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Abstract
The embryonic subpallium produces many different neuronal cell types present throughout the adult
telencephalon, including striatal medium spiny neurons (MSN) and cortical interneurons. Dysfunction of
either cell type leads to neurological and psychiatric disorders including schizophrenia, epilepsy, and
Tourette’s syndrome. Thus, understanding the molecular pathways that regulate their development and
function has important implications for understanding disease pathogenesis. This work describes novel
methods and genetic factors that expand our ability to characterize the development and function of two
major subpallial derivatives: cortical interneurons and striatal MSN. The first part of this thesis characterizes a
novel enrichment method for producing parvalbumin-expressing (PV) interneurons from mouse embryonic
stem cells. This method, which uses an atypical protein kinase C inhibitor to enhance intermediate
neurogenesis, results in a markedly increased ratio of PV+ to somatostatin-expressing interneurons. The
findings suggest that the mode of neurogenesis influences cortical interneuron fate determination. Moreover,
PV+ interneurons can now be generated in large numbers to study their development, screen for factors that
affect their physiology, and used in therapeutic applications. The second part of this thesis examines the
function of two putative transcription factors, Zswim5 and Zswim6, in the regulation of striatal development.
We show that these genes are expressed in subpallial precursors, and in the case of Zswim6, expressed in the
adult striatum. Next, through the generation of Zswim5 and Zswim6 knockout mice, we provide a detailed
anatomical, molecular, and behavioral characterization of the resulting phenotypes. Our findings reveal that
loss of Zswim6 causes a reduction in striatal volume and morphological changes in MSN. Additionally, these
structural changes are associated with alterations in motor behaviors including hyperactivity, impaired rotarod
performance, and hyperresponsiveness to amphetamine. These results demonstrate that Zswim6 is
indispensable for normal brain development and support findings in human genome-wide association studies
that implicate Zswim6 with schizophrenia. Collectively, this dissertation provides novel insights into
telencephalic development through the development of in vitro stem cell systems and in vivo disease mouse
models that further our ability to test and understand neurological diseases.
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ABSTRACT 

 

IDENTIFICATION OF NOVEL MOLECULAR-GENETIC PATHWAYS 

REGULATING THE DEVELOPMENT OF SUBPALLIAL 

DERIVATIVES 

David Tischfield 

Dr. Stewart Anderson 

 

The embryonic subpallium produces many different neuronal cell types present 

throughout the adult telencephalon, including striatal medium spiny neurons 

(MSN) and cortical interneurons. Dysfunction of either cell type leads to 

neurological and psychiatric disorders including schizophrenia, epilepsy, and 

Tourette’s syndrome. Thus, understanding the molecular pathways that regulate 

their development and function has important implications for understanding 

disease pathogenesis. This work describes novel methods and genetic factors 

that expand our ability to characterize the development and function of two major 

subpallial derivatives: cortical interneurons and striatal MSN. The first part of this 

thesis characterizes a novel enrichment method for producing parvalbumin-

expressing (PV) interneurons from mouse embryonic stem cells. This method, 

which uses an atypical protein kinase C inhibitor to enhance intermediate 

neurogenesis, results in a markedly increased ratio of PV+ to somatostatin- 
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expressing interneurons. The findings suggest that the mode of neurogenesis 

influences cortical interneuron fate determination. Moreover, PV+ interneurons 

can now be generated in large numbers to study their development, screen for 

factors that affect their physiology, and used in therapeutic applications. The 

second part of this thesis examines the function of two putative transcription 

factors, Zswim5 and Zswim6, in the regulation of striatal development. We show 

that these genes are expressed in subpallial precursors, and in the case of 

Zswim6, expressed in the adult striatum. Next, through the generation of Zswim5 

and Zswim6 knockout mice, we provide a detailed anatomical, molecular, and 

behavioral characterization of the resulting phenotypes. Our findings reveal that 

loss of Zswim6 causes a reduction in striatal volume and morphological changes 

in MSN. Additionally, these structural changes are associated with alterations in 

motor behaviors including hyperactivity, impaired rotarod performance, and 

hyperresponsiveness to amphetamine. These results demonstrate that Zswim6 is 

indispensable for normal brain development and support findings in human 

genome-wide association studies that implicate Zswim6 with schizophrenia. 

Collectively, this dissertation provides novel insights into telencephalic 

development through the development of in vitro stem cell systems and in vivo 

disease mouse models that further our ability to test and understand neurological 

diseases.    
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CHAPTER 1 

Introduction: Structure, Function, Development, 

Interneurons, and Diseases of the Telencephalon 

 

 

 

 

1.1 Structure and Function of the Telencephalon 

The mature mammalian telencephalon contains of hundreds of distinct neuronal 

subtypes that are generated from a thin sheet of neuroepithelium during early 

embryonic development. A major challenge in developmental biology is to 

understand how early patterning events give rise to different progenitor domains, 

and how these domains subsequently generate a seemingly endless array of 

neuronal subtypes that eventually coalesce into functional circuitry that refines 

and modulates itself with experience. While we have made great progress in 

identifying genes and molecular pathways that control broad aspects of 

telencephalic development, we are much further from understanding how 

multiple, more subtle genetic perturbations that act during embryonic and early 
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postnatal periods result in the manifestation of more common, complex genetic  

disorders much later in life. In order to do so, we must first understand how the 

telencephalon develops on a very fine level and incorporate that knowledge into 

an understanding of how its mature components interact with each other to 

produce normal brain function. This introduction will attempt to lay the foundation 

for my dissertation research, which uses multiple, seemingly disparate 

approaches to gain insight into one of the world’s most complicated systems.   To 

this end, I begin broadly and introduce the telencephalon as it exists in all 

vertebrates, as a structure consisting of two main territories, the pallium and 

subpallium, which develop from the anterior end of the neural plate during the 

first trimester of human existence.  

 Structure and Function of the Pallium 

The pallium consists of the cerebral cortex and the subpallium contains the basal 

ganglia (BG), parts of the amygdala, and septum. The most evolutionarily 

advanced region of the cerebral cortex is the neocortex, which is responsible for 

higher order cognitive processes such as sensory perception and control of 

voluntary movement2 3.  On a structural level, the neocortex is organized along 

two main axes: tangentially into specialized areas with distinct function, 

connectivity, and cytoarchitecture; and radially into six cellular layers, which can 

be distinguished from one another based on their morphology, cell types, and 

connectivity4. Within the neocortex there are two main classes of neurons: 

excitatory glutamatergic neurons (~80%, pyramidal and spiny stellate neurons) 
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and inhibitory GABAergic interneurons (~20%). Glutamate is the major excitatory 

neurotransmitter and GABA is the main inhibitory neurotransmitter in the 

mammalian neocortex, and changes in glutamate and GABA metabolism 

determine cortical excitability5. Whereas glutamatergic neurons form long-range 

excitatory synaptic connections both within the cortex and outside of it, cortical 

interneurons are locally projecting and have the potential to modulate large 

numbers of excitatory cells within their vicinity. Both populations are organized 

into vertically oriented columns and together they serve to regulate cortical 

excitability6 5. 

 Structure and Function of the Subpallium 

The subpallium, or ventral telencephalon, contains the BG, which are a collection 

of nuclei that include the dorsal striatum (caudate nucleus and putamen), ventral 

striatum (nucleus accumbens and olfactory tubercle), globus pallidus, ventral 

pallidum, substantia nigra (SNr), and subthalamic nucleus. While most of these 

nuclei project exclusively to other nuclei within the BG, many are interconnected 

with various parts of the brain including the cerebral cortex, thalamus, and 

brainstem7. The main output nuclei of the BG are the globus pallidus internal 

segment (GPi) and the subtantia nigra pars reticulata (SNr). The main input 

nucleus is the striatum; however the subthalamic nucleus also receives direct 

input from the cerebral cortex8. Each nucleus has its own complex internal 

anatomical and neurochemical organization and will not be discussed at length. 

Together, the BG help control a variety of functions including voluntary 
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movement, procedural learning, habit formation, cognition, and emotion7. 

 Structure and Function of the Striatum 

The human striatum is comprised of two functionally similar nuclei, the caudate 

and the putamen, which are separated by the internal capsule.  In mouse, these 

nuclei are fused in what is commonly referred to as the caudate-putamen. The 

striatum receives excitatory inputs from many different cortical areas and 

thalamic nuclei9,10. Different cortical areas project to distinct regions of the 

striatum, forming parallel circuits that process specific functions (Figure 1.1). 

 

Figure 1.1. Schematic of basal ganglia circuitry. 

(A). BG target structures are shown in gray. Modified from Utter and Basso (2008). 

(B). Summary of the known excitatory inputs to the different striatal subdomains, 

including the dorsomedial striatum (DMS), dorsolateral striatum (DLS), and nucleus 

accumbens (NAc). The entire striatum receives innervation from dopaminergic (DA) 

and serotonergic (5-HT) inputs. Modified from Fuccillo (2016). Abbreviations: GPe, 

globus pallidus external segment; GPi, globus pallidus internal segment; SC, superior 

colliculus; SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulate; 

STN, subthalamic nucleus; DA, dopamine; D1, dopamine D1 receptor subtype; D2, 

dopamine D2 receptor subtype; Glu, glutatmate; ENK, enkephalin; SP, substance P.  
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Importantly, the striatum also contains dense innervation from midbrain 

dopamine neurons, which represents a major site of synaptic plasticity11. The 

striatum is unique in that it completely lacks excitatory neurons. Instead, the 

striatum contains two main populations of GABAergic neurons: medium spiny 

projection neurons (MSN) and interneurons, which comprise approximately 95% 

and 5% of the overall population, respectively12. Information flow within the 

striatum is parceled into two main streams: the direct and indirect pathways, 

which act in opposing ways to control movement. The direct pathway circuit 

originates from striatalnigral MSN, which receive excitatory glutamatergic input 

from sensorimotor cortex and thalamus and project to GABAergic neurons in the 

GPi and SNr. Striatonigral MSN are identified by their high expression of 

dopamine D1 and muscarinic M4 receptors12,13. The indirect pathway circuit 

originates from striatopallidal MSN, which receive input from the cortex and 

project to GABAergic neurons in the globus pallidus external segment (GPe). 

