121 research outputs found

    Identification Of Novel Molecular-Genetic Pathways Regulating The Development Of Subpallial Derivatives

    Get PDF
    The embryonic subpallium produces many different neuronal cell types present throughout the adult telencephalon, including striatal medium spiny neurons (MSN) and cortical interneurons. Dysfunction of either cell type leads to neurological and psychiatric disorders including schizophrenia, epilepsy, and Tourette’s syndrome. Thus, understanding the molecular pathways that regulate their development and function has important implications for understanding disease pathogenesis. This work describes novel methods and genetic factors that expand our ability to characterize the development and function of two major subpallial derivatives: cortical interneurons and striatal MSN. The first part of this thesis characterizes a novel enrichment method for producing parvalbumin-expressing (PV) interneurons from mouse embryonic stem cells. This method, which uses an atypical protein kinase C inhibitor to enhance intermediate neurogenesis, results in a markedly increased ratio of PV+ to somatostatin-expressing interneurons. The findings suggest that the mode of neurogenesis influences cortical interneuron fate determination. Moreover, PV+ interneurons can now be generated in large numbers to study their development, screen for factors that affect their physiology, and used in therapeutic applications. The second part of this thesis examines the function of two putative transcription factors, Zswim5 and Zswim6, in the regulation of striatal development. We show that these genes are expressed in subpallial precursors, and in the case of Zswim6, expressed in the adult striatum. Next, through the generation of Zswim5 and Zswim6 knockout mice, we provide a detailed anatomical, molecular, and behavioral characterization of the resulting phenotypes. Our findings reveal that loss of Zswim6 causes a reduction in striatal volume and morphological changes in MSN. Additionally, these structural changes are associated with alterations in motor behaviors including hyperactivity, impaired rotarod performance, and hyperresponsiveness to amphetamine. These results demonstrate that Zswim6 is indispensable for normal brain development and support findings in human genome-wide association studies that implicate Zswim6 with schizophrenia. Collectively, this dissertation provides novel insights into telencephalic development through the development of in vitro stem cell systems and in vivo disease mouse models that further our ability to test and understand neurological diseases

    Genetic and neurophysiological correlates of the age of onset of alcohol use disorders in adolescents and young adults.

    Get PDF
    Discrete time survival analysis was used to assess the age-specific association of event-related oscillations (EROs) and CHRM2 gene variants on the onset of regular alcohol use and alcohol dependence. The subjects were 2,938 adolescents and young adults ages 12-25. Results showed that the CHRM2 gene variants and ERO risk factors had hazards which varied considerably with age. The bulk of the significant age-specific associations occurred in those whose age of onset was under 16. These associations were concentrated in those subjects who at some time took an illicit drug. These results are consistent with studies which associate greater rates of alcohol dependence among those who begin drinking at an early age. The age specificity of the genetic and neurophysiological factors is consistent with recent studies of adolescent brain development, which locate an interval of heightened vulnerability to substance use disorders in the early to mid teens

    Genome-wide association studies of the self-rating of effects of ethanol (SRE).

    Get PDF
    The level of response (LR) to alcohol as measured with the Self-Report of the Effects of Alcohol Retrospective Questionnaire (SRE) evaluates the number of standard drinks usually required for up to four effects. The need for a higher number of drinks for effects is genetically influenced and predicts higher risks for heavy drinking and alcohol problems. We conducted genome-wide association study (GWAS) in the African-American (COGA-AA, N = 1527 from 309 families) and European-American (COGA-EA, N = 4723 from 956 families) subsamples of the Collaborative Studies on the Genetics of Alcoholism (COGA) for two SRE scores: SRE-T (average of first five times of drinking, the period of heaviest drinking, and the most recent 3 months of consumption) and SRE-5 (the first five times of drinking). We then meta-analyzed the two COGA subsamples (COGA-AA + EA). Both SRE-T and SRE-5 were modestly heritable (h2 : 21%-31%) and genetically correlated with alcohol dependence (AD) and DSM-IV AD criterion count (rg : 0.35-0.76). Genome-wide significant associations were observed (SRE-T: chromosomes 6, rs140154945, COGA-EA P = 3.30E-08 and 11, rs10647170, COGA-AA+EA P = 3.53E-09; SRE-5: chromosome13, rs4770359, COGA-AA P = 2.92E-08). Chromosome 11 was replicated in an EA dataset from the National Institute on Alcohol Abuse and Alcoholism intramural program. In silico functional analyses and RNA expression analyses suggest that the chromosome 6 locus is an eQTL for KIF25. Polygenic risk scores derived using the COGA SRE-T and SRE-5 GWAS predicted 0.47% to 2.48% of variances in AD and DSM-IV AD criterion count in independent datasets. This study highlights the genetic contribution of alcohol response phenotypes to the etiology of alcohol use disorders

