13 research outputs found
Recommended from our members
Determination of Rare Earth Element Isotopic Compositions Using Sample-Standard Bracketing and Double-Spike Approaches
Rare earth elements (REEs) have been found to have numerous uses to trace geological and cosmochemical processes through analyses of elemental patterns, radioactive decay, nucleosynthetic anomalies, and cosmogenic effects. Stable isotopic fractionation is one aspect of REE geochemistry that has been seldom studied, with most publications focusing on the development of analytical methodologies for individual REEs, and most applications concerning terrestrial igneous rocks. In this study, we present a method to systematically analyze stable isotopic fractionations of 8 REEs, including Ce, Nd, Sm, Eu, Gd, Dy, Er, and Yb, using sample-standard bracketing (SSB) and double-spike (DS) approaches. All REEs are separated and purified using a fluoropolymer pneumatic liquid chromatography (FPLC) system. We introduce procedures for identifying and correcting some isobaric interferences in double-spike data reduction. Several geostandards, including igneous rocks and sediments, are analyzed using SSB and DS methods. The results indicate that REE isotopic fractionation in igneous processes is limited, except for Eu. Other REEs can still be isotopically fractionated by low-temperature processes and kinetic effects at a high temperature
Replication Data for: Spurious molybdenum isotope anomalies resulting from non-exponential mass fractionation
Abstract:
Mass-independent (nucleosynthetic) Mo isotope anomalies are uniquely useful for constraining genetic relationships among meteoritic and planetary materials and, by extension, the origin and nature of Earth's late-stage building blocks. The meaningful interpretation of such data, however, critically depends on the accurate correction of any natural and analytical mass-dependent isotope fractionation, which is commonly assumed to follow the ‘exponential law’. Here, using new high-precision Mo isotope data for a diverse set of terrestrial samples, we show that mass-dependent Mo isotope fractionation in nature typically does not adhere to this law, but is instead dominated by equilibrium and Rayleigh processes. We demonstrate that even moderate degrees of such non-exponential fractionation (i.e., mass-dependent isotope fractionation deviating from the exponential law) can result in significant spurious mass-independent Mo isotope anomalies that, when misinterpreted as nucleosynthetic anomalies, can lead to erroneous conclusions, particularly with respect to Earth's accretion history. Consequently, assessing the magnitude and origin of mass-dependent fractionation will be essential for future efforts to precisely determine the mass-independent Mo isotope composition of bulk silicate Earth and to identify potential nucleosynthetic isotope anomalies in terrestrial rocks
Replication Data for: Origin of the analytical 183W effect and its implications for tungsten isotope analyses.
Mass-independent tungsten isotope variations provide critical insights into the timing and nature of processes that occurred in the early Solar System and during planetary differentiation. However, W isotope analyses are often compromised by an analytical artifact manifesting itself as an apparent deficit in 183W, whose origin and nature have remained enigmatic. Here, by evaluating previously published high-precision W isotope data for a large and diverse set of terrestrial samples, we demonstrate that this artifact occurs independent of the type