03$	0.1173E-01	0.4218E+05
90	$2.877 \mathrm{E}+03^{\text {. }}$	$14.347 \mathrm{E}+03$	0.1007E-01	$0.4460 \mathrm{E}+05$
100	$2.87 \pi+03$	$10.440 \mathrm{E}+05$	0.1182E-01	$0.34088+05$

Atmosphere $-90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$, Trajectory II

140	$2.877 \mathrm{E}+03$	$40.565 \mathrm{E}+03$	$0.4904 \mathrm{E}-01$	$0.3576 \mathrm{E}+04$
150	$2.877 \mathrm{E}+03$	$38.609 \mathrm{E}+03$	$0.435 \mathrm{E}-01$	$0.4358 \mathrm{E}+04$
170	$2.877 \mathrm{E}+03$	$34.094 \mathrm{E}+03$	$0.3545 \mathrm{E}-01$	$0.6097 \mathrm{E}+04$
175	$2.877 \mathrm{E}+03$	$32.835 \mathrm{E}+03$	$0.3470 \mathrm{E}-01$	$0.6378 \mathrm{E}+04$
180	$2.877 \mathrm{E}+03$	$31.651 \mathrm{E}+03$	$0.3411 \mathrm{E}-01$	$0.6494 \mathrm{E}+04$
200	$2.877 \mathrm{E}+03$	$27.239 \mathrm{E}+03$	$0.3175 \mathrm{E}-01$	$0.6941 \mathrm{E}+04$.

Table 15. Stagnation results (sphere cone, $R_{N}=0.2 \mathrm{~m}, T_{w}=2,000 \mathrm{~K}$): atmosphere $-90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$, Trajectory III.

$\begin{aligned} & \text { TIME } \\ & \text { (} \mathrm{B}) \end{aligned}$	kg/mis	$\begin{gathered} \mathrm{P}_{\mathrm{s}} \\ (\mathrm{~atm}) \end{gathered}$	ρ_{s} / ρ_{∞}	Ts (K)	$\begin{aligned} & \mathfrak{n}_{\mathrm{s}} \\ & (\mathrm{~cm}) \end{aligned}$	$\begin{gathered} q_{c, w} \\ \left(M W / w^{2}\right) \end{gathered}$	$\begin{gathered} q_{r, w} \\ \left(M W / \mathbf{m}^{2}\right) \end{gathered}$
90	0.61428-03	0.1917	13.24	5159	1.1301	1.661	0.2419
100	0.1076E-02	0.3164	12.81	5210	1.1614	1.907	0.5142
110	0.2349 -02	0.6168	12.31	4974	1.19:3	2.915	1.3768
120	0.3859E-02	0.8309	12.16	4297	1.2120	1.864	1.8469
129	0.5318E-02	0.8997	11.59	3771	1.2780	1.330	1.0832
140	0.6079E-02	0.7416	10.51	3232	1.4083	0.643	0.2475
150	0.564玉-02	0.5286	9.74	2790	1.5168	0.258	0.0349
160	0.4666E-02	0.3564	9.40	2397	1.5725	0.085	0.0027
170	0.3693E-02	0.2433	7.39	2081	1.5811	0.001	0.0001

Table 15. (Concluded.)
(b)

TIME (a)	$\begin{gathered} h_{W} \\ \left(k J / k_{g}\right) \end{gathered}$	$\begin{gathered} h_{s} \\ (k J / k g) \end{gathered}$	St	Be
90	$2.877+03$	16.307E+03	0.3417E-01	0.52135+04
100	$2.877 \mathrm{E}+03$	$15.366 \mathrm{E}+03$	0.2477E-01	0.8998E+04
110	2.8774+03	13.694E+03	0.1590E-01	0.1949E+05
120	$2.877 \mathrm{E}+03$	$11.116 \mathrm{E}+03$	0.11908-01	$0.3311 \mathrm{E}+05$
129	$2.877 \mathrm{E}+03$	$8.627 E+03$	$0.9913 \mathrm{E}-02$	0.4579E+05
140	$2.877 \mathrm{E}+03$	$6.099 \mathrm{E}+03$	0.8725E-02	$0.5154 \mathrm{E}+05$
150	$2.877 \mathrm{~F}+03$	$4.564 E+03$	0.8114E-02	0.4779 + 05
160	$2.877 \mathrm{E}+03$	$3.611 \mathrm{E}+03$	$0.7989 \mathrm{E}-02$	$0.4040 \mathrm{E}+05$
170	$2.877 \mathrm{E}+03$	$3.022 \mathrm{E}+03$	0.7906E-03	0.3311E+05

Table 16. Stagnation results (sphere cone, $R_{N}=0.2 \mathrm{~m}, T_{w}=2,000 \mathrm{~K}$): atmosphere - $90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$, Trajectory IV.