These neurons are identified by their high expression of dopamine D2 and 

adenosine 2A receptors12. Historically, the striatum has also been divided into 

striatal patch (or striosomal) and matrix compartments, which are defined by their 

specific neurochemical markers and connectivity14. The patch compartment is 

characterized by areas of dense alpha-opiate receptor binding, low 

acetylcholinesterase labeling, and projections to dopaminergic cells of the 

substantia nigra pars compacta and islands in the pars reticulata15,16. Matrix 

neurons are identified by their expression of the calcium-binding protein calbindin 
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and dense innervation of SST fibers14-16. This compartment primarily projects to 

the substantia nigra pars reticulata14,15. In addition, studies using retrograde 

tracers have also revealed that patch and matrix compartments are differentially 

targeted by corticostriatal neurons from different cortical layers and by 

dopaminergic neurons from the ventral tegmental area and substantia nigra17,18. 

Together, these circuits regulate multiple aspects of human behavior, and 

dysfunction in any number of them may result in a wide spectrum of neurological 

and psychiatric disease.   

1.2 Development of the Telencephalon 

 Early Patterning of the Neuraxis 

Telencephalic development is regulated by multiple intrinsic genetic programs 

that are shaped by secreted factors, or morphogens. The process begins with the 

neural plate, a flat sheet of ectodermal cells (also known as neuroepithelium) that 

evaginates and fuses dorsally to form the neural tube.  Across its full extent, the 

neural tube contains multipotent neural stem cells that generate both neurons 

and glia of the central nervous system (CNS).  Wnt proteins, fibroblast growth 

factors (FGFs) and retinoic acid are expressed from the caudal end of the neural 

plate and function to induce posterior character. Antagonists of these factors, 

such as cerberus and dickkopf, are secreted from the anterior visceral endoderm 

and act to stabilize anterior character19. Subsequently, three primary vesicles 

develop in the rostral portion of the neural tube: the prosencephalon (forebrain), 
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mesencephalon (midbrain) and rhombencephalon (hindbrain).  The caudal neural 

tube remains undifferentiated and eventually gives rise to the spinal cord.  The 

prosencephalon then forms secondary vesicles that give rise to the 

telencephalon and diencephalon (thalamus and hypothalamus), a process largely 

controlled by the secreted Wnt antagonist Tlc20.  

 Early Patterning of the Telencephalon 

FGFs serve as organizing factors in telencephalic patterning as soon as 

neurectoderm first separates from ectoderm21,22. Within the anterior neural ridge 

(ANR), cells begin to express FGF8, which acts as an organizer to pattern the 

emerging telencephalon23 Adjacent to the ANR, the anterior neural plate 

expresses the transcription factor Foxg124. Foxg1 and FGF8 form a positive 

feedback loop which promotes the induction and maintenance of telencephalic 

character22,25. Dorsal-ventral (D-V) patterning of the telencephalon is 

predominantly controlled by the dorsalizing effects of Gli3 and the ventralizing 

influence of sonic hedgehog (Shh)26,27. Sonic hedgehog is expressed from the 

notochord and serves to restrict genes instructive for dorsal fates. Together with 

Foxg1, Shh establishes the ventral telencephalon. As the telencephalon 

continues to grow, Wnt and FGF signaling becomes more specialized, and 

together with bone morphogenetic proteins (BMPs), these factors specify the 

dorsal telencephalic domain28,29. Downstream of these secreted morphogens, 

several key transcription factors delineate the different telencephalic 

subdomains. Within the ventral telencephalon, FGF and Shh signaling activate 
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the expression of Nkx2.1, a homeodomain (HD) transcription factor that defines 

the medial ganglionic eminence (MGE)21,22,30. As Nkx2.1 upregulates, the 

homeobox transcription factor Pax6, which is initially expressed throughout the 

telencephalon, downregulates in the ventral telencephalon and forms a sharp 

boundary with Nkx2.1 that demarcates the D-V border. Slightly later in 

development, the Pax6- and Nkx2.1-expressing regions become separated by a 

domain of Gsx2 expression, which specifies the lateral ganglionic eminence 

(LGE). The MGE will eventually give rise to interneurons in many forebrain areas, 

including the cortex. The LGE primarily gives rise to MSN, but a region in the 

dorsal domain that co-expresses Gsx2 and Pax6, has been shown to give rise to 

olfactory bulb interneurons (Figure 1.2). However briefly, the dorsal cortex is also 

established by gradients of transcription factors that upregulate in response to 

signaling molecules and morphogens expressed from localized patterning 

centers. Of these transcription factors, Pax6, Sp8, Emx2, and COUP-TFI play 

integral roles in cortical area patterning31. A more detailed description of the 

transcriptional programs regulating subpallial development is provided in the 

sections to come. 
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Figure 1.2. Early patterning and transcriptional regulation of the telencephalon. 

(A). Dorsal (top) and ventral (bottom) subdivisions of the mouse telencephalon at E9. 

Shh is expressed from the ventral domain and antagonizes the dorsalizing effects of 

Gli3 . Foxg1 and FGF are expressed from the anterior plate cells and form a positive 

feedback loop with Shh to specify ventral character and inhibit BMP/Wnt signaling. 

(B). By E10, the dorsal-most domain is split into BMP/Wnt expressing regions that 

are adjacent to countergradients of the transcription factors Emx2 and Pax6. 

Meanwhile, the ventral domain has been split into overlapping Nkx2.1 and 

Gsh2/Gsx2-expressing regions. (C). Shown in blue are the factors responsible for 

broadly establishing the early telencephalic domains and their antagonistic/agonistic 

actions. Downstream transcription factors, such as Gsh2/Gsx2 and Nkx2.1 then 

further subdivide the telencephalon. In the dorsal telencephalon, Gli3 promotes the 

expression of BMP and Wnt proteins, which are required for EMX1/2 expression. 

EMX1/2, together with Pax6 and Lhx2, further subdivide the dorsal telencephalon. 

Modified from Hébert and Fishell (2008). 
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1.3 Molecular-Genetic Controls over Subpallial Development 

 Overview 

The subpallium is an exemplary case of telencephalic complexity given the 

diversity of neuronal subtypes that it generates. These neurons go on to form the 

BG, parts of the amygdala and septum, and as will be discussed in the following 

sections, an almost endless array of cortical interneurons. However, the scope of 

the work presented in this dissertation mainly concerns the production of cortical 

interneurons and striatal derivatives. As such, the first part of this section will 

outline the origins, classification schemas, and generation of cortical 

interneurons. The second part of this section will touch upon the genesis of the 

striatum and the molecular regulation governing the development of its principal 

cell type, the medium spiny neuron. 

 Origins of Cortical Interneurons 

Much of what we know about cortical interneuron development comes from 

studies carried out in rodents, and this work will be the major focus of the 

following introductory section. Recently however, key papers examining 

developing human fetal tissue, developing non-human primate tissue, and 

through the manipulation of human embryonic stem cells, have shown that many 

of these developmental programs are conserved across species32,33.  

Unsurprisingly, abnormalities in interneuron development can lead to disordered 

cognition, and as such, interneuronopathies have been implicated in a variety of 
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neurological diseases including epilepsy, autism and schizophrenia34 35 36 37 38.   

Unlike glutamatergic projection neurons, which originate in the dorsal 

telencephalon and migrate radially along glial processes to populate the cortex, 

interneurons are born in the ventral telencephalon and undergo a long tangential 

migration up into the cortical plate39 40 41 42. Numerous fate mapping studies 

relying on the use of genetic labeling and transplantation assays have 

demonstrated that different cortical interneuron subtypes originate from distinct 

locations within the ventral telencephalon at different developmental stages43 44-47 

48 49. During embryonic development, the ventral telencephalon can be divided 

into two main regions: the ganglionic eminences and the preoptic area (PoA)/ 

anterior entopeduncular (AEP) domains50. The ganglionic eminences can be 

further subdivided into three anatomically distinct domains termed the medial, 

lateral, and caudal (CGE) ganglionic eminences. The vast majority (~90-95%) of 

cortical interneurons originate within the MGE, CGE, and AEP/PoA, with a small, 

somewhat controversial contribution from the LGE51 52 47. As is the case for 

glutamatergic projection neurons, most cortical interneurons are born between 

embryonic day 11 (E11) and E17.5 in the mouse. Birth dating studies 

demonstrate that cortical neurons develop radially in an “inside-out” fashion, such 

that later-born neurons migrate past their predecessors to occupy more 

superficial layers of the cortex53. Interestingly, despite their vastly different 

origins, recent data suggests that interneurons and projection neurons born at 

the same time occupy the same cortical layer, suggesting that the migration and 



 
 

12 
 

differentiation of these two populations is on some level coordinated39 54 55 56 57.  

 Interneuron Subgroup Identification 

The neocortex needs to perform multiple types of neuronal computations in a 

diverse and flexible fashion. GABAergic inhibitory interneurons largely make this 

possible by regulating the balance of activity, synaptic integration, synchrony, 

spike dynamics and oscillations of neuronal ensembles58. The ability of 

interneurons to perform such complex and specific functions depends upon their 

high degree of cellular diversity. Each interneuron subtype differs from one 

another in terms of its morphological, neurochemical, and electrophysiological 

properties59 60. Perhaps as a consequence of this heterogeneity, specific 

interneuron subtypes are differentially implicated in the pathobiology of various 

neurological and psychiatric disorders61 62 63 64 59,65,66. 

Roughly 50% of all cortical interneurons originate within the MGE and go on to 

express the calcium binding protein parvalbumin (PV). PV interneurons can be 

grouped into two morphological categories, either basket or chandeliers 

subtypes, and have non-adapting fast-spiking electrophysiological profiles67-69.  

Whereas PV basket interneurons target the cell body and proximal dendrites of 

their synaptic partners, chandelier cells specifically target the axon initial 

segment70 71. PV expressing basket cells target both pyramidal cells as well as 

other interneurons and are electrically coupled to other PV cells via gap-

junctions72,73. This feature enables PV cells to regulate cortical network 
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synchrony and coordinate oscillations. In particular, PV cells are essential for 

initiating gamma oscillations, which are involved in higher order cognitive 

functions and shown to be abnormal in several neuropsychiatric disorders74. 

The second largest neurochemical category, comprising approximately 20% of all 

cortical interneurons, expresses the neuropeptide somatostatin (SST).  While in 

the cortex PV and SST interneurons are absolutely non-overlapping, a small 

population (~6%) of hippocampal interneurons expresses both neurochemical 

markers75. SST expression in neocortex has typically been associated with 

Martinotti cells, which characteristically target the apical dendrites of pyramidal 

cells in layer I, where they elaborate vast arborizations that spread horizontally to 

neighboring columns.   SST interneurons display heterogeneous morphologies 

and have non-fast spiking, accommodating electrophysiological profiles76 77 68,78-

80. About a third of SST interneurons in frontal, somatosensory, and visual cortex 

co-label with calretinin (CR) and are morphologically and electrophysiologically 

distinct from the SST+/CR- subgroup81. Another type of SST-expressing cell, 

termed the X94 cell after the transgenic mouse from which it was first described, 

are located in layers IV and V and have axonal projections that profusely 

innervate layer IV77. 

