292 research outputs found

    Geometrical parameter analysis of the high sensitivity fiber optic angular displacement sensor

    Full text link
    In this work, we present an analysis of the influence of the geometrical parameters on the sensitivity and linear range of the fiber optic angular displacement sensor, through computational simulations and experiments. The geometrical parameters analyzed were the lens focal length, the gap between fibers, the fibers cladding radii, the emitting fiber critical angle (or, equivalently, the emitting fiber numerical aperture), and the standoff distance (distance between the lens and the reflective surface). Besides, we analyzed the sensor sensitivity regarding any spurious linear displacement. The simulation and experimental results showed that the parameters which play the most important roles are the emitting fiber core radius, the lens focal length, and the light coupling efficiency, while the remaining parameters have little influence on sensor characteristics. This paper was published in Applied Optics and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-36-8436. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Comment: 10 pages, 12 figure

    Scattering of Ultrasound (Including Rayleigh Waves) by Surface Roughness and by Single Surface Flaws. A Review of the Work Done at Paris 7 University

    Get PDF
    Since some years our team has worked on the characterization of rough surfaces from a study of the angular and frequency dependence of the backscattered intensity of ultrasonic waves. We shall discuss, in view of our experimental results, the different components of the signature of the surface profile which can be evaluated by these means: r.m.s. roughness h with a precision of the order of 1 μm in the range 6-100 μm influence of the autocorrelation distance L when present, surface periodicities with a precision which can be better than 1%. In the case of quasiperiodic surfaces, we shall present a comparison between the spectra theoretically predicted in the low-frequency approximation for various samples, and the ultrasonic spectra actually observed. Since 1977, we have also used Rayleigh waves to study surface properties and surface cracks in ceramics and metals and we shall give an introduction to the results obtained at the present time. This topic will be developed by B.R. Tittmann in a following paper

    Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

    Get PDF
    We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P=1 × 10-4) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P=8.4 × 10-7). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies

    19F Electron-nuclear double resonance reveals interaction between redox-active tyrosines across the α/β interface of E. coli ribonucleotide reductase

    Get PDF
    Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides, thereby playing a key role in DNA replication and repair. Escherichia coli class Ia RNR is an α2β2 enzyme complex that uses a reversible multistep radical transfer (RT) over 32 Å across its two subunits, α and β, to initiate, using its metallo-cofactor in β2, nucleotide reduction in α2. Each step is proposed to involve a distinct proton-coupled electron-transfer (PCET) process. An unresolved step is the RT involving Y356(β) and Y731(α) across the α/β interface. Using 2,3,5-F3Y122-β2 with 3,5-F2Y731-α2, GDP (substrate) and TTP (allosteric effector), a Y356• intermediate was trapped and its identity was verified by 263 GHz electron paramagnetic resonance (EPR) and 34 GHz pulse electron–electron double resonance spectroscopies. 94 GHz 19F electron-nuclear double resonance spectroscopy allowed measuring the interspin distances between Y356• and the 19F nuclei of 3,5-F2Y731 in this RNR mutant. Similar experiments with the double mutant E52Q/F3Y122-β2 were carried out for comparison to the recently published cryo-EM structure of a holo RNR complex. For both mutant combinations, the distance measurements reveal two conformations of 3,5-F2Y731. Remarkably, one conformation is consistent with 3,5-F2Y731 within the H-bond distance to Y356•, whereas the second one is consistent with the conformation observed in the cryo-EM structure. The observations unexpectedly suggest the possibility of a colinear PCET, in which electron and proton are transferred from the same donor to the same acceptor between Y356 and Y731. The results highlight the important role of state-of-the-art EPR spectroscopy to decipher this mechanism

    Ultrasonic Evaluation of Case Depth in Case-Carburized Steel Components

    Get PDF
    Performance of many engineering components depends to a large extent on their near surface characteristics, which in turn are affected by wear, corrosion, and fatigue in the presence of loading forces. One way to improve the engineering component’s performance is to tailor the surface properties using laser and electron beam processing, coatings, ion-implantation, and carburizing
    corecore