TIME (a)	$\begin{gathered} h_{w} \\ \left(\mathrm{~kg} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} P_{s} \\ (\mathrm{~atm}) \end{gathered}$	ρ_{s} / ρ_{0}	Ts (K)	$\begin{gathered} n_{s} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} q_{c, w} \\ \left(M W / m^{2}\right) \end{gathered}$	$\begin{gathered} q_{r, w} \\ \left(\mathrm{mw} / \mathrm{m}^{2}\right) \end{gathered}$
60	0.2927E-03	0.1689	16.81	6233	0.9092	3.458	0.0704
70	0.7469E-03	0.4199	16.06	6469	0.9482	5.197	0.2430
80	0.16898-02	0.8356	14.92	6468	1.0130	6.096	0.7787
90	0.37268-02	1.4447	13.37	6172	1.1155	5.753	2.4460
27	0.5162E-02	1.5660	12.33	5601	1.1946	4.219	3.8516
110	0.5786E-02	1.0828	11.83	4002	1.2498	1.647	1.7776
120	0.4621E-02	0.6529	11.09	3431	1.3387	0.780	0.4077
130	0.3414E-02	0.3972	10.53	3089	1.4118	0.389	0.1017
150	0.1473E-02	0.1381	10.03	2692	1.4921	0.107	0.0093

Table 16. (Concluded.)
(b)

TIME (s)	$\begin{gathered} h_{w} \\ (k J / k g) \end{gathered}$	$\begin{gathered} h_{s} \\ (k J / k g) \end{gathered}$	St	Re
60	$2.8778+03$	30.243E+03	0.5420E-01	0.27098+04
70	$2.877 \mathrm{E}+03$	29.538E +03	$0.3331 \mathrm{E}-01$	$0.6663 \mathrm{E}+04$
80	$2.8774+03$	26.032E+03	$0.2113 \mathrm{E}-01$	$0.1443 t+05$
90	2.877Efú3	20.401E+03	$0.1341 \mathrm{E}-01$	$0.3034 E+05$
97	$2.877 \pi+03$	$15.934 E+03$	0.1072E-01	$0.4140 \mathrm{E}+05$
110	$2.877 \mathrm{E}+03$	$9.632 \mathrm{E}+03$	$0.9168 \mathrm{E}-02$	$0.49508+05$
120	$2.87 \pi+03$	7.124E + 03	0.9871E-02	0.3974E+05
130	$2.877 \mathrm{E}+03$	$5.776 \mathrm{E}+03$	$0.1068 \mathrm{E}-01$	$0.2932 \mathrm{E}+05$
150	$2.877 \pi+03$	$4.574 E+03$	0.1308 -01	0.1277E+05

Table 17. Stagnation results (ephere cone, $K_{N}=0.2 \mathrm{~m}, T_{w}=2,000 \mathrm{~K}$): atmosphere $-90 \% \mathrm{~N}_{2}+10 \% \mathrm{CH}_{4}$, Trajectory V.
(a)

TIME (s)	$\begin{gathered} h_{w} \\ \left(\mathrm{~kg} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \mathbf{P}_{\mathbf{g}} \\ (\mathrm{atm}) \end{gathered}$	ρ_{8} / ρ_{∞}	T_{e} (R)	$\begin{gathered} \mathbf{n}_{\mathrm{g}} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} q_{C, w} \\ \left(M W / T^{2}\right) \end{gathered}$	$\begin{gathered} Y_{r}, W^{\prime} \\ \left(N W / m^{2}\right) \end{gathered}$
30	0.1143E-03	0.1765	16.68	11326	0.8531	11.458	0.3785
. 40	0.4165E-03	0.6177	15.73	11869	0.9243	19.458	2.2628
50	0.1863t-02	2.3770	14.93	11542	0.9876	31.222	6.2089
60	0.5092E-02	4.1260	15.96	8162	0.9483	23.683	4.0362
61	0.5339-02	4.0730	15.81	7973	0.9569	21.928	4.3607
70	0.5357E-02	2.4360	13.89	6650	1.0772	9.004	3.8994
80	$0.3401 \mathrm{E}-02$	1.0810	12.63	5650	1.1720	3.642	2.3153
100	0.1345E-02	0.3159	12.46	4468	1.1865	1.228	0.6681
120	0.3488E-03	0.1075	12.67	3949	1.1793	0.724	0.3268