    An ADH1B variant and peer drinking in progression to adolescent drinking milestones: Evidence of a gene-by-environment interaction

    Get PDF
    BACKGROUND: Adolescent drinking is an important public health concern, one that is influenced by both genetic and environmental factors. The functional variant rs1229984 in alcohol dehydrogenase 1B (ADH1B) has been associated at a genome-wide level with alcohol use disorders in diverse adult populations. However, few data are available regarding whether this variant influences early drinking behaviors and whether social context moderates this effect. This study examines the interplay between rs1229984 and peer drinking in the development of adolescent drinking milestones. METHODS: One thousand five hundred and fifty European and African American individuals who had a full drink of alcohol before age 18 were selected from a longitudinal study of youth as part of the Collaborative Study on the Genetics of Alcoholism (COGA). Cox proportional hazards regression, with G × E product terms in the final models, was used to study 2 primary outcomes during adolescence: age of first intoxication and age of first DSM-5 alcohol use disorder symptom. RESULTS: The minor A allele of rs1229984 was associated with a protective effect for first intoxication (HR = 0.56, 95% CI 0.41 to 0.76) and first DSM-5 symptom (HR = 0.45, 95% CI 0.26 to 0.77) in the final models. Reporting that most or all best friends drink was associated with a hazardous effect for first intoxication (HR = 1.81, 95% CI 1.62 to 2.01) and first DSM-5 symptom (HR = 2.17, 95% 1.88 to 2.50) in the final models. Furthermore, there was a significant G × E interaction for first intoxication (p = 0.002) and first DSM-5 symptom (p = 0.01). Among individuals reporting none or few best friends drinking, the ADH1B variant had a protective effect for adolescent drinking milestones, but for those reporting most or all best friends drinking, this effect was greatly reduced. CONCLUSIONS: Our results suggest that the risk factor of best friends drinking attenuates the protective effect of a well-established ADH1B variant for 2 adolescent drinking behaviors. These findings illustrate the interplay between genetic and environmental factors in the development of drinking milestones during adolescence

    Variants Located Upstream of CHRNB4 on Chromosome 15q25.1 Are Associated with Age at Onset of Daily Smoking and Habitual Smoking

    Get PDF
    Several genome-wide association and candidate gene studies have linked chromosome 15q24–q25.1 (a region including the CHRNA5-CHRNA3-CHRNB4 gene cluster) with alcohol dependence, nicotine dependence and smoking-related illnesses such as lung cancer and chronic obstructive pulmonary disease. To further examine the impact of these genes on the development of substance use disorders, we tested whether variants within and flanking theCHRNA5-CHRNA3-CHRNB4 gene cluster affect the transition to daily smoking (individuals who smoked cigarettes 4 or more days per week) in a cross sectional sample of adolescents and young adults from the COGA (Collaborative Study of the Genetics of Alcoholism) families. Subjects were recruited from families affected with alcoholism (either as a first or second degree relative) and the comparison families. Participants completed the SSAGA interview, a comprehensive assessment of alcohol and other substance use and related behaviors. Using the Quantitative trait disequilibrium test (QTDT) significant association was detected between age at onset of daily smoking and variants located upstream of CHRNB4. Multivariate analysis using a Cox proportional hazards model further revealed that these variants significantly predict the age at onset of habitual smoking among daily smokers. These variants were not in high linkage disequilibrium (0.28CHRNB4 with onset of chronic smoking behaviors in adolescents and young adults and may improve genetic information that will lead to better prevention and intervention for substance use disorders among adolescents and young adults

    Association of Polygenic Liability for Alcohol Dependence and EEG Connectivity in Adolescence and Young Adulthood

