research

Aerothermodynamic environment of a Titan aerocapture vehicle

Abstract

The extent of convective and radiative heating for a Titan aerocapture vehicle is investigated. The flow in the shock layer is assumed to be axisymmetric, steady, viscous, and compressible. It is further assumed that the gas is in chemical and local thermodynamic equilibrium and tangent slab approximation is used for the radiative transport. The effect of the slip boundary conditions on the body surface and at the shock wave are included in the analysis of high-altitude entry conditions. The implicit finite difference techniques is used to solve the viscous shock-layer equations for a 45 degree sphere cone at zero angle of attack. Different compositions for the Titan atmosphere are assumed, and results are obtained for the entry conditions specified by the Jet Propulsion Laboratory

    Similar works