The remaining 30% of cortical interneurons that do not express PV or SST 

express the 5HT3a receptor. This group of cells is especially heterogeneous and 

remains to be fully characterized, but contains CR, reelin, and vasoactive 

intestinal peptide (VIP) expressing subtypes82 83. VIP interneurons account for 
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40% of the 5HT3aR population in S1 and are particularly enriched in layers II/III. 

There appear to be several types of VIP interneurons, including neurons with 

bipolar, bitufted, and multipolar morphologies that express different markers (e.g. 

CCK and type 1 cannabinoid receptors) and exhibit diverse electrophysiological 

properties. CR cells have bipolar or double bouquet morphologies and tend to 

exhibit rapidly adapting firing patterns, while reelin-expressing neurogliaform cells 

display late-spiking firing patterns.  Lastly, subsets of multipolar interneurons that 

express neuropeptide-Y (NPY) have rapidly adapting or irregular 

electrophysiological characteristics84 85.  Taken together, the MGE produces the 

bulk of PV and SST-expressing subtypes, while the CGE gives rise to mostly 

5HT3aR-expressing cells.  

The aforementioned identification scheme is based on decade’s worth of 

morphological, molecular, physiological and developmental data that has often 

complicated, rather than simplified efforts to classify cortical interneurons. In fact, 

estimates for the number of cortical interneuron subtypes have ranged from 

around a dozen to upwards of several hundred86,87. To overcome this challenge, 

some groups have suggested that interneurons exist as an assortment of species 

that fall along a continuum86. More recently, another group has put forth the idea 

that the large diversity of interneuron classes may in fact originate from only 

handful of cardinal cell types that develop their unique cellular properties through 

interactions with other neurons and local cues88. From a functional point of view, 

this enables interneurons that share the same genetic origins to evolve 
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properties that fit their function. In a sense, interneuron complexity can be taken 

as a proxy for the complexity of the cerebral cortex and the functions that it 

performs. Regardless, the question remains of how and when interneuron fate is 

determined. Interneurons traverse relatively long distances from their place of 

origin in the subpallium to their ultimate location upon maturation as compared to 

pyramidal cells, which follow ordered, and relatively simple migration 

programs89,90. Either several different intrinsic complex migration and fate 

determination programs are hardwired at the time of cell cycle exit or, 

interneurons maintain some degree of plasticity that allows them to adapt to 

environmental cues after migration to the cortex88. 

 Genetic Regulation of Interneuron Development  

The initial evidence indicating that cortical interneurons come from the ventral 

telencephalon came from observations of Dlx1/Dlx2 expression, followed by 

analysis of the Dlx1/Dlx2 double mutant mice, which have a severe block in 

interneuron migration that results in a 4-fold reduction in neocortical 

interneurons39,91,92. Thus, the initial stages of interneuron development depend 

on the proper patterning of the ventral telencephalon.  This process is partly 

controlled through gradients of Shh, which serve to regulate the expression of 

downstream transcription factors including members of the basic helix-loop-helix 

and homeodomain (HD) families. Together, these factors serve to pattern the 

neural tube through their combinatorial transcriptional codes, which define 

distinct progenitor pools along the D-V axis of the neural tube93. Of these, Dlx1, 
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Dlx2, Gsx1, Gsx2, and Ascl2 (also known as Mash1) are required for the 

generation of all cortical interneurons94 95. Dlx1/Dlx2 and Mash1 are required for 

the generation of early- and late-born subpallial progenitors, respectively92,96,97.  

Dlx1/Dlx2 also serve to repress oligodendrocyte production in favor of neuronal 

fates through antagonism of Olig-2 expression39 98 99.  In contrast to Mash1, 

which turns off as progenitors exit the cell cycle, Dlx1/Dlx2 stay on and operate at 

several different stages of GABAergic interneuron maturation ranging from 

GABAergic identity acquisition to regulating the initiation and termination of 

migratory behavior.  Gsx-1 and -2 have somewhat redundant functions and 

together promote an LGE regional fate, largely via cross-repression of Gsx2 and 

Pax6100 101 102 103. Together with Nkx2.1, this genetically determined map 

delineates numerous progenitor pools that give rise to progeny with diverse fate 

potentials.   However, it is becoming increasing clear that these factors, while 

instrumental in establishing the basic layout of the ventral telencephalon, by 

themselves cannot account for the tremendous diversity of neuronal subtypes 

that are present in the mature forebrain. Therefore, there must be numerous, as 

of yet uncharacterized transcriptional regulatory factors that act on a 

combinatorial level with cardinal patterning genes to generate the neuronal 

constituents of the many forebrain regions.  

 The MGE Gives Rise to PV and SST Cortical Interneurons 

PV and SST expressing cortical interneurons are the primary cortical interneuron 

subtypes focused on in this thesis work. They originate in the MGE and comprise 
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over half of all of neocortical interneurons83 104.  A number of key transcription 

factors within the MGE have been identified, and while the list is not complete, 

the genetic program that instructs the development of PV and SST lineages has 

begun to emerge. This cascade of gene expression begins around E9 with the 

transcription factor Nkx2.1, which acts as a master regulator to promote MGE-

derived interneuron fates over CGE-derived cell types47 105.  Within the MGE, 

Nkx6.2 is expressed dorsally in a region that appears to be partially Nkx2.1 

negative and is particularly important for the development of a subset of SST/CR 

co-expressing cortical interneurons27,106 107 108.  Nkx2.1 mediates neuronal 

progenitor identity, regulates neuronal subtype specification, and directs neuronal 

migration109.  Nkx2.1 is downregulated in migrating interneuron precursors 

destined for the cortex, but expression continues postnatally in striatal 

lineages110.  The transcription factor Sip1 (also known as Zeb2) has been shown 

to regulate Nkx2.1 levels either directly or indirectly in post-mitotic cortical 

interneuron precursors111,112. Nkx2.1 is also expressed in the septum, AEP and 

PoA105 45 113. In addition to preventing the MGE domain from acquiring CGE 

identity, Nkx2.1 directly activates a second transcription factor within the MGE –  

Lhx6 – which is required for the proper differentiation of both PV- and SST-

expressing interneurons113. Interestingly, Lhx6 is initially expressed in both 

GABAergic and cholinergic (ChAT) striatal interneuron precursors114. However, 

as development progresses, Lhx7 and Islet1 upregulate in ChAT-fated cells and 

cause Lhx6 to turn off, thereby allowing Lhx7 and Islet1 to bind to and activate 
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cholinergic specific genes115. In the absence of Lhx7, cholinergic fated 

interneurons switch fate and differentiate toward GABAergic interneurons of the 

striatum116. Downstream of Lhx6 are a series of factors including Sox6 and 

Satb1, which selectively affect both PV- and SST-expressing interneuron 

differentiation117 118. Although Sox6 is required for general PV and SST 

interneuron subtype differentiation, PV expression appears more dependent than 

SST on Sox6 function since perturbing Sox6 in mouse prevents cells from 

expressing PV with no effect on SST expression119 120.  Together, Nkx2.1 and 

Lhx6 are required for the normal development of PV and SST subgroups49 121 122.  

Nkx2.1 is expressed in all MGE progenitors and Lhx6 is upregulated at, or shortly 

before, cell cycle exit123 and continues to be expressed throughout adulthood35 

107 124. While many aspects of how these transcription factors function are still 

being worked out, new tools, including the work presented in these thesis, have 

been developed to meet this challenge.  

 Spatiotemporal Biases in Fate  

Previous work from our lab, as well as others, has identified a spatial and 

temporal bias within the MGE for PV versus SST interneuron generation108.  

Transplantation assays of dorsal and ventral MGE at different time points 

revealed that while a mix of fates are present in both regions, SST precursors are 

enriched in early dorsal (dMGE) and PV precursors are enriched in late ventral 

(vMGE) MGE104.  Shh signaling is required for Nkx2.1 expression and gradations 

of Shh strength within the MGE have been shown to influence PV versus SST 
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fates26,125 126.   Blocking Shh signaling is sufficient to prevent Nkx2.1 protein 

expression and can cause MGE-derived progeny to adopt a CGE-like CR+ 

bipolar fate126 127.  Higher levels of Shh signaling promotes the generation of 

SST-expressing interneurons as compared to PV-expressing cells108.  By 

exposing vMGE progenitors to exogenous Shh, PV fate can be suppressed in 

favor of SST fates127.  In line with these findings, the dMGE has higher levels of 

Shh signaling as shown by enhanced expression of Gli1 and Gli2, despite Shh 

being secreted in an overall low to high D-V gradient108. Although spatiotemporal 

biases in the generation of interneuron subtypes exists within the ventral 

telencephalon, a heterogeneous population of subtypes are generated within the 

same regions at the same time107. This heterogeneity is paralleled by a diversity 

of progenitor cells that are capable of producing both neuronal and glial cell 

types, as well as those whose fate potential is more restricted128. 

 Division Mode and Progenitor Subtype Influence PV and SST Fate 

The following section lays the groundwork for much of our rationale to do the 

work presented in this thesis, and as such, will be covered in considerable detail. 

