1,084 research outputs found

    High-Resolution Spectroscopic Study of Extremely Metal-Poor Star Candidates from the SkyMapper Survey

    Get PDF
    The SkyMapper Southern Sky Survey is carrying out a search for the most metal-poor stars in the Galaxy. It identifies candidates by way of its unique filter set that allows for estimation of stellar atmospheric parameters. The set includes a narrow filter centered on the Ca II K 3933A line, enabling a robust estimate of stellar metallicity. Promising candidates are then confirmed with spectroscopy. We present the analysis of Magellan-MIKE high-resolution spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years of commissioning observations. 41 stars have [Fe/H] <= -3.0. Nine have [Fe/H] <= -3.5, with three at [Fe/H] ~ -4. A 1D LTE abundance analysis of the elements Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba and Eu shows these stars have [X/Fe] ratios typical of other halo stars. One star with low [X/Fe] [X/Fe values appears to be "Fe-enhanced," while another star has an extremely large [Sr/Ba] ratio: >2. Only one other star is known to have a comparable value. Seven stars are "CEMP-no" stars ([C/Fe] > 0.7, [Ba/Fe] < 0). 21 stars exhibit mild r-process element enhancements (0.3 <=[Eu/Fe] < 1.0), while four stars have [Eu/Fe] >= 1.0. These results demonstrate the ability to identify extremely metal-poor stars from SkyMapper photometry, pointing to increased sample sizes and a better characterization of the metal-poor tail of the halo metallicity distribution function in the future.Comment: Minor corrections to text, missing data added to Tables 3 and 4; updated to match published version. Complete tables included in sourc

    Combining Monte Carlo generators with next-to-next-to-leading order calculations: event reweighting for Higgs boson production at the LHC

    Full text link
    We study a phenomenological ansatz for merging next-to-next-to-leading order (NNLO) calculations with Monte Carlo event generators. We reweight them to match bin-integrated NNLO differential distributions. To test this procedure, we study the Higgs boson production cross-section at the LHC, for which a fully differential partonic NNLO calculation is available. We normalize PYTHIA and MC@NLO Monte Carlo events for Higgs production in the gluon fusion channel to reproduce the bin integrated NNLO double differential distribution in the transverse momentum and rapidity of the Higgs boson. These events are used to compute differential distributions for the photons in the pp \to H \to \gamma \gamma decay channel, and are compared to predictions from fixed-order perturbation theory at NNLO. We find agreement between the reweighted generators and the NNLO result in kinematic regions where we expect a good description using fixed-order perturbation theory. Kinematic boundaries where resummation is required are also modeled correctly using this procedure. We then use these events to compute distributions in the pp \to H \to W^+W^- \to l^+l^- \nu\bar{\nu} channel, for which an accurate description is needed for measurements at the LHC. We find that the final state lepton distributions obtained from PYTHIA are not significantly changed by the reweighting procedure.Comment: 18 pages, 14 fig

    SkyMapper Southern Survey: First Data Release (DR1)

    Full text link
    We present the first data release (DR1) of the SkyMapper Southern Survey, a hemispheric survey carried out with the SkyMapper Telescope at Siding Spring Observatory in Australia. Here, we present the survey strategy, data processing, catalogue construction and database schema. The DR1 dataset includes over 66,000 images from the Shallow Survey component, covering an area of 17,200 deg2^2 in all six SkyMapper passbands uvgrizuvgriz, while the full area covered by any passband exceeds 20,000 deg2^2. The catalogues contain over 285 million unique astrophysical objects, complete to roughly 18 mag in all bands. We compare our grizgriz point-source photometry with PanSTARRS1 DR1 and note an RMS scatter of 2%. The internal reproducibility of SkyMapper photometry is on the order of 1%. Astrometric precision is better than 0.2 arcsec based on comparison with Gaia DR1. We describe the end-user database, through which data are presented to the world community, and provide some illustrative science queries.Comment: 31 pages, 19 figures, 10 tables, PASA, accepte

    SkyMapper Filter Set: Design and Fabrication of Large Scale Optical Filters

    Full text link
    The SkyMapper Southern Sky Survey will be conducted from Siding Spring Observatory with u, v, g, r, i and z filters that comprise glued glass combination filters of dimension 309x309x15 mm. In this paper we discuss the rationale for our bandpasses and physical characteristics of the filter set. The u, v, g and z filters are entirely glass filters which provide highly uniform band passes across the complete filter aperture. The i filter uses glass with a short-wave pass coating, and the r filter is a complete dielectric filter. We describe the process by which the filters were constructed, including the processes used to obtain uniform dielectric coatings and optimized narrow band anti-reflection coatings, as well as the technique of gluing the large glass pieces together after coating using UV transparent epoxy cement. The measured passbands including extinction and CCD QE are presented.Comment: 9 pages, 2 tables, 7 figure

    Ultra-luminous quasars at redshift z>4.5z>4.5 from SkyMapper

    Get PDF
    The most luminous quasars at high redshift harbour the fastest-growing and most massive black holes in the early Universe. They are exceedingly rare and hard to find. Here, we present our search for the most luminous quasars in the redshift range from z=4.5z=4.5 to 55 using data from SkyMapper, Gaia and WISE. We use colours to select likely high-redshift quasars and reduce the stellar contamination of the candidate set with parallax and proper motion data. In \sim12,500~deg2^2 of Southern sky, we find 92 candidates brighter than Rp=18.2R_p=18.2. Spectroscopic follow-up has revealed 21 quasars at z4z\ge 4 (16 of which are within z=[4.5,5]z=[4.5,5]), as well as several red quasars, BAL quasars and objects with unusual spectra, which we tentatively label OFeLoBALQSOs at redshifts of z1z\approx 1 to 22. This work lifts the number of known bright z4.5z\ge 4.5 quasars in the Southern hemisphere from 10 to 26 and brings the total number of quasars known at Rp<18.2R_p<18.2 and z4.5z\ge 4.5 to 42.Comment: Submitted to MNRAS, 10 page