Table 17. (Concluded.)
(b)

TINE (a)	$\begin{gathered} h_{w} \\ (k J / k g) \end{gathered}$	$\begin{gathered} h_{g} \\ (k J / k g) \end{gathered}$	St	Re
30	$2.87 \pi+03$	$82.095 t+03$	0.9763E-01	0.1349\% +04
40	$2.877 \mathrm{E}+03$	$79.105 \mathrm{E}+03$	0.4812E-01	$0.4394 \mathrm{E}+04$
50	2.877 +03	68.1985+03	0.2166t-01	$0.1616 E+05$
60	2.877E+03	$42.896 \mathrm{E}+03$	0.1235E-01	$0.4308 \mathrm{E}+05$
61	$2.877 E+03$	$40.3 \mathrm{~L} 1 \mathrm{E}+03$	0.11998-01	0.4505E+05
70	$2.877 \mathrm{E}+03$	24.00\% $\%+03$	0.1121E-01	$0.4358 \mathrm{E}+05$
80	$2.8774+03$	16.6828+03	$0.1300 \mathrm{E}-01$	$0.2756 \mathrm{t}+05$
100	$2.877 \mathrm{E}+03$	$12.1705+03$	$0.1917 \mathrm{E}-01$	$0.1158 \mathrm{E}+05$
120	2.877E+03	10.607E+03	0.2299-01	0. $70200+0.4$

Table 18. Stagnation reaults (sphere cone, $R_{N}=0.2 \mathrm{n}, \mathrm{T}_{\mathbf{w}}=2,000 \mathrm{~m}$): atmosphere $-90 \% \mathrm{~K}_{2}+10 \% \mathrm{CH}_{4}$, Trajectory VI.
(a)

TIME (s)	$\mathrm{kg} / \mathrm{m}^{3}$	$\begin{gathered} P_{s} \\ (\mathrm{~atm}) \end{gathered}$	ρ_{8} / ρ_{0}	T_{s} (k)	$\begin{gathered} \mathrm{n}_{\mathrm{s}} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} q_{c, v} \\ \left(\mathrm{M} w /{ }^{2}\right) \end{gathered}$	$\begin{gathered} \mathbf{q}_{\mathrm{r}, \mathrm{w}} \\ \left(\mathrm{HW} / \mathrm{m}^{2}\right) \end{gathered}$
60	0.4396E-03	0.5542	16.32	11512	0.8800	16.170	1.1565
70	0.1019 E :	1.1605	15.91	11160	0.8993	20.085	1.5266
73	0.122\%-22	1.3348	15.96	10799	0.8994	20.276	1.2076
77	0.14838-0.?	1.5028	16.24	10099	0.8904	19.715	0.6897
81	0.16725-02	1.5648	16.80	9241	0.8722	18.288	0.3535
90	0.17158-02	1.3340	17.34	8059	0.8666	14.078	0.2340
100	0.13418-0.2	0.8811	17.20	7422	0.8843	9.543	0.1415
110	0.11098-02	0.6433	16.87	7036	0.9055	7.171	0.1001
120	0.101E-02	0.5296	16.47	6835	0.9286	5.798	0.0866
130	0.9926E-03	0.4630	16.00	6664	0.9557	4.929	0.0813

Table 18. (Concluded.)
(b)