Several studies have clearly demonstrated that different modes of division seem 

to be involved in the production of PV vs SST subgroups. Cyclin D1 and D2 are 

regulators of cell cycle dynamics that are expressed in largely non-overlapping 

niches. While both cyclins are expressed throughout the telencephalic germinal 

zones, cyclin D1 is predominantly expressed in the ventricular zone (VZ) while 

cyclin D2 is expressed in the subventricular zone (SVZ)129-131.  The SVZ is mainly 
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comprised of intermediate progenitors, which arise from divisions of radial glia 

occurring at the apical surface. Thus, cyclin D2 is both a marker of intermediate 

progenitors and a regulator of their mitotic behavior131 132.  Interestingly, cyclin 

D2-null mice have a specific 30–40% reduction of neocortical PV+ interneurons, 

but these mice have a normal complement of SST+ interneurons131. These data 

suggest that asymmetric divisions occurring at the VZ surface primarily generate 

SST+ cells, whereas PV+ neurons seem to be generated through symmetric 

neurogenic events yielding intermediate progenitors in the SVZ of the MGE131. A 

recent study from our lab has recently used in in vivo fate mapping to 

demonstrate this point133. In this study, the authors utilized in utero 

electroporation to conduct in vivo fate mapping of cortical interneurons originating 

from either apical progenitors or intermediate progenitors. In order to fate map 

apical progenitors, the authors took advantage of the tubulin α-1 promoter 

(pTα1), which labels neocortical progenitors at the apical surface that are known 

to generate relatively few intermediate progenitors (herein referred to as short 

neural precursors, or SNPs)134,135. Electroporation of pTα1-GFP into the MGE 

revealed that SNPs primarily undergo neurogenic divisions, and therefore bypass 

the intermediate progenitor phase, to produce a ~2:1 ratio of SST+:PV+ 

interneurons. On the other hand, electroporation with a nestin promoter-enhancer 

construct, which fate maps all MGE apical progenitors and their progeny, 

produced a ~2:1 ratio of PV+/SST+ interneurons, consistent with the overall ratio 

of PV:SST interneurons produced within the MGE. Next the authors tested 
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whether directing MGE progenitors toward either apical or intermediate 

neurogenic divisions would bias their fate toward SST and PV-expressing 

interneurons, respectively. Remarkably, electroporation of a dominant-negative 

version of the Mastermind-like-1 protein (dnMAML), which blocks Notch signaling 

and promotes cell cycle exit, greatly reduced the number of cyclin D2 expressing 

intermediate progenitors and nearly doubled the ratio of SST+ to PV+ 

interneurons produced. The reciprocal experiment, which used overexpression of 

inscuteable to drive apical progenitors into basal progenitor states, resulted in a 

3.5:1 ratio of PV+ to SST+ interneurons. Collectively, these results indicate that 

not only is interneuron fate diversity a function of spatiotemporal localization of 

progenitors within the MGE, but also of the apical-basal location of neurogenic 

division. 

 Genetic Demarcation of the CGE 

Morphologically, the CGE has no clear boundaries and exists as a fusion of the 

MGE and LGE starting at the coronal level of the mid to caudal thalamus.  The 

CGE produces approximately one-third of all cortical interneurons. These 

interneurons express 5HT3aR, predominantly display bipolar and bitufted 

morphologies, and express a number of neurochemical markers including CR, 

VIP, NPY, and Reelin39 52 47 48 82.  Relative to the MGE, there are few genetic 

markers known to be specific to the CGE-derived lineages88.  However, the 

orphan nuclear receptor, COUP-TFII, which is expressed in CGE, is involved in 

the migration and specification of CGE-derived neocortical interneurons136.  In 
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addition, the HD protein, Prox1, is known to be expressed in a subset of 

CGE/LGE- and PoA-derived interneurons during embryonic development and 

maintained in the mature cortex137 Loss of Prox1 impairs the integration of CGE-

derived cortical interneuron precursors into superficial layers and differentially 

regulates the postnatal maturation of reelin, VIP, and VIP/calbindin expressing 

subtypes138.  COUP-TFI and Mash1 are also expressed in the CGE 58. 

Interestingly, loss of COUP-TFI in SVZ progenitors and post-mitotic precursors 

leads to a reduction of late-born, CGE-derived VIP and CR expressing cortical 

interneurons, and a corresponding increase of early-born MGE-derived PV+ 

interneurons139. This loss is associated with increased expression of cyclin D2 in 

the dorsal MGE, suggesting that the increase in PV+ cell number is due to an 

increase the number of intermediate progenitors.  The ventral CGE also 

expresses Nkx2.1, while the dorsal CGE strongly expresses Gsx2 and ER81, two 

transcription factors that are required for the proper patterning of the LGE and for 

the production of olfactory bulb interneurons, respectively30. However, while 

Nkx6.2 and COUP-TFI/II are widely expressed within the CGE, they are not 

restricted to it106 (Figure 1.3).  Ongoing efforts to identify CGE-specific 

transcriptional programs will likely help determine the molecular mechanisms 

underlying interneuron specification within this spatial domain.   
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 Genetic Regulation of LGE and Striatal Development 

The LGE can be subdivided into dorsal and ventral domains140 141. The dorsal 

domain of the LGE (dLGE) expresses Pax6, Ngn2, Dbx1, and Er81. This region 

predominantly gives rise to olfactory bulb interneurons, but may also contribute 

neurons to the striatum proper and autonomic amygdaloid complex140 141 142. 

Notably, although the dLGE appears to be the primary source of olfactory bulb 

interneurons, subsets of this population may also be generated within the pallium 

and septum143.  The ventral LGE (vLGE) expresses Gsx2, Mash1, and low levels 

Figure 1.3. Origins and diversity of neocortical interneurons. 

(A). Neocortical interneurons are produced by neuronal progenitors in the ventral 

telencephalon. Most interneurons arise from either the CGE (pink) or MGE (yellow), 

with a small contribution from the PoA (purple). A small, controversial source may 

also arise from the LGE (green). (B). A number of transcription factors are 

differentially expressed within the subpallium and specify the LGE, MGE, CGE, and 

PoA. Whereas Dlx1/2/5/6, Gsh2 (also known as Gsx2), Mash1, and Olig1/2 are 

expressed throughout the subpallial germinal zone, factors such as Nkx2.1 and 

CoupTF1/2 are only expressed in the developing MGE/PoA and CGE, respectively. 

Nkx6.2 and Gli1 are expressed are expressed within a narrow region located in 

between the LGE and MGE. (C). Neocortical interneurons are highly diverse and 

differ from one another on morphological, neurochemical, electrophysiological, and 

targeting levels. Roughly 40% of neocortical interneurons are fast-spiking (FS) 

parvalbumin (PV)-expressing interneurons and can be classified into basket or 

chandelier subtypes. Not all chandelier subtypes, however, express PV. 

Approximately 30% of cells express somatostatin (SST) and are morphologically 

heterogeneous. These are typically non-FS. The remaining 30% express the 

serotonin receptor 5-HT3AR and contain vasointestinal peptide (VIP)-expressing 

and/or calretinin (CR)-expressing cells with bipolar or double-bouquet morphologies 

and fast adapting firing (AD) patterns, as well as Reelin-expressing, late-spiking (LS), 

neurogliaform cells. A small population of neocortical interneurons, some of which 

overlap with SST, express NPY and display irregular or fast AD firing properties. 

Modified from Sultan, Brown, and Shi (2013).   
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of Pax6, and largely produces MSN140 142 144 145.  As mentioned earlier, Dlx1/Dlx2 

and Mash1 are important regulators of LGE development. Loss of Dlx1/Dlx2 

results in a severe reduction of later born striatal matrix neurons, while loss of 

Mash1 causes premature differentiation of VZ progenitors92,96. In Gsx2 knockout 

mice, there is ectopic expression of Ngn2 in the LGE and a subsequent loss of 

Mash1 and Dlx2142. However, even though early development of the LGE 

appears to be compromised in Gsx2 mutants, as development proceeds, Gsx1 is 

able to partially compensate for Gsx2 loss of function as evidenced by a 

molecular reestablishment of the cortical-striatal boundary and slight increase in 

expression of the striatal-matrix marker calbindin100,141,146. Although no 

phenotype in Gsx1 mice was initially noted, it was recently shown that Gsx1, in 

part through down regulation of Gsx2, directs progenitors toward a mature 

neuronal fate103.  

The nuclear receptor ligand retinoic acid (RA) is another important signaling 

molecule implicated in the survival, proliferation, specification, and differentiation 

of many neuronal and progenitor cells types during brain development101,147-151.  

Beginning around E12.5, RA is produced in the LGE SVZ by the enzyme Raldh3, 

where it regulates striatal neuron differentiation150,152. RA plays an important role 

in initiating the expression of Gad67, an enzyme necessary for GABA synthesis, 

in striatal precursors153. A recent studying examining retinoic acid receptor β 

(Rarβ) knockout mice showed that these mice have a specific deficit in the 

striatonigral output pathway, which primarily consists of dopamine receptor D1 
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(Drd1)-expressing MSN154. The transcription factor Nolz1, which is expressed in 

late LGE progenitors and differentiating striatal precursors, has been shown to 

act downstream of Gsx2 to activate the Rarβ receptor155. The development of the 

striatonigral pathway has also been shown to depend on the transcription factor 

Islet-1, which is expressed in progenitors and post-mitotic precursors that give 

rise to the striatonigral pathway156,157. Loss of Islet-1 impacts the survival, 

differentiation, and axonal targeting of striatonigral neurons156,157. Importantly, 

Islet-1 functions to repress striatopallidal genetic programs within striatal 

precursors in favor of striatonigral ones157. As a result, mice that lack Islet-1 are 

hyperactive and have altered responses to pharmacological reagents that 

stimulate the dopamine D1 receptor pathway156.  The early B-Cell Factor 1 (Ebf1) 

is yet another transcription factor implicated in the development of the 

striatonigral pathway158-160. Ebf1 mutant mice have a reduction in striatal volume 

due to increased cell death and a reduction in the number of striatonigral matrix 

neurons with relative sparing of those in the patch compartment159,160. Until 

recently, relatively little was known about factors that specifically regulate 

striatopallidal pathway development. However, a recent study has shown that the 

transcription factor Sp9 is essential in this process161. Sp9 is expressed 

downstream of Mash1 in LGE progenitors, maintained in post-mitotic 

striatopallidal MSNs, and required for their generation, differentiation, and 

survival161. Ctip2 (also known as Bcl11b) is another transcription factor 

expressed in early post-mitotic MSN that is required for multiple aspects of 
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striatal development162. In Ctip2 knockout mice, MSN do not fully differentiate, as 

demonstrated by reduced expression of multiple mature MSN markers162. MSN 

also aggregate into disordered clusters, which causes a severe disruption in 

patch-matrix organization162. The forkhead box protein, Foxp1, is a long known 

marker MSN, though its function in striatal development has not been studied 

until recently163. Using conditional inactivation of Foxp1 in brain, it was shown 

that Foxp1 causes a severe reduction in striatal volume, most likely through 

defects in progenitor proliferation164. Foxp1 also regulates the morphology of 

MSN and in Foxp1 heterozygous mice, MSN have significantly increased 

excitability164,165. In sum, retinoic acid, acting in concert with transcriptional 

regulators including Rarβ, Islet-1, Ebf1, Ctip2, Nolz1, Sp9, and Foxp1, has been 

shown to play critical roles in multiple aspects of striatal development.   