of mass spectrometer and confirm that it can be attributed to mass-independent fractionation of 183W. Contrary to previous proposals, we find that this ‘analytical183W effect’ cannot be explained by a nuclear field shift, but may instead reflect a magnetic isotope effect. Regardless of its exact origin, our investigation reveals that this artifact is induced during the chemical separation of W, and that the specific combination of chromatographic purification and dry-down procedure determines its overall magnitude. Within a given analytical protocol, however, its size is strongly controlled by the amount of W that is processed, where the 183W effect increases with decreasing amount of W. Therefore, this work resolves apparent inconsistencies between previous studies regarding the occurrence and magnitude of the 183W effect, and provides directions for its mitigation and reliable correction. This in turn is crucial for the accurate interpretation of W isotope data with respect to radiogenic and nucleosynthetic anomalies for both terrestrial and meteoritic materials
Virgo: a laser interferometer to detect gravitational waves
This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given.These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency. This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper
Virgo: a laser interferometer to detect gravitational waves
none336sìThis paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given. These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency. This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper.mixedT Accadia; F Acernese; M Alshourbagy; P Amico; F Antonucci; S Aoudia; N Arnaud; C Arnault; K G Arun; P Astone; S Avino; D Babusci; G Ballardin; F Barone; G Barrand; L Barsotti; M Barsuglia; A Basti; Th S Bauer; F Beauville; M Bebronne; M Bejger; M G Beker; F Bellachia; A Belletoile; J L Beney; M Bernardini; S Bigotta; R Bilhaut; S Birindelli; M Bitossi; M A Bizouard; M Blom; C Boccara; D Boget; F Bondu; L Bonelli; R Bonnand; V Boschi; L Bosi; T Bouedo; B Bouhou; A Bozzi; L Bracci; S Braccini; C Bradaschia; M Branchesi; T Briant; A Brillet; V Brisson; L Brocco; T Bulik; H J Bulten; D Buskulic; C Buy; G Cagnoli; G Calamai; E Calloni; E Campagna; B Canuel; F Carbognani; L Carbone; F Cavalier; R Cavalieri; R Cecchi; G Cella; E Cesarini; E Chassande-Mottin; S Chatterji; R Chiche; A Chincarini; A Chiummo; N Christensen; A C Clapson; F Cleva; E Coccia; P -F Cohadon; C N Colacino; J Colas; A Colla; M Colombini; G Conforto; A Corsi; S Cortese; F Cottone; J -P Coulon; E Cuoco; S D'Antonio; G Daguin; A Dari; V Dattilo; P Y David; M Davier; R Day; G Debreczeni; G De Carolis; M Dehamme; R Del Fabbro; W Del Pozzo; M del Prete; L Derome; R De Rosa; R DeSalvo; M Dialinas; L Di Fiore; A Di Lieto; M Di Paolo Emilio; A Di Virgilio; A Dietz; M Doets; P Dominici; A Dominjon; M Drago; C Drezen; B Dujardin; B Dulach; C Eder; A Eleuteri; D Enard; M Evans; L Fabbroni; V Fafone; H Fang; I Ferrante; F Fidecaro; I Fiori; R Flaminio; D Forest; L A Forte; J -D Fournier; L Fournier; J Franc; O Francois; S Frasca; F Frasconi; A Freise; A Gaddi; M Galimberti; L Gammaitoni; P Ganau; C Garnier; F Garufi; M E Gáspár; G Gemme; E Genin; A Gennai; G Gennaro; L Giacobone; A Giazotto; G Giordano; L Giordano; C Girard; R Gouaty; A Grado; M Granata; V Granata; X Grave; C Greverie; H Groenstege; G M Guidi; S Hamdani; J -F Hayau; S Hebri; A Heidmann; H Heitmann; P Hello; G Hemming; E Hennes; R Hermel; P Heusse; L Holloway; D Huet; M Iannarelli; P Jaranowski; D Jehanno; L Journet; S Karkar; T Ketel; H