    The Extragalactic Distance Scale without Cepheids IV

    Full text link
    The Cepheid period-luminosity relation is the primary distance indicator used in most determinations of the Hubble constant. The tip of the red giant branch (TRGB) is an alternative basis. Using the new ANU SkyMapper Telescope, we calibrate the Tully Fisher relation in the I band. We find that the TRGB and Cepheid distance scales are consistent.Comment: ApJ in press 201

    The theory of canonical perturbations applied to attitude dynamics and to the Earth rotation. Osculating and nonosculating Andoyer variables

    Full text link
    The Hamiltonian theory of Earth rotation, known as the Kinoshita-Souchay theory, operates with nonosculating Andoyer elements. This situation parallels a similar phenomenon that often happens (but seldom gets noticed) in orbital dynamics, when the standard Lagrange-type or Delaunay-type planetary equations unexpectedly render nonosculating orbital elements. In orbital mechanics, osculation loss happens when a velocity-dependent perturbation is plugged into the standard planetary equations. In attitude mechanics, osculation is lost when an angular-velocity-dependent disturbance is plugged in the standard dynamical equations for the Andoyer elements. We encounter exactly this situation in the theory of Earth rotation, because this theory contains an angular-velocity-dependent perturbation (the switch from an inertial frame to that associated with the precessing ecliptic of date). While the osculation loss does not influence the predictions for the figure axis of the planet, it considerably alters the predictions for the instantaneous spin-axis' orientation. We explore this issue in great detail

    Nucleosynthesis in a Primordial Supernova: Carbon and Oxygen Abundances in SMSS J031300.36-670839.31

    Get PDF
    SMSS J031300.36-670839.3 (hereafter SM0313-6708) is a sub-giant halo star, with no detectable Fe lines and large overabundances of C and Mg relative to Ca. We obtained VLT-UVES spectra extending to 3060 Angstroms showing strong OH A-X band lines enabling an oxygen abundance to be derived. The OH A-X band lines in SM0313-6708 are much stronger than the CH C-X band lines. Spectrum synthesis fits indicate an [O/C] ratio of 0.02 +- 0.175. Our high S/N UVES data also enabled us to lower the Fe abundance limit to [Fe/H]{3D},NLTE < -7.52 (3 sigma). These data support our previous suggestion that the star formed from the iron-poor ejecta of a single massive star Population III supernova.Comment: 23 pages, 4 figures, 1 tabl

    Photon and Graviton Mass Limits

    Full text link
    Efforts to place limits on deviations from canonical formulations of electromagnetism and gravity have probed length scales increasing dramatically over time.Historically, these studies have passed through three stages: (1) Testing the power in the inverse-square laws of Newton and Coulomb, (2) Seeking a nonzero value for the rest mass of photon or graviton, (3) Considering more degrees of freedom, allowing mass while preserving explicit gauge or general-coordinate invariance. Since our previous review the lower limit on the photon Compton wavelength has improved by four orders of magnitude, to about one astronomical unit, and rapid current progress in astronomy makes further advance likely. For gravity there have been vigorous debates about even the concept of graviton rest mass. Meanwhile there are striking observations of astronomical motions that do not fit Einstein gravity with visible sources. "Cold dark matter" (slow, invisible classical particles) fits well at large scales. "Modified Newtonian dynamics" provides the best phenomenology at galactic scales. Satisfying this phenomenology is a requirement if dark matter, perhaps as invisible classical fields, could be correct here too. "Dark energy" {\it might} be explained by a graviton-mass-like effect, with associated Compton wavelength comparable to the radius of the visible universe. We summarize significant mass limits in a table.Comment: 42 pages Revtex4. This version contains corrections and changes contained in the published version, Rev. Mod. Phys. 82, 939-979 (2010), with a few addition

    Light meson spectroscopy from Dalitz plot analyses of ηc decays to η0 K+K− , η0 π + π − , and ηπ + π − produced in two-photon interactions

    Get PDF
    We study the processes γγ→ηc→η′K+K−, η′π+π−, and ηπ+π− using a data sample of 519  fb−1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e+e− collider at center-of-mass energies at and near the Υ(nS) (n=2, 3, 4) resonances. This is the first observation of the decay ηc→η′K+K− and we measure the branching fraction Γ(ηc→η′K+K−)/(Γ(ηc→η′π+π−)=0.644±0.039stat±0.032sys. Significant interference is observed between γγ→ηc→ηπ+π− and the nonresonant two-photon process γγ→ηπ+π−. A Dalitz plot analysis is performed of ηc decays to η′K+K−, η′π+π−, and ηπ+π−. Combined with our previous analysis of ηc→K¯Kπ, we measure the K∗0(1430) parameters and the ratio between its η′K and πK couplings. The decay ηc→η′π+π− is dominated by the f0(2100) resonance, also observed in J/ψ radiative decays. A new a0(1700)→ηπ resonance is observed in the ηc→ηπ+π− channel. We also compare ηc decays to η and η′ final states in association with scalar mesons as they relate to the identification of the scalar glueball.publishedVersio
    corecore