1.4 Interneuron Dysfunction in Neurological Disease  

 Epilepsy and Seizure Disorders 

Proper function of the cerebral cortex requires a precise balance of excitation 

and inhibition. While pyramidal neurons send information between cortical areas 

and from the cortex to other areas of the brain, inhibitory tone from cortical 

GABAergic interneurons shapes that activity through synchronized oscillations 166 

167. These two systems must work in a tightly controlled equilibrium in order to 

produce normal brain function and cognition. Thus, many important 

developmental and physiological mechanisms have evolved to maintain this 



 
 

28 
 

critical balance. For example, GABAergic interneurons are the principal cellular 

agents responsible for dampening hyperexcitability in the brain. As such, deficits 

in GABAergic interneurons are implicated in the pathobiology of various seizure 

disorders. Studies of animal models involving both genetic and acquired forms of 

epilepsy support this notion 34.  For example, mutations in the Aristeless-related 

homeobox gene (ARX) are frequently associated with epileptic encephalopathies 

that present in infancy and childhood168 45 169,170 171 172. ARX mutations are 

known to cause a number of neurological diseases ranging from disorders of 

neuronal migration that result in lissencephaly to mild intellectual disability173,174. 

However, despite the wide range of phenotypes that ARX mutation patients 

present with, all share epilepsy as a major common symptom172.  In the most 

severe cases, mutations in ARX cause a syndrome known as X-linked 

lissencephaly with ambiguous genitalia (XLAG) that is characterized by severe 

developmental delay and intractable seizures175.  Post-mortem examination of 

patients’ brains revealed a nearly complete loss of cortical interneurons, which 

has been replicated in studies of Arx mutant mice172,176-178. ARX expression in 

mainly restricted to GABAergic neurons and loss of ARX has numerous 

consequences on this population including abnormal migration and neuronal 

differentiation179-181. 

Dravet syndrome (DS) is another form of early infantile epileptic encephalopathy 

that is thought to arise as a consequence of interneuron dysfunction. DS patients 

typically present within the first year of life with multiple different seizure types 
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including prolonged convulsive seizures and frequent episodes of status 

epilepticus that are often treatment resistant182.  DS is caused by heterozygous 

mutations in the gene SCN1A, which encodes the type I voltage gated sodium 

channel NAV1.1. NAV1.1 is a critical determinant of neuronal activity and 

underlies action potential generation, and has been shown to be particularly 

important for the function of fast-spiking PV interneurons183,184 185.  A recent study 

using induced pluripotent stem cells (iPSCs) derived from DS patients found that 

inhibitory interneurons differentiated from iPSCs in vitro had pronounced defects 

in action potential firing, whereas the excitability of glutamatergic neurons derived 

from the same patient line were indistinguishable from controls186. Patients with 

DS may progress normally early on in life, however they go on to develop 

cognitive impairments and behavioral disturbances, including hyperactivity and 

autistic-like traits that sometimes present after seizure onset. Although seizure 

frequency decreases with age, many patients die from status epilepticus or from 

sudden unexpected death in epilepsy (SUDEP)187.  Studies from Scn1a+/- mice 

have shown that GABAergic interneurons have dramatically reduced sodium 

currents that result in an impaired ability to sustain high frequency action 

potential firing.  This causes an overall decrease in inhibitory tone that enables 

the activity of excitatory pyramidal neuron ensembles to go unchecked.  

The most common treatments for epilepsy are medications that act by 

potentiating GABA function. These include drugs like barbiturates and 

benzodiazepines, which bind to GABAA or GABAB receptors, which collectively 
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cause dampening of neuronal activity through either the influx of hyperpolarizing 

chloride ions (GABAA) or through more slowly acting metabotropic effects 

(GABAB)34. About 20-30% of patients with epilepsy are refractory to all forms of 

medical therapy and must consider other options. Surgery may be an effective 

treatment option in some cases, but depends on many factors, including the site 

of seizure origin. Although not clinically available yet, cell-replacement therapies 

have also emerged as a promising treatment option for epilepsy188,189 190. 

Interneurons have the remarkable capacity to survive, migrate, and integrate into 

host cortical circuitry post-transplantation. As such, several groups have 

published proof-of-principal studies demonstrating its feasibility. For instance, 

transplantation of interneuron precursors into neonatal neocortex of Kv1.1 mutant 

mice was shown to significantly reduce the frequency of spontaneous 

electrographic seizures191. Subsequently, multiple studies have gone on to show 

that interneuron precursor transplantation into neonatal or adult neocortex or 

hippocampus can ameliorate both the development of seizure activity and the 

intensity of seizures already established192-194. 

 Schizophrenia 

Interneuron dysfunction has been suspected to underlie a variety of 

neurodevelopmental disorders in humans, including schizophrenia195. Post-

mortem studies examining the prefrontal cortices of schizophrenic patients have 

found a 40% reduction in GABAergic synapses196. Since then, follow-up studies 

looking at mRNA expression levels in post-mortem brain samples has shown 
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significant decreases of numerous interneuron markers including PV, SST, CR, 

and NPY197.  Schizophrenia is characterized by three groups of symptoms:  1) 

positive symptoms, such as hallucinations and delusions, 2) negative symptoms, 

including flat affect and social withdrawal, and 3) cognitive symptoms, such as 

deficits in attention and working memory198,199.  Rather than being due to deficits 

in interneuron number, GABAergic dysfunction in schizophrenia may arise from 

more-subtle alterations in inhibitory circuits at the level of specific synapses200.  

Interestingly, some of the deficits observed in individuals with schizophrenia are 

similar to those observed in patients with bipolar disorder, suggesting that a 

common underlying disease mechanism may exist across these disorders201.  

Numerous mechanisms may be responsible for the disruption of inhibitory 

function detected in schizophrenia, all of which converge upon PV+ interneurons 

as central features in this disorder. Specifically, PV+ interneurons have lower 

levels of GAD67 expression in patient brains, and prefrontal cortex gamma 

oscillations are impaired in schizophrenic patients both at rest and during working 

memory tasks36. Multiple genes that have been associated with schizophrenia 

are also involved in PV interneuron development, including ERBB4 and 

DISC1202,203 204 205 206.  In mice, conditional deletion of Erbb4 in PV+ interneurons 

alone is able to recapitulate many phenotypes associated with schizophrenia 

including decreased GAD67 mRNA levels, decreased dendritic spine density of 

cortical pyramidal neurons, alterations in cortical excitation, and a net increase in 

baseline gamma oscillations207. These results, together with studies of human 
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post-mortem brain tissue, strongly implicate that GABAergic deficits may be 

specific to PV interneurons and that schizophrenia susceptibility genes play a 

role in the development of PV interneuron subtypes. However, a growing body of 

literature continues to suggest that subtle changes in the excitatory-inhibitory 

balance may be a common theme across a range of neuropsychiatric disorders 

including Tourette syndrome, autism, and anxiety disorders167 196 208 209,210.   

Given that different subclasses of interneurons contribute to the generation and 

pacing of distinct forms of neuronal activity via their unique targeting properties, 

the functional effects of abnormal GABAergic inhibition likely depend on which 

subtype of interneuron is involved. As such, it is important to gain an 

understanding of the different genetic programs that contribute to the 

development of distinct neuronal subtypes, since perturbations to any one of 

these programs could contribute differentially to the spectrum of neuropsychiatric 

disease. 

 Autism 

In contrast to schizophrenia, which appears to involve remarkable cellular 

specificity, autism spectrum disorders (ASDs) such as Rett’s syndrome might 

have a more-generalized disruption of cortical excitation and inhibition167. Rett’s 

syndrome is characterized by impaired language skills, cognitive deficits, 

stereotypic behaviors and respiratory problems211.  In more than 90% of cases, 

Rett's syndrome is caused by loss-of-function mutations in the gene MECP2, 

which binds methylated DNA and functions as a transcriptional repressor212.  
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When MECP2 function is perturbed, inhibitory neurons contain reduced levels of 

GABA, and this deficiency is thought to underlie the disease phenotype38.  In 

fact, loss of MECP2 function solely in mouse forebrain GABAergic neurons is 

sufficient to recapitulate most of the features of Rett’s syndrome, including 

repetitive behaviors, increased sociability, cognitive deficits, impaired motor 

coordination, and cortical hyperexcitability167 38. MECP2 functionally interacts 

with BDNF, which plays a key role in the development and maturation of 

inhibitory circuits213. Further evidence linking GABAergic deficits with the 

pathophysiology of ASD and related disabilities comes from studies linking genes 

encoding proteins of the neuroligin–neurexin complex with susceptibility to 

autism or Asperger's syndrome214,215 216 217.  On the contrary, excessive inhibition 

within specific neural circuits may also be pathological as is found in Down's 

syndrome167.  Down’s syndrome, which is caused by trisomy of chromosome 21, 

is characterized by distinct facial features, intellectual disability, and deficits in 

cognitive processes that involve hippocampal function218.   Some of these 

deficits, such as those that deal with spatial memory, have been replicated in a 

mouse model of Down's syndrome, and the underlying mechanism seems to 

involve excessive inhibition in the hippocampal dentate gyrus219-221. 

In sum, a large body of literature directly implicates GABAergic dysfunction in the 

pathogenesis of numerous neurological and psychiatric diseases. Since 

heterogeneity in interneuron function is key in modulating cortical circuit activity, 

perturbations to particular subtypes has differential contributions to human 
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disease states. Further characterization of how interneuronopathies play a role in 

specific disease etiologies is necessary if we wish to develop targeted, effective 

treatment options. Thus, there is a growing need to understand the genetic 

programs directing interneuron genesis and function, as well as for the 

development of new methods to generate interneuron subtypes in vitro. 

1.5 Striatal Dysfunction in Neurological Disease 

 Overview 

The BG is a group of highly interconnected subcortical brain structures that are 

conserved across vertebrate species stemming as far back as anamniotes 222,223.  

Its functions are diverse, ranging from control of movement to learning-related 

motor functions, including habit formation, reinforcement learning, and motor 

sequence acquisition224.  A series of recurrent neural loops linking the BG with 

specific input and output structures enables it to perform its numerous functions 

10,11. The BG receives excitatory synaptic input from different cortical areas, in 

addition to thalamic nuclei, insula, and amygdala, which diffusely target Drd1+ 

and Drd2+ expressing MSN of the striatum12. MSN process these signals and 

relay output to motor regions of the thalamus either directly through the SNr/GPi 

or indirectly via the GPe and STN before heading to the SNr/GPi. In turn, the 

thalamus, with modulation from midbrain nuclei, projects back to neocortical 

areas that initially targeted the striatum, thereby providing sensory feedback 

control of ongoing behavior12,223,224. Dysfunction in any of these BG nuclei can 
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result in debilitating disease, and thus understanding the molecular-genetic 

controls over its development and function has considerable value. The collection 

of neurological disorders linked to BG dysfunction is vast, and includes Tourette 

syndrome (TS), autism, obsessive compulsive disorder (OCD), schizophrenia, 

dystonia, Parkinson’s, and Huntington’s disease12,223,224.  