Voet; J Kovalik; I Kowalska; S Kreckelbergh; A Krolak; J C Lacotte; B Lagrange; P La Penna; M Laval; J C Le Marec; N Leroy; N Letendre; T G F Li; B Lieunard; N Liguori; O Lodygensky; B Lopez; M Lorenzini; V Loriette; G Losurdo; M Loupias; J M Mackowski; T Maiani; E Majorana; C Magazzù; I Maksimovic; V Malvezzi; N Man; S Mancini; B Mansoux; M Mantovani; F Marchesoni; F Marion; P Marin; J Marque; F Martelli; A Masserot; L Massonnet; G Matone; L Matone; M Mazzoni; F Menzinger; C Michel; L Milano; Y Minenkov; S Mitra; M Mohan; J -L Montorio; R Morand; F Moreau; J Moreau; N Morgado; A Morgia; S Mosca; V Moscatelli; B Mours; P Mugnier; F -A Mul; L Naticchioni; I Neri; F Nocera; E Pacaud; G Pagliaroli; A Pai; L Palladino; C Palomba; F Paoletti; R Paoletti; A Paoli; S Pardi; G Parguez; M Parisi; A Pasqualetti; R Passaquieti; D Passuello; M Perciballi; B Perniola; G Persichetti; S Petit; M Pichot; F Piergiovanni; M Pietka; R Pignard; L Pinard; R Poggiani; P Popolizio; T Pradier; M Prato; G A Prodi; M Punturo; P Puppo; K Qipiani; O Rabaste; D S Rabeling; I Rácz; F Raffaelli; P Rapagnani; S Rapisarda; V Re; A Reboux; T Regimbau; V Reita; A Remilleux; F Ricci; I Ricciardi; F Richard; M Ripepe; F Robinet; A Rocchi; L Rolland; R Romano; D Rosińska; P Roudier; P Ruggi; G Russo; L Salconi; V Sannibale; B Sassolas; D Sentenac; S Solimeno; R Sottile; L Sperandio; R Stanga; R Sturani; B Swinkels; M Tacca; R Taddei; L Taffarello; M Tarallo; S Tissot; A Toncelli; M Tonelli; O Torre; E Tournefier; F Travasso; C Tremola; E Turri; G Vajente; J F J van den Brand; C Van Den Broeck; S van der Putten; M Vasuth; M Vavoulidis; G Vedovato; D Verkindt; F Vetrano; O Véziant; A Viceré; J -Y Vinet; S Vilalte; S Vitale; H Vocca; R L Ward; M Was; K Yamamoto; M Yvert; J -P Zendri; Z ZhangT., Accadia; F., Acernese; M., Alshourbagy; P., Amico; F., Antonucci; S., Aoudia; N., Arnaud; C., Arnault; K. G., Arun; P., Astone; S., Avino; D., Babusci; G., Ballardin; F., Barone; G., Barrand; L., Barsotti; M., Barsuglia; A., Basti; Th S., Bauer; F., Beauville; M., Bebronne; M., Bejger; M. G., Beker; F., Bellachia; A., Belletoile; J. L., Beney; M., Bernardini; S., Bigotta; R., Bilhaut; S., Birindelli; M., Bitossi; M. A., Bizouard; M., Blom; C., Boccara; D., Boget; F., Bondu; L., Bonelli; R., Bonnand; V., Boschi; L., Bosi; T., Bouedo; B., Bouhou; A., Bozzi; L., Bracci; S., Braccini; C., Bradaschia; Branchesi, Marica; T., Briant; A., Brillet; V., Brisson; L., Brocco; T., Bulik; H. J., Bulten; D., Buskulic; C., Buy; G., Cagnoli; G., Calamai; E., Calloni; E., Campagna; B., Canuel; F., Carbognani; L., Carbone; F., Cavalier; R., Cavalieri; R., Cecchi; G., Cella; Cesarini, Elisabetta; E., Chassande Mottin; S., Chatterji; R., Chiche; A., Chincarini; A., Chiummo; N., Christensen; A. C., Clapson; F., Cleva; E., Coccia; P. F., Cohadon; C. N., Colacino; J., Colas; A., Colla; M., Colombini; Conforto, Giovanni; A., Corsi; S., Cortese; F., Cottone; J. P., Coulon; E., Cuoco; S., D'Antonio; G., Daguin; A., Dari; V., Dattilo; P. Y., David; M., Davier; R., Day; G., Debreczeni; G., De Carolis; M., Dehamme; R., Del Fabbro; W., Del Pozzo; M., del Prete; L., Derome; R., De Rosa; R., Desalvo; M., Dialinas; L., Di Fiore; A., Di Lieto; M., Di Paolo Emilio; A., Di