TIME (s)	$\begin{gathered} h_{w} \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \mathrm{h}_{\mathrm{s}} \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$	St	Re
60	$2.173 E+03$	67.396E+03	0.4813E-01	0.409 た+04
70	$2.173 \mathrm{E}+03$	$60.923 \mathrm{E}+03$	0.3007E-01	$0.8400 \mathrm{E}+04$
73	2.173E+03	58.343E+03	0.2707E-01	$0.9861 \mathrm{E}+04$
77	$2.173 \mathrm{E}+03$	$54.056 \mathrm{E}+03$	0.2434E-01	$0.1167 \mathrm{E}+05$
81	$2.173 E+03$	49.834E+03	0.227E-01	$0.132 \pi \mathrm{E}+05$
90	$2.173 \mathrm{E}+03$	$41.342 \mathrm{E}+03$	0.2282E-01	$0.1396 \mathrm{E}+05$
100	$2.173 \mathrm{~F}+03$	34.823E+03	0.2576E-01	0.109た+05
110	$2.173 \mathrm{E}+03$	$30.710 \mathrm{E}+03$	$0.2845 \mathrm{E}-01$	$0.9019 \mathrm{E}+04$
120	$2.173 E+03$	27.840E+03	0.2962E-01	$0.8154 \mathrm{E}+04$
130	$2.173 \mathrm{E}+03$	25.520E+03	0.2975E-01	$0.7894 \mathrm{E}+04$

Table 19. Downstream results (sphere cone, $R_{N}=0.2 \mathrm{~m}, \mathrm{~T}_{\mathrm{w}}=2,000 \mathrm{~K}$): atmosphere - $98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$, Trajectory VI, $\mathrm{Z}=196.3 \mathrm{~km}$, $\varepsilon=0.029$.
(a)

S/RN	$\begin{gathered} q_{c, w} \\ \left(M W / \mathbb{\mu}^{2}\right) \end{gathered}$	$\begin{gathered} \mathbf{N}_{\mathbf{s}} \\ (\mathrm{cm}) \end{gathered}$	$\frac{\text { Enthalpy }}{\text { wall }}$	$\frac{\left(\mathrm{kJ} / \mathrm{kg}_{\mathrm{g}}\right)}{\text { shock }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{s}} \\ & (\mathrm{~K}) \end{aligned}$	$\begin{aligned} & T_{W} \\ & (K) \end{aligned}$	ρ_{s} / ρ_{∞}	St
				NO SLIP				
0	22.14	0.9568	2177	58250	10799	2000	15.95	0.0295
0.1	21.17	0.9834	2177	57820	10724	2000	15.95	0.0282
0.2	20.91	0.9890	2177	56240	10440	2000	16.09	0.0279
0.3	20.11	1.0040	2177	53560	9904	2000	16.40	0.0268
0.4	18.70	1.0268	2177	50080	9161	2000	16.92	0.0249

BODY AND SHOCK SLIP

0	21.99	1.0001	2384	58250	10799	2149	15.95	0.0295
0.1	22.02	0.9743	2383	57940	10745	2149	15.91	0.0295
0.2	21.15	0.9963	2383	56410	10471	2157	16.04	0.0283
0.3	20.49	1.0181	2395	53780	9950	2159	16.33	0.0274
0.4	19.01	1.0455	2400	50370	9221	2167	16.83	0.0255

Table 19. (Concluded.)
(b)

s / R_{N}	$\begin{gathered} q_{c, w} \\ \left(M W / \Psi^{2}\right) \end{gathered}$	$\begin{gathered} \mathbf{N}_{\mathbf{s}} \\ (\mathrm{cm}) \end{gathered}$	Enthalpy (kJ/kg)		$\begin{array}{r} \mathrm{T}_{\mathbf{s}} \\ (\mathrm{K}) \end{array}$	T_{w} (K)	ρ_{8} / f_{∞}	St
			wall	shock				
				NO SLIP				
0	22.59	0.9386	2381	58330	10811	2151	15.93	0.0301
0.1	21.62	0.9616	2388	57720	10708	2152	15.98	0.0288
0.2	20.77	0.9793	2382	56200	10433	2149	16.09	0.0278
0.3	20.21	1.0060	2381	53580	9910	2150	16.40	0.0269
0.4	18.71	1.0430	2392	50250	9!.47	? 152	16.89	0.0251
BODY AND SHOCK SLIP								
0	22.32	0.9674	2177	58330	10812	2000	15.92	0.0298
0.1	21.84	0.9572	2177	57840	10782	2000	15.94	0.0291
0.2	20.93	0.9853	2177	56360	10462	2000	16.04	0.0279
0.3	20.04	1.0162	2177	53760	9946	2000	16.34	0.0267
0.4	18.86	1.055	2177	50440	9236	2000	16.82	0.0251