 Tic Disorders and Tourette Syndrome  

Although tic disorders and TS are considered separate clinical syndromes, they 

are often comorbid and thought to share similar disease etiology225.  Tourette 

syndrome, which affects around 1% of the population, is characterized by 

sudden, repetitive, involuntary movements or vocalizations that typically begin 

between 3 and 9 years of age226. Tics are generally associated with an urge or 

sensation that drives the individual to perform the action, but unlike other types of 

abnormal movements, they can typically be suppressed224. The urge to perform 

them, however, may be so great that in some instances they are termed 

involuntary. Evidence that the BG, in particular corticostriatal circuits, is involved 

in TS partly stems from observations of tics in patients with diseases that directly 

affect the BG, such as Huntington disease224. Patients with TS have also been 

shown to have a consistent reduction in striatal volume227,228. In support of a BG 

pathophysiological basis, drugs that block dopamine or cause dopamine 

depletion are highly effective at suppressing tics, whereas pro-dopaminergic 

drugs exacerbate tics224. In more severe cases, deep brain stimulation of 

thalamic nuclei tightly linked to the BG or different BG nuclei themselves has 
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emerged as an established effective treatment option. Post-mortem evaluation of 

patients with severe TS has revealed that specific interneuron populations, most 

notably ChAT+ and PV+ interneurons, are reduced in both number and density in 

the striatum210,229. A recent study from Xu and colleagues used targeted ablation 

of ChAT interneurons in the dorsal striatum to investigate the effects of reduced 

cholinergic drive on mouse behavior230. They found that a 50% reduction of 

ChAT cells in the dorsolateral striatum produced behavioral manifestations of TS 

including stereotypic repetitive grooming and abnormal tic-like movements after 

acute stress or amphetamine treatment230. Together, multiple lines of evidence 

link BG dysfunction to TS and tic disorders. 

 Obsessive-Compulsive Disorder 

Roughly 30% of patients with TS also meet criteria for OCD, which affects 

between 2 and 3% of the overall population231. OCD is characterized by recurrent 

intrusive thoughts or images (obsessions) that may be followed by repetitive 

compulsive behaviors224. Importantly, these repeated behaviors do not provide 

pleasure or reward, but rather relieve anxiety or provide a sense of completion224. 

Like TS, OCD is believed to have a strong genetic component, but to date only a 

few genetic associations have been identified232. Numerous studies, however, 

point toward the involvement of cortico-striato-thalamocortical circuitry in OCD 

pathogenesis233,234. Like TS, differences in striatal volume have been reported in 

patients with OCD235-237and fMRI studies have shown altered activities in the 

striatum, orbitofrontal cortex (OFC), and anterior cingulate (ACC) cortex during 
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resting state and during the expression of symptoms238,239. OCD is most 

commonly treated with selective serotonin-reuptake inhibitors (SSRI) and 

cognitive behavioral therapy, and studies have shown decreased activity in the 

striatum and OFC following these treatments232,240. Recently, genetic animal 

models of OCD have been generated that exhibit both corticostriatal dysfunction, 

as well as a common dysfunction in glutamate signaling232. For example, Sapap3 

is a postsynaptic scaffolding protein highly enriched in the striatum that has been 

linked to trichotillomania, a compulsive tendency to pull out ones hair241. In mice, 

Sapap3 loss-of-function causes excessive grooming, increased anxiety, 

abnormally high spontaneous activity of MSN, and interesting a decrease in the 

number of PV+ interneurons in the dorsomedial striatum241-243. The finding of 

decreased PV interneurons supports the notion that a lack of inhibitory drive in 

striatal microcircuitry could cause MSN hyperexcitability and suggests that 

imbalances in excitation and inhibition could contribute to OCD pathogenesis. 

Furthermore, deletion of the gene Slitrk5 in mice induces a number of OCD 

associated behavioral abnormalities, in addition to reduced striatal volume and 

decreased MSN dendritic complexity244. Together, multiple lines of evidence from 

clinical and experimental work point to the importance of the striatum and 

corticostriatal pathways in the pathogenesis of OCD and obsessive compulsive-

related disorders.  

 Schizophrenia 

The dopamine hypothesis of schizophrenia attributes the symptoms of 
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schizophrenia to a dysregulation of dopaminergic signal transduction245-247. This 

hypothesis was based on observations that psychostimulates such as 

amphetamine were known to exacerbate psychotic symptoms, whereas 

antipsychotic medications, which primarily work by blocking dopamine receptors 

or function, are highly efficacious in alleviating these symptoms247. In particular, 

striatal dopamine hyperactivity has been one of the most replicated physiological 

findings in schizophrenia. For example, several post-mortem studies of 

schizophrenic patients have reported an increase in subcortical dopamine and 

dopamine metabolite (e.g. homo-vanillic acid) levels248. This is supported by 

imaging findings showing increased synthesis of dopamine within the striatum of 

schizophrenic patients245. Furthermore, an upregulation of striatal D2 receptors 

has been observed in post-mortem studies of drug-naïve patients, and this has 

been replicated in several PET imaging studies showing increased D2 receptor 

occupancy249. Higher dopamine availability, as measured by amphetamine-

induced dopamine release, has also been found on PET imaging in 

schizophrenic patients, supporting the notion that increased stimulation of D2 

receptors could be part of the etiology of schizophrenia250.  Further support 

comes from genetic studies, which have consistently found associations between 

variations in genes involved in dopamine signaling, such as Drd2, and 

schizophrenia246,251. While multiple lines of evidence support dopaminergic 

hyperactivity in the striatum (mesostriatal and mesolimbic pathways), this does 

not appear to generalize to all areas of the brain. MRI and PET imaging suggest 
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that cortical dopamine hypofunction contributes to the cognitive symptoms in 

schizophrenia252. This raises the question of whether hypodopaminergic function 

in the cortex and hyperdopaminergic function in the striatum are driven by a 

common disease process, or whether one drives the other.  While reciprocal 

connectivity between the cortex and striatum makes this determination difficult in 

humans, animal models have been much more helpful. In both rats and primates, 

dopamine depletion in the prefrontal cortex leads to an increase in subcortical 

dopamine turnover and dopamine D2 receptor numbers253,254. On the other hand, 

overexpression of dopamine D2 receptors in the mouse striatum leads to 

impairment in prefrontal-dependent cognitive tasks that are associated with 

schizophrenia, decreased prefrontal cortex dopamine turnover, and increased D1 

receptor activation in the prefrontal cortex255-257. Interestingly, overexpression of 

the D2 receptor in striatum leads to a decrease in striatal volume that is 

secondary to changes in MSN morphology258. Medication-naïve schizophrenic 

patients also show decreases in striatal volume as well as alterations in MSN 

morphology. It has also been shown that children of schizophrenic patients have 

decreased striatal volume relative to children without a family history of mental 

illness, suggesting that a reduction in striatal volume might be an early event in 

the development of the disease or an underlying risk trait245. Together, multiple 

lines of evidence from human clinical and post-mortem studies, as well as animal 

models support a role for the striatum in the pathogenesis of schizophrenia. 
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CHAPTER 2 

Atypical PKC Inhibition Enhances the Generation of 

PV Cortical Interneurons from Embryonic Stem Cells  

 

 

 

 

2.1 Generating GABAergic Cortical Interneurons from Mouse Embryonic 

Stem Cells 

 Overview 

Embryonic stem cells (ESCs) are a renewable resource that have the potential to 

differentiate into almost any cell type within the human body. They can be used 

to model human development, screen for factors that affect cellular physiology, 

and used to treat human disease.  However, before we can realize their full 

potential, several significant barriers must be overcome. Perhaps the most 

difficult challenge is to develop methods that direct the differentiation of stem 

cells into specific cell types. Moreover, in order to fully utilize their potential, cells 

derived in vitro through the use of ESCs must, to a large extent, be as similar to 
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their in vivo counterparts as possible. This includes the expression of 

neurochemical markers, morphology, and ultimately, their ability to function 

equally in the same environment.  From the standpoint of understanding and 

treating neurological and psychiatric diseases, there is much to be gained from 

being able to generate an endless supply of distinct neuronal subtypes in vitro. If 

we consider interneurons, this is especially challenging given the astonishing 

diversity of interneuron subtypes that exist. If we are to achieve the promise of 

interneuron-based therapies for interneuron related diseases, we must be able to 

produce enriched populations of particular subtypes since interneuron subtypes 

are differentially affected in various disorders190,259-262. To complicate matters, 

many aspects of interneuron fate are extrinsically determined through 

interactions with neighboring cells, which are numerous in type and wired 

together into intricate circuits that are laid down during embryonic and early 

postnatal development. In order to promote their differentiation, neurons derived 

in vitro are usually replated onto a layer of feeder cells (typically other neurons 

and/or glia) that support their growth and provide the necessary synaptic inputs 

to promote their functional maturation. Alternatively, neurons can be transplanted 

into the regions of neonatal or adult brains where they are normally found. This 

method is typically superior to feeder layers in terms of promoting a mature fate. 

In the case of human ESC-derived interneurons, xenographic transplantation 

usually elicits an immunogenic reaction. Although this problem can be overcome 

with the use of immunosuppressants or immunodeficient hosts, a more 
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fundamental barrier is at hand: the protracted maturation of human-ESC derived 

interneurons263. Even several months post-transplantation, human ESC-derived 

interneurons continue to express immature neuronal markers, suggesting that 

they are following a prolonged intrinsic maturation program mimicking normal 

human development264 265 266 267 263. Fortunately, the molecular programs that 

direct cortical interneuron development are largely conserved between mouse 

and human, including Nkx2.1 and Lhx6 expression patterns33 32. By 30 days 

post-transplant into mouse neonatal neocortex, mESC-derived cortical 

interneurons display morphological, neurochemical, and electrophysiological 

signatures characteristic of mature cortical interneurons268,269. Hence, mESCs 

enable the study of interneuron development in a practical time frame and in an 

accessible system, which is of great translational value. The following chapter 

describes progress using an atypical protein kinase C inhibitor to enhance the 

generation of PV+ interneurons from mESCs.  