    Get PDF
    Differences in the connectivity of large-scale functional brain networks among individuals with alcohol use disorders (AUD), as well as those at risk for AUD, point to dysfunctional neural communication and related cognitive impairments. In this study, we examined how polygenic risk scores (PRS), derived from a recent GWAS of DSM-IV Alcohol Dependence (AD) conducted by the Psychiatric Genomics Consortium, relate to longitudinal measures of interhemispheric and intrahemispheric EEG connectivity (alpha, theta, and beta frequencies) in adolescent and young adult offspring from the Collaborative Study on the Genetics of Alcoholism (COGA) assessed between ages 12 and 31. Our findings indicate that AD PRS (p-threshold < 0.001) was associated with increased fronto-central, tempo-parietal, centro-parietal, and parietal-occipital interhemispheric theta and alpha connectivity in males only from ages 18-31 (beta coefficients ranged from 0.02-0.06, p-values ranged from 10-6-10-12), but not in females. Individuals with higher AD PRS also demonstrated more performance deficits on neuropsychological tasks (Tower of London task, visual span test) as well as increased risk for lifetime DSM-5 alcohol and opioid use disorders. We conclude that measures of neural connectivity, together with neurocognitive performance and substance use behavior, can be used to further understanding of how genetic risk variants from large GWAS of AUD may influence brain function. In addition, these data indicate the importance of examining sex and developmental effects, which otherwise may be masked. Understanding of neural mechanisms linking genetic variants emerging from GWAS to risk for AUD throughout development may help to identify specific points when neurocognitive prevention and intervention efforts may be most effective

    CYP2A6 metabolism in the development of smoking behaviors in young adults

    Get PDF
    Cytochrome P450 2A6 (CYP2A6) encodes the enzyme responsible for the majority of nicotine metabolism. Previous studies support that slow metabolizers smoke fewer cigarettes once nicotine dependent but provide conflicting results on the role of CYP2A6 in the development of dependence. By focusing on the critical period of young adulthood, this study examines the relationship of CYP2A6 variation and smoking milestones. A total of 1209 European American young adults enrolled in the Collaborative Study on the Genetics of Alcoholism were genotyped for CYP2A6 variants to calculate a previously well-validated metric that estimates nicotine metabolism. This metric was not associated with the transition from never smoking to smoking initiation nor with the transition from initiation to daily smoking (P > 0.4). But among young adults who had become daily smokers (n = 506), decreased metabolism was associated with increased risk of nicotine dependence (P = 0.03) (defined as Fagerström Test for Nicotine Dependence score ≥4). This finding was replicated in the Collaborative Genetic Study of Nicotine Dependence with 335 young adult daily smokers (P = 0.02). Secondary meta-analysis indicated that slow metabolizers had a 53 percent increased odds (OR = 1.53, 95 percent CI 1.11-2.11, P = 0.009) of developing nicotine dependence compared with normal metabolizers. Furthermore, secondary analyses examining four-level response of time to first cigarette after waking (>60, 31-60, 6-30, ≤5 minutes) demonstrated a robust effect of the metabolism metric in Collaborative Study on the Genetics of Alcoholism (P = 0.03) and Collaborative Genetic Study of Nicotine Dependence (P = 0.004), illustrating the important role of this measure of dependence. These findings highlight the complex role of CYP2A6 variation across different developmental stages of smoking behaviors

    The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation

    Get PDF
    The establishment of the epigenetic mark H4K20me1 (monomethylation of H4K20) by PR-Set7 during G2/M directly impacts S-phase progression and genome stability. However, the mechanisms involved in the regulation of this event are not well understood. Here we show that SirT2 regulates H4K20me1 deposition through the deacetylation of H4K16Ac (acetylation of H4K16) and determines the levels of H4K20me2/3 throughout the cell cycle. SirT2 binds and deacetylates PR-Set7 at K90, modulating its chromatin localization. Consistently, SirT2 depletion significantly reduces PR-Set7 chromatin levels, alters the size and number of PR-Set7 foci, and decreases the overall mitotic deposition of H4K20me1. Upon stress, the interaction between SirT2 and PR-Set7 increases along with the H4K20me1 levels, suggesting a novel mitotic checkpoint mechanism. SirT2 loss in mice induces significant defects associated with defective H4K20me1-3 levels. Accordingly, SirT2-deficient animals exhibit genomic instability and chromosomal aberrations and are prone to tumorigenesis. Our studies suggest that the dynamic cross-talk between the environment and the genome during mitosis determines the fate of the subsequent cell cycle
    • …
    corecore