Virgilio; A., Dietz; M., Doets; Dominici, Pietro; A., Dominjon; M., Drago; C., Drezen; B., Dujardin; B., Dulach; C., Eder; A., Eleuteri; D., Enard; M., Evans; L., Fabbroni; V., Fafone; H., Fang; I., Ferrante; F., Fidecaro; I., Fiori; R., Flaminio; D., Forest; L. A., Forte; J. D., Fournier; L., Fournier; J., Franc; O., Francois; S., Frasca; F., Frasconi; A., Freise; A., Gaddi; M., Galimberti; L., Gammaitoni; P., Ganau; C., Garnier; F., Garufi; M. E., Gáspár; G., Gemme; E., Genin; A., Gennai; G., Gennaro; L., Giacobone; A., Giazotto; G., Giordano; L., Giordano; C., Girard; R., Gouaty; A., Grado; M., Granata; V., Granata; X., Grave; C., Greverie; H., Groenstege; Guidi, GIANLUCA MARIA; S., Hamdani; J. F., Hayau; S., Hebri; A., Heidmann; H., Heitmann; P., Hello; G., Hemming; E., Hennes; R., Hermel; P., Heusse; L., Holloway; D., Huet; M., Iannarelli; P., Jaranowski; D., Jehanno; L., Journet; S., Karkar; T., Ketel; H., Voet; J., Kovalik; I., Kowalska; S., Kreckelbergh; A., Krolak; J. C., Lacotte; B., Lagrange; P., La Penna; M., Laval; J. C., Le Marec; N., Leroy; N., Letendre; T. G. F., Li; B., Lieunard; N., Liguori; O., Lodygensky; B., Lopez; M., Lorenzini; V., Loriette; G., Losurdo; M., Loupias; J. M., Mackowski; T., Maiani; E., Majorana; C., Magazzù; I., Maksimovic; V., Malvezzi; N., Man; S., Mancini; B., Mansoux; M., Mantovani; F., Marchesoni; F., Marion; P., Marin; J., Marque; Martelli, Filippo; A., Masserot; L., Massonnet; G., Matone; L., Matone; M., Mazzoni; F., Menzinger; C., Michel; L., Milano; Y., Minenkov; S., Mitra; M., Mohan; J. L., Montorio; R., Morand; F., Moreau; J., Moreau; N., Morgado; A., Morgia; S., Mosca; V., Moscatelli; B., Mours; P., Mugnier; F. A., Mul; L., Naticchioni; I., Neri; F., Nocera; E., Pacaud; G., Pagliaroli; A., Pai; L., Palladino; C., Palomba; F., Paoletti; R., Paoletti; A., Paoli; S., Pardi; G., Parguez; M., Parisi; A., Pasqualetti; R., Passaquieti; D., Passuello; M., Perciballi; Perniola, Bruna; G., Persichetti; S., Petit; M., Pichot; Piergiovanni, Francesco; M., Pietka; R., Pignard; L., Pinard; R., Poggiani; P., Popolizio; T., Pradier; M., Prato; G. A., Prodi; M., Punturo; P., Puppo; K., Qipiani; O., Rabaste; D. S., Rabeling; I., Rácz; F., Raffaelli; P., Rapagnani; S., Rapisarda; V., Re; A., Reboux; T., Regimbau; V., Reita; A., Remilleux; F., Ricci; I., Ricciardi; F., Richard; M., Ripepe; F., Robinet; A., Rocchi; L., Rolland; R., Romano; D., Rosińska; P., Roudier; P., Ruggi; G., Russo; L., Salconi; V., Sannibale; B., Sassolas; D., Sentenac; S., Solimeno; R., Sottile; L., Sperandio; R., Stanga; Sturani, Riccardo; B., Swinkels; M., Tacca; R., Taddei; L., Taffarello; M., Tarallo; S., Tissot; A., Toncelli; M., Tonelli; O., Torre; E., Tournefier; F., Travasso; C., Tremola; E., Turri; G., Vajente; J. F. J., van den Brand; C., Van Den Broeck; S., van der Putten; M., Vasuth; M., Vavoulidis; G., Vedovato; D., Verkindt; Vetrano, Flavio; O., Véziant; Vicere', Andrea; J. Y., Vinet; S., Vilalte; S., Vitale; H., Vocca; R. L., Ward; M., Was; K., Yamamoto; M., Yvert; J. P., Zendri; Z., Zhan
Virgo: a laser interferometer to detect gravitational waves
This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given. These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency. This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper
Opportunistic infections and AIDS malignancies early after initiating combination antiretroviral therapy in high-income countries