Table 20. Downstream results (sphere cone, $k_{N}=0.2 \mathrm{~m}, T_{w}=2,000 \mathrm{~K}$): atmosphere $-98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$, Trajectory VI, $\mathrm{Z}=24 \mathrm{~L} .8 \mathrm{~km}$, $\varepsilon=0.0515$.
(a)

S/R ${ }_{\mathrm{N}}$	$\begin{gathered} q_{c, w} \\ \left(\mathrm{MW} / \mathrm{m}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{N}_{\mathrm{s}} \\ (\mathrm{~cm}) \end{gathered}$	Enthalpy (kJ/kg)		T_{s} (K)	T_{W}(k)	ρ_{8} / ρ_{∞}	St
			wall	shock				
				NO SLIP				
0	17.27	0.9126	2179	67540	11509	2000	16.33	0.0514
0.1	16.59	0.9357	2179	66860	11441	2000	16.33	0.0493
0.2	16.16	0.9567	2179	65070	11254	2000	16.33	0.0481
0.3	15.44	0.9909	2179	62240	10931	2000	16.33	0.0459
0.4	14.49	1.0374	2179	58320	10409	2000	16.46	0.0431

BODY AND SHOCK SLIP

0	18.35	0.9470	2564	67550	11509	2290	16.33	0.0546
0.1	18.16	0.9317	2570	67020	11456	2279	16.29	0.0540
0.2	17.70	0.9643	2567	65290	11276	2389	16.28	0.0526
0.3	16.95	1.0023	2577	62420	10952	2310	16.29	0.0504
0.4	16.26	1.0515	2590	58540	10440	2328	16.42	0.0484

Table 20. (Concluded.)
(b)

$\mathbf{S} / \mathrm{R}_{\mathrm{N}}$	$\begin{gathered} q_{c, w} \\ \left(M W / w^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{N}_{\mathbf{8}} \\ (\mathrm{cm}) \end{gathered}$	Enthalpy (kJ/kg)		$\begin{aligned} & T_{8} \\ & (K) \end{aligned}$	$\begin{gathered} T_{W} \\ (K) \end{gathered}$	ρ_{8} / ρ_{∞}	St
			wall	shock				
				NO SLIP				
0	18.52	0.9141	2570	67520	11506	2289	16.33	0.0511
0.1	17.82	0.9371	2570	66880	11443	2277	16.33	0.0530
0.2	16.03	0.9584	2572	65100	11258	2285	16.33	0.0480
0.3	15.44	0.9931	2577	62280	10936	2286	16.33	0.0462
0.4	14.39	1.0399	2586	58370	10416	2291	16.46	0.0431

BODY AND SHOCK SLIP

0	17.03	0.9467	2179	67510	11506	2000	16.33	0.0506
0.1	17.54	0.9313	2179	67020	11456	2000	16.29	0.0522
0.2	16.73	0.9638	2179	65290	11276	2000	16.28	0.0498
0.3	15.97	1.0016	2179	62410	10951	2000	16.29	0.0475
0.4	15.01	1.0507	2179	58530	10438	2000	16.42	0.0446

Table 21. Downstream results (sphere cone, $R_{N}=0.2 \mathrm{~m}, \mathrm{~T}_{\mathrm{w}}=2,000 \mathrm{~K}$): atmosphere $-98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$, Trajectory VI, $2=402.6 \mathrm{~km}$, $\varepsilon=0.286$.
(a)

S / R_{N}	$\begin{gathered} q_{c, w} \\ \left(M W / m^{2}\right) \end{gathered}$	$\begin{aligned} & N_{8} \\ & (\mathrm{~cm}) \end{aligned}$	Enthalpy (kJ/kg)		$\begin{array}{r} \mathbf{T}_{\mathbf{8}} \\ (\mathrm{K}) \end{array}$	$\begin{aligned} & T_{w} \\ & (K) \end{aligned}$	ρ_{s} / ρ_{∞}	St
			wall	shock				
				NO SLIP				
0	4.47	0.6685	2195	71540	10080	2000	18.79	0.360
0.1	4.38	0.6783	2195	70750	10040	2000	18.80	0.353
0.2	4.27	0.6921	2195	68880	9931	2000	18.71	0.344
0.3	4.07	0.7145	2195	65650	9723	2000	18.60	0.328
0.4	3.8 C	0.7470	2195	61460	9412	2000	18.45	0.306