 Generating Interneurons from mESCs 

Over the past decade, many groups, including our own, have succeeded in 

generating cortical interneurons from mESCs268-273. This has been achieved 

largely by recapitulating in vitro using growth factors and small molecule 

inhibitors the sequence of events that induce telencephalic character and ventral 

patterning endogenously. As will be discussed, neural fate commitment is first 

achieved through inhibition of mesoendoderm induction pathways, which are 

otherwise promoted. Following neural induction, the naïve neural progenitors are 
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then patterned using ventralizing factors such as Shh. Watanabe and colleagues 

pioneered this field  by describing a differentiation protocol to efficiently generate 

telencephalic precursors from mESCs using a suspension embryoid body (EB) 

method in serum-free media271. Interestingly, they showed that roughly 70% of 

mESCs undergo neural conversion to Nestin+ neural progenitors after 8 days in 

serum-free suspension culture followed by 2 days of adherent culture271. This 

was in contrast to serum-containing media, which for reasons that are not fully 

understood promotes differentiation into primitive endodermal and mesodermal 

lineages274. With the addition of the Wnt and Nodal antagonists Dkk1 and LeftyA 

during the first 5 days of culture, they were able to increase this to ~90%, as 

shown through the use of a Sox1::GFP mESC reporter line, which identifies early 

neuroectodermal cells271. Of these cells, roughly ~35% expressed the 

telencephalic marker Foxg1271. This data suggests that the first 5 days of 

differentiation are critical for achieving efficient telencephalic induction. Next, the 

authors showed that by adding the dorsalizing factor Wnt3a and ventralizing 

factor Shh, they could induce the expression of Pax6 and Nkx2.1, respectively, 

within the Foxg1 population271. Approximately 5–15% of all the cells generated 

were Foxg1+/Nkx2.1+, and could be regarded as ventral telencephalic-like and 

~ 5–8% of the cells were Foxg1−/Nkx2.1+, probably representing a ventral 

diencephalic hypothalamic precursor271. Although this study also reported the 

generation of a small percentage of GABA+ neurons after 20 days in culture, they 

did not characterize which subtype(s) of GABA+ neurons they represented. Our 
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group built upon this early work by developing a Lhx6::GFP mESC reporter line, 

which was used to generate, visualize, and isolate cortical interneuron precursors 

of an MGE-like lineage268. This protocol used the BMP inhibitor noggin from 

differentiation days (DD) 0 to 5 to initiate neural induction, followed by the 

addition of FGF2 and IGF1 from DD5-8268. The patterning effects of FGF2 and 

IGF1 were not thoroughly investigated, but are thought to increase neural 

progenitor proliferation (personal communication). Shh was also added from 

DD5-12 to promote ventral telencephalic character. The Lhx6::GFP+ cells were 

FACS isolated and transplanted into mouse neonatal neocortex to investigate 

their in vivo potential268. Analysis of these brains 30 days post-transplantation 

revealed that Lhx6::GFP+ cells migrated extensively in the tangential plane away 

from the injection site268. These cells expressed GABA and displayed 

morphologies consistent with MGE-derived cortical interneurons268. Further 

analysis showed that a majority of these cells expressed mature interneuron 

markers such as PV, SST, and NPY and had electrophysiological profiles 

characteristic of their in vivo counterparts268. However, only 2% of all cells 

expressed Lhx6::GFP. Moreover, the protocol lacked the ability to specifically 

bias their fates to one subgroup over the other268. Therefore, further protocol 

optimization was necessary in order to generate higher yields of interneuron 

precursors, which was subsequently accomplished in a recent publication from 

our lab. In order to improve the telencephalic induction in our differentiation 

paradigm, and thereby increase the fraction of cells that could go on to become 
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Foxg1+/Nkx2.1+ progenitors, we took advantage of the cross-regulatory network 

of Shh and Wnt signaling that is required for normal MGE development20,29,275,276. 

In this system, Wnts are strongly expressed in the dorsal and caudal domains of 

the developing CNS, whereas Dkk1, an endogenous WNT inhibitor, is expressed 

from the anterior visceral endoderm277. Together, Dkk1 and Wnt/β-catenin 

mediate anterior-posterior axis polarization by functioning as repulsive and 

attractive guidance cues, respectively, during visceral endoderm cell 

migration28,252,253. Therefore, in order to prevent cells from adopting caudal or 

dorsal fates, we applied the small molecule WNT inhibitor XAV939278 together 

with the BMP inhibitor LDN-193189 from differentiation days (DD) 0-5 in our 

previously published differentiation protocol268. Remarkably, this resulted in a 

90% conversion of mESCs to a Foxg1 expressing forebrain-like fate by DD12269. 

Additionally, XAV potently induced a ventral telencephalic fate in mESCs 

differentiated via this paradigm as evidenced by a 20-fold increase in Foxg1 and 

Nkx2.1 co-expression. the To add the capacity of isolating interneuron 

progenitors to our Lhx6::GFP line, an Nkx2.1 bacterial artificial chromosome in 

which mCherry expression is driven by the Nkx2.1 promoter was inserted. As 

expected, nearly all DD12 FACS-isolated Nkx2.1::mCherry-expressing cells go 

on to express Lhx6::GFP within 24-36 hours, and following transplantation into 

neonatal neocortex, ~90% expressed the mature cortical interneuron marker 

Sox6 and GABA. These results indicate that Nkx2.1::mCherry-expressing cells 

are bona fide MGE-like progenitors capable of giving rise to mature cortical 
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interneurons. Next, this study took advantage of the known developmental 

programs that differentially bias progenitors to produce PV+ and SST+ fated 

interneurons in vivo. First, a much larger percentage of all early born 

interneurons are SST+ fated as compared to PV+, which are predominantly 

produced at later stages45,49,127. Second, higher levels of Shh signaling in dorsal 

MGE appear to bias progenitors to produce SST+ interneurons45,49,127. Thus, by 

isolating early (DD12) Lhx6::GFP+ precursors grown in the presence of high Shh, 

we achieved a 6.4:1 ratio of SST+:PV+ interneurons (64% SST+, 10%PV+, 25% 

PV-/SST-)269. On the contrary, by isolating late (DD17) Nkx2.1::mCherry+ 

progenitors grown in low Shh conditions, we achieved a ~2.9:1 ratio of PV+:SST+ 

interneurons (19% SST+, 56% PV+, 25% PV-/SST-). It is worth noting that in this 

study, the low Shh condition indicates that no exogenous Shh was added. It was 

found that after exposure to XAV, the cultures alone generated sufficient levels of 

Shh to support moderate induction of Nkx2.1 and Lhx6. Around the same as this 

study was published, another group published a report of using the forced 

expression of lineage defining transcription factors to generate specific 

subpopulations of cortical interneurons and screen for genetic factors that could 

augment the differentiation and/or specificity of in vitro-derived cortical 

interneurons273. The authors used the same base protocol as in Watanabe 2005 

but modified their mESC line with a construct containing the nestin promoter-

enhancer sequence driving Nkx2.1 and a tetracycline-responsive transactivator 

protein (Nkx2.1::IRES-tTA2S). Dlx2 is then driven by a tetracycline response 
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element, which is bidirectional and can drive expression of a candidate gene of 

choice simultaneously. To identify putative cortical interneuron precursors, the 

authors also inserted a sequence containing the Dlx5/6 intergenic element to 

drive eGFP expression.  Cells were then sorted for Dlx5/6-eGFP, transplanted 

into embryonic ventral telencephalon, and analyzed for fate in the cortex several 

weeks later. The base line, whereby nestin drives Nkx2.1 and Dlx2 without a 

candidate gene, resulted in the following fate enrichment: 35% PV+, 30% SST+, 

25% CGE-like (reelin+ or VIP+) and 10% unlabeled. Next, the authors tested the 

effects of 12 different candidate genes selected on the basis of being expressed 

in cortical interneuron progenitor zones but of unknown function. Of the 12 genes 

tested, LMO3 and Pou3f4 appeared to facilitate the differentiation of cINs in 

different ways. Whereas Pou3f4 improved the general efficiency of mESC-

derived interneuron differentiation, LMO3 augmented the MGE-derived basket 

cell population, resulting in the following fate enrichment: 56% PV, 21% SST, 

16% CGE-like and 7% unlabeled. Importantly, this result, which was gleaned 

from an in vitro mESC-system, reliably predicted the phenotype of the LMO3 null 

mouse, which was then shown in the same study to have a previously 

uncharacterized ~30% reduction in the number of PV+ cortical interneurons273. 

While the aforementioned studies269,273 made significant progress in generating 

cortical interneuron subgroups from mESCs, we hoped to build upon these 

studies further by leveraging recent data from our lab indicating that the location 

of neurogenic division within the MGE is a critical mechanism for determining 
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interneuron fate. Thus, the work described in this chapter complements this study 

and enhances our ability to generated PV+ interneurons from mESCs. 

2.2 Atypical PKC inhibition Enhances the Generation of PV Cortical 

Interneurons from Embryonic Stem Cells  

 Overview 

Parvalbumin-expressing (PV) interneurons comprise close to half of cortical 

interneurons and their dysfunction is implicated in neuropsychiatric disorders. 

Improved methods to generate PV-interneurons from stem cells would not only 

aid in the study of their development and function, but enable their use in cell-

based therapies. Recent studies indicate that the location of neurogenesis within 

the medial ganglionic eminence (MGE) critically influences the fate determination 

of cortical interneuron subgroups, with PV interneurons originating from SVZ 

divisions. Importantly, the aPKC-CBP pathway regulates the transition from 

apical to basal progenitor and their differentiation into post-mitotic neurons. We 

find that aPKC inhibition enhances intermediate neurogenesis from stem cell 

derived MGE progenitors, resulting in a markedly increased ratio of PV to 

somatostatin-expressing interneurons. These findings confirm that the mode of 

neurogenesis influences the fate of MGE-derived interneurons and provide a 

means to further enrich for the generation of PV-interneurons from pluripotent 

stem cells. 
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Introduction 

Proper function of the cerebral cortex requires the coordinated activity of two 

distinct neuronal populations: excitatory projection neurons and inhibitory 

GABAergic interneurons (cINs). In both mice and humans, roughly half of all cINs 

originate within the medial ganglionic eminence (MGE) of the subcortical 

telencephalon and can be separated into two non-overlapping categories defined 

by their expression of either parvalbumin (PV) or somatostatin (SST)80,88. While 

SST interneurons primarily target the dendrites of their synaptic partners, PV 

interneurons mainly target the cell body, proximal dendrites, or the axon initial 

segment of pyramidal neurons83. Interneuron dysfunction is implicated in major 

neurological and psychiatric diseases including autism, schizophrenia, and 

epilepsy167. 