Background: There is little information on the incidence of AIDS-defining events which have been reported in the literature to be associated with immune reconstitution inflammatory syndrome (IRIS) after combined antiretroviral therapy (cART) initiation. These events include tuberculosis, mycobacterium avium complex (MAC), cytomegalovirus (CMV) retinitis, progressive multifocal leukoencephalopathy (PML), herpes simplex virus (HSV), Kaposi sarcoma, non-Hodgkin lymphoma (NHL), cryptococcosis and candidiasis. Methods: We identified individuals in the HIV-CAUSAL Collaboration, which includes data from six European countries and the US, who were HIV-positive between 1996 and 2013, antiretroviral therapy naive, aged at least 18 years, hadCD4+ cell count and HIV-RNA measurements and had been AIDS-free for at least 1 month between those measurements and the start of follow-up. For each AIDS-defining event, we estimated the hazard ratio for no cART versus less than 3 and at least 3 months since cART initiation, adjusting for time-varying CD4+ cell count and HIV-RNA via inverse probability weighting. Results: Out of 96 562 eligible individuals (78% men) with median (interquantile range) follow-up of 31 [13,65] months, 55 144 initiated cART. The number of cases varied between 898 for tuberculosis and 113 for PML. Compared with non-cART initiation, the hazard ratio (95% confidence intervals) up to 3 months after cART initiation were 1.21 (0.90-1.63) for tuberculosis, 2.61 (1.05-6.49) for MAC, 1.17 (0.34-4.08) for CMV retinitis, 1.18 (0.62-2.26) for PML, 1.21 (0.83-1.75) for HSV, 1.18 (0.87-1.58) for Kaposi sarcoma, 1.56 (0.82-2.95) for NHL, 1.11 (0.56-2.18) for cryptococcosis and 0.77 (0.40-1.49) for candidiasis. Conclusion: With the potential exception of mycobacterial infections, unmasking IRIS does not appear to be a common complication of cART initiation in high-income countries
Dolutegravir-based dual maintenance regimens combined with lamivudine/emtricitabine or rilpivirine: risk of virological failure in a real-life setting
International audienceBackground Maintenance ART with dolutegravir-based dual regimens have proved their efficacy among HIV-1-infected subjects in randomized trials. However, real-life data are scarce, with limited populations and follow-up. Objectives We assessed virological failure (VF) and resistance-associated mutations (RAMs) on dolutegravir maintenance regimens in combination with rilpivirine or with lamivudine or emtricitabine (xTC) and analysed the factors associated with VF. Methods Between 2014 and 2018, all HIV-1-infected adults included in the Dat’AIDS cohort and starting dolutegravir/rilpivirine or dolutegravir/xTC as a maintenance dolutegravir-based dual regimen were selected. VF was defined as two consecutive HIV RNA values >50 copies/mL or a single value >400 copies/mL. We compared cumulative genotypes before initiation of a maintenance dolutegravir-based dual regimen with genotype at VF. Results We analysed 1374 subjects (799 on dolutegravir/rilpivirine and 575 on dolutegravir/xTC) with a median follow-up of 20 months (IQR = 11–31) and 19 months (IQR = 11–31), respectively. VF occurred in 3.8% (n = 30) of dolutegravir/rilpivirine subjects and 2.6% (n = 15) of dolutegravir/xTC subjects. Among subjects receiving dolutegravir/rilpivirine, two genotypes harboured emerging RAMs at VF: E138K on NNRTI (n = 1); and E138K+K101E on NNRTI and N155H on INSTI (n = 1). Among subjects receiving dolutegravir/xTC, no new RAM was detected. The only predictive factor of VF on dolutegravir/rilpivirine was the history of failure on an NNRTI-based regimen (adjusted HR = 2.97, 95% CI = 1.28–6.93). No factor was associated with VF on dolutegravir/xTC. Conclusions In this large real-life cohort, dolutegravir/rilpivirine and dolutegravir/xTC sustained virological suppression and were associated with a low rate of VF and RAM emergence. Careful virological screening is essential before switching to dolutegravir/rilpivirine in virologically suppressed patients with a history of NNRTI therapy