BODY AND SHOCK SLIP

0	3.80	0.7457	5636	69810	9999	3749	19.18	0.322
0.1	3.92	0.7235	5702	69670	9988	3785	19.08	0.333
0.2	3.57	0.7736	5743	67910	9879	3803	19.00	0.303
0.3	3.26	0.8195	5916	65010	9686	3884	18.87	0.278
0.4	2.28	0.8725	6065	60860	9371	3945	18.79	0.245

Table 21. (Concluded.)
(b)

S / R_{N}	$\begin{gathered} q_{c, w} \\ \left(M W / w^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{N}_{8} \\ (\mathrm{~cm}) \end{gathered}$	Enthalpy (kJ/kg)		$\begin{array}{r} T_{8} \\ (K) \end{array}$	$\begin{gathered} T_{w} \\ (K) \end{gathered}$	ρ_{8} / ρ_{∞}	St
			wall	shock				
				NO SLIP				
0	3.98	0.6702	6147	71490	10086	2994	18.80	0.340
0.1	3.95	0.6764	6144	70840	10048	3989	18.78	0.337
0.2	3.83	0.6897	6164	68680	9919	3997	18.70	0.327
0.3	3.62	0.7123	6215	65210	9692	4012	18.57	0.309
0.4	3.43	0.7554	6177	61470	9413	3962	18.45	0.292

BODY AND SHOCK SLIP

0	3.98	0.7417	2195	69730	9995	2000	19.21	0.321
0.1	4.18	0.7203	2195	69630	9986	2000	19.09	0.337
0.2	3.84	0.7669	2195	67870	9876	2000	19.02	0.310
0.3	3.55	0.8098	2195	64930	9680	2000	18.89	0.287
0.4	3.19	0.8598	2195	60710	9359	2000	18.81	0.258

Table 22. Downatream results (aphere cone, $R_{N}=0.2 \mathrm{~m}, T_{w}=2,000 \mathrm{~K}$): atmosphere - $98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$, Trajectory VI, $2=465.1 \mathrm{~km}$, $\varepsilon=0.524$.
(a)

S / R_{N}	$\begin{gathered} q_{c, w} \\ \left(M W / w^{2}\right) \end{gathered}$	$\begin{gathered} \mathbf{N}_{8} \\ (\mathrm{~cm}) \end{gathered}$	Enthal Py (kJ/kg)		$\begin{aligned} & \mathbf{T}_{3} \\ & (K) \end{aligned}$	T_{W} (K)	ρ_{s} / ρ_{∞}	St
			wall	shock				
				NO SLIP				
0	3.45	0.6042	2208	71530	9545	2000	19.74	0.934
0.1	3.39	0.6113	2208	70830	9510	2000	19.70	0.918
0.2	3.32	0.6217	2208	68860	9407	2000	19.62	0.896
0.3	3.17	0.6396	2208	65650	9226	2000	19.46	$0: 857$
0.4	2.96	0.6654	2208	61320	8947	2000	19.27	0.801

BODY AND SHOCK SLIP

0	1.76	0.6294	8970	53530	8347	4532	23.72	0.527
0.1	2.05	0.6039	9955	58030	8768	4647	23.53	0.624
0.2	1.72	0.7023	9583	57220	8697	4600	23.36	0.519
0.3	1.55	0.7676	9225	55800	8556	4551	22.98	0.465
0.4	1.35	0.8398	8631	53000	8249	4462	22.76	0.401

Table 22. (Concluded.)
(b)

$\mathbf{S} / \mathrm{R}_{\mathbf{N}}$	$\begin{gathered} q_{c, w} \\ \left(M W / w^{2}\right) \end{gathered}$	$\begin{gathered} N_{s} \\ (\mathrm{~cm}) \end{gathered}$	Enthalpy (kJ/kg)		T_{B}(K)	T_{W} (K)	ρ_{s} / ρ_{∞}	St
			wall	shock				
				NO SLIP				
0	2.64	0.6162	12760	71530	9545	4877	19.74	0.841
0.1	2.60	0.6239	12720	70830	9510	4868	19.70	0.827
0.2	2.52	0.6353	12740	68870	9408	4864	19.62	0.803
0.3	2.38	0.6545	12820	65680	9229	4683	19.46	0.761

BODY AND SHOCK SLIP

0	2.30	0.6458	2208	55050	8508	2000	24.97	0.621
0.1	2.61	0.5882	2208	56450	8636	2000	24.18	0.705
0.2	2.33	0.6824	2208	56000	8588	2000	23.87	0.628
0.3	2.07	0.7411	2208	54470	8428	2000	23.58	0.561
0.4	1.80	0.8150	2208	52520	8191	2000	23.06	0.485

Table 23. Downstream results (aphere cone, $R_{N}=0.2 \mathrm{~m}, T_{w}=2,000 \mathrm{~K}$): atmoephere $-98 \% \mathrm{~N}_{2}+2 \% \mathrm{CH}_{4}$, Trajectory VI, $2=497.6 \mathrm{~km}$, $\varepsilon=0.719$.

$\mathbf{S} / \mathrm{R}_{\mathrm{N}}$	$q_{c, w}$	N_{8}	Enthalpy (kJ/kg)		T_{8}	$\mathrm{T}_{\mathbf{w}}$	ρ_{0} / ρ_{0}	St
	(MW/ m^{2})	(cm)	wall	shock	(K)	(K)		
				NO SLIP				
0	22.49	0.9386	2381	58330	10811	2151	15.93	0.0301
0.1	21.62	0.9616	2388	57720	10708	2152	15.98	0.0288
0.2	20.77	0.9793	2383	56200	10433	2149	16.09	0.0278
0.3	20.21	1.0060	2381	53580	9910	2150	16.40	0.0269
0.4	18.71	1.0430	2392	50250	9197	2152	16.89	0.0251

BODY AND SHOCK SLIP

0	22.32	0.9674	2177	58330	10812	2000	15.92	0.0298
0.1	21.84	0.9572	2177	57840	10728	2000	15.94	0.0291
0.2	20.93	0.9853	2177	56360	10462	2000	16.04	0.0279
0.3	20.04	1.0162	2177	53760	9946	2000	16.34	0.0267
0.4	18.86	1.0556	2177	50440	9236	2000	16.82	0.0251

Table 24. Downetreem results (sphere cone, $X_{N}=0.2 \mathrm{~m}, \mathrm{~T}_{\mathrm{w}}=2,000 \mathrm{~K}$): atmosphere - 98\% $\mathrm{N}_{2}+2 \% \mathrm{CH}_{4}$, Trajectory VI, $2=530.8 \mathrm{~km}$, с $=0.976$.

s / R_{N}	$q_{c, w}$ ($\mathrm{MW} / \mathrm{m}^{2}$)	$\begin{gathered} N_{8} \\ (c m) \end{gathered}$	Bnthalpy (kJ/kg)		T_{s} (K)	Tw (K)	ρ_{s} / ρ_{0}	st
			wall	shock				
				NO SLIP				
0	3.10	0.5704	2240	71490	9032	2000	20.70	2.908
0.1	3.05	0.5755	2240	70760	9000	2000	20.67	2.859
0.2	2.97	0.5849	2240	68770	8909	2000	20.56	2.792
0.3	2.85	0.6004	2240	65590	8752	2000	20.37	2675
0.4	2.67	0.6237	2240	61250	8508	2000	20.11	2.507

BODY AND SHOCK SLIP

0	2.19	0.5937	31590	71490	9032	5383	20.70	3.561
0.1	2.13	0.6007	31470	70770	9001	5373	20.67	3.448
0.2	1.98	0.6167	31360	68880	8914	5366	20.56	3.212
0.3	1.77	0.6435	31220	66060	8776	5344	20.40	2.855
0.4	1.49	0.5767	31000	62300	8571	5322	$20.2!$	2.392

[^0]: ${ }^{1}$ Eminent Professor, Department of Mechanical Engineering and Mechanics, Old Dominion University, Norfolk, Virginia 23508.
 ${ }^{2}$ Graduate Research Assistant, Department of Mechanical Engineering and Mechanics, Old Dominion University, Norfolk, Virginia 23508.

[^1]: Figure 8(d). Flow chart for subroutine momentum solution procedure.