Due to their remarkable capacity to migrate, survive, and integrate into cortical 

circuitry after transplantation, cINs are attractive candidates for use in cell-based 

therapies of disorders of cortical inhibition, such as epilepsy190,279. Although 

progress has been made in generating enriched populations of interneuron 

subgroups from pluripotent stem cells280,281, protocols to efficiently generate 

highly enriched samples of PV-interneurons are lacking. 

We recently used in vivo fate mapping to demonstrate that PV interneurons 

originate primarily from divisions of intermediate progenitors in the SVZ of the 

MGE133. In addition, we found that MGE progenitors forced to undergo SVZ 
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divisions generate PV-expressing interneurons at the expense of those 

expressing SST. This finding is consistent with a previous study that loss of cyclin 

D2 (CCND2; CD2), which is expressed in intermediate progenitors throughout 

the telencephalon, results in reduced numbers of PV interneurons without 

affecting the SST-expressing subgroup130. Loss of CoupTF1, which results in 

increased expression of CD2 in the dorsal region of the MGE where most SST 

interneurons normally originate104, also results in supernumerary production of 

PV interneurons139. Together, these findings suggest that enhancement of 

intermediate progenitor-like divisions should enhance production of PV 

interneurons from stem cell differentiations. 

The atypical protein kinase C (aPKC)-CREB-binding protein (CBP) signaling 

pathway regulates the differentiation of interneurons from ventral forebrain neural 

progenitors282. Activation of aPKC results in the phosphorylation of CREB, 

thereby promoting neural differentiation283. In addition, aPKC is an integral 

component of the aPKC/Par complex that regulates cell polarity, division 

orientation, and the localization of cell fate determinants284. Through antagonistic 

interactions with lethal giant larvae (Lgl), the aPKC/Par complex functions to 

asymmetrically localize the Notch inhibitor Numb, which subsequently regulates 

the proliferation and differentiation of neural progenitors285. Given the many roles 

of aPKC in regulating cell polarity and fate, we examined whether aPKC 

inhibition during directed differentiations of embryonic stem cells into post-mitotic 

interneuron precursors will bias progenitors to undergo SVZ-like divisions. We 
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find that a myristoylated PKC pseudosubstrate peptide inhibitor (aPKCi), applied 

to our “MGE” protocol that enriches for Foxg1 and Nkx2.1-expressing interneuron 

progenitors, significantly increases the fraction of these progenitors that express 

CD2. Moreover, treatment of stem cell differentiations with aPKCi greatly 

enriches for the generation of PV-expressing interneurons at the expense of 

those expressing SST. Taken together, our system provides a novel platform for 

further study of cortical interneuron genesis, fate determination, and for their use 

in the development of cell-based therapies. 

Results 

 Generation of Nkx2.1-expressing interneuron progenitors 

Our previous study used a dual-reporter mouse embryonic stem cell (mESC) line 

for the isolation of interneuron-fated cells at the progenitor and post-mitotic 

stages269. This line expresses mCherry and GFP under the control of the Nkx2.1 

and Lhx6 loci in bacterial artificial chromosomes, respectively. The line can be 

differentiated using a modified version of our previously established 

differentiation protocol (Figure 2.1 A)268,269 into a highly enriched population of 

FoxG1 and Nkx2.1-expressing MGE-like progenitors.   Although only ~11% of all 

Nkx2.1+  cells express mCherry by differentiation day (DD) 11, nearly all 

mCherry expressing cells also express Nkx2.1 protein, confirming the fidelity of 

the reporter (Figure 2.1 B, C). Thus, this system serves as an excellent platform 

for studying stem cell derived MGE-like progenitors in vitro. 
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Atypical PKC inhibition increases the fraction of cyclin-D2 expressing 

Nkx2.1::mCherry progenitors 

We reasoned that if inhibition of aPKC biases progenitors toward intermediate 

neurogenesis, treatment of differentiations with the aPKCi beginning at DD8, 

when most of the cells in the culture express Nkx2.1, should increase the fraction 

of Nkx2.1::mCherry progenitors that also express CD2. Indeed, aPKCi 

significantly increased the percentage of CD2-expressing mCherry and Nkx2.1-

positive progenitors (Figure 2.1 D, E). To determine whether the effect of aPKCi 

on CD2 expression by Nkx2.1+ progenitors is more broadly applicable to other 

stem cell lines and clones, we differentiated several additional mESC lines using 

the same protocol and found that aPKCi significantly increased the fraction of 

Figure 2.1 aPKCi increases the proportion of CD2-expressing Nkx2.1 MGE 

progenitors. 

(A). Schematic of the differentiation protocol, with and without the addition of aPKCi 

from DD8-DD11. (B). Representative immunostaining of Nkx2.1 and 

Nkx2.1::mCherry from the JQ27 line at DD11 differentiated via the protocol shown in 

Fig 1A. (C). Quantification of the percentage of Nkx2.1::mCherry cells that also 

express Nkx2.1 protein, as well as the percentage of Nkx2.1+ cells that express 

Nkx2.1::mCherry. Neither of these measures is affected by aPKCi treatment. (D). 

CD2 with Nkx2.1::mCherry and Nkx2.1 immunofluorescence on DD11 cultures grown 

with and without aPKCi from DD8-DD11.  (E). Quantification of the percentage of 

Nkx2.1 and Nkx2.1::mCherry-expressing cells that express CD2 shows a significant 

increase in the aPKCi treated condition. *p < 0.05; ***p<0.001 (pooled data from four 

independent experiments). Error bars indicate SEM. Scale bars 30 μm in B, C. 
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Nkx2.1-expressing progenitors that also express CD2 (Figure 2.2).

 

 

To determine whether aPKCi treatment also influences progenitor proliferation, 

we pulsed cells for 30 minutes with the modified thymidine analogue EdU, which 

marks cells in S-phase, together with immunostaining for the proliferation marker 

Ki-67. Analysis of both markers showed no significant change in the fraction of 

EdU or Ki-67 expressing mCherry and Nkx2.1-positive progenitors with aPKCi 

Figure 2.2. aPKCi increases the proportion of CD2-expressing Nkx2.1 

progenitors in two additional mESC lines. 

(A). Quantification of the proportion of Nkx2.1 progenitors that co-express CD2 at 

DD11. J1 (ATCC® SCRC-1010™) is the parent line of JQ27, used in this study. JQ59 

is another J14 (Maroof et al 2010) subclone that also contains the Nkx2.1::mCherry 

BAC. The mCherry reporter expression in this line, however, is minimal. *p<0.05; # 

p<0.05 in Mann-Whitney U-test. Error bars indicate SEM. 
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treatment (Figure 2.3). Together, these results suggest that aPKCi biases 

progenitors toward intermediate neurogenesis without affecting overall 

proliferation.
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Atypical PKC inhibition influences the mode of neurogenesis 

An additional benefit of our dual reporter mESC line is that the expression of 

mCherry and GFP enables us to evaluate whether the outcome of a division is 

proliferative or neurogenic. Using time lapse confocal microscopy, we found that 

from DD8 to 10 in some instances an Nkx2.1::mCherry progenitor divided into 

two mCherry-positive progenitors that then go on to divide again into 

Nkx2.1::mCherry+ cells (Figure 2.4 A, B). Other examples include symmetrical 

neurogenic divisions in which a mCherry-expressing progenitor divides to 

produce two Lhx6::GFP, post-mitotic interneuron precursors, which have visibly 

enhanced migratory activity (Figure 2.4 C, D). On rare occasions, more complex 

division schemes could be visualized, incorporating both symmetrical 

proliferative, symmetrical neurogenic, and asymmetrical neurogenic divisions 

(Figure 2.4 E, F). 

Using this system, we hypothesized that aPKCi treatment should increase the 

fraction of Nkx2.1::mCherry daughter cells that divide symmetrically to produce 

two progenitors. Indeed, we found that aPKCi nearly doubled the percentage of 

Nkx2.1::mCherry progenitors that were observed to undergo a second division. 

Figure 2.3. aPKCi does not affect progenitor proliferation. 

(A). Representative images of EdU and Ki-67 together with Nkx2.1::mCherry or 

Nkx2.1 immunofluorescence on DD11 cultures grown with and without aPKCi. (B). 

aPKCi does not change affect the percentage of Nkx2.1:mCherry and Nkx2.1-

expressing cells that label for EdU or Ki-67. *p<0.05; **p<0.01 (pooled data from 

three independent experiments). Error bars indicate SEM. Scale bars 30μm in A, B.  
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Together with the increased co-labeling of Nkx2.1-expressing progenitors with 

CD2, these results suggest that aPKCi biases interneuron progenitors to undergo 

SVZ-like divisions (Figure 2.4 G). 
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 Atypical PKC inhibition enhances PV fate specification 

Since directing MGE progenitors to undergo SVZ divisions directs them to 

produce PV-expressing cortical interneurons in vivo286, and since the aPKCi 

enhances the generation of SVZ-like progenitors in vitro, we next asked whether 

this treatment enhances the derivation of PV interneurons relative to SST 

interneurons in our stem cell system. mCherry progenitors differentiated in the 

presence or absence of aPKCi were isolated at day 11 via FACS and 

transplanted into neonatal mouse neocortex (Figure 2.5 A). Following 

transplantation, the mCherry reporter downregulates as the Lhx6::GFP reporter 

Figure 2.4. Live cell imaging enables analysis of cell divisions and shows that 

aPKCi increases the proportion of Nkx2.1:mCherry daughter cells that undergo 

a second division. 

(A). A series of time-lapse images showing a single Nkx2.1:mCherry progenitor 

dividing symmetrically to produce two mCherry-expressing progenitors, which then go 

on to divide again during the 48 hour imaging session. Time is displayed as 

(hours:minutes). (B). Lineage relationships between cells in A. (C). A series of time 

lapse images showing a symmetrical neurogenic division, wherein one 

Nkx2.1::mCherry progenitor divides symmetrically to produce two Lhx6::GFP 

daughter cells. Merge of GFP and mCherry channels shown in dotted inset. (D). 

Lineage relationships between cells in C. (E). Time lapse imaging showing a more 

complex division scheme involving symmetrical proliferative, symmetrical neurogenic, 

and asymmetrical neurogenic divisions. (F). Lineage relationships between cells in E. 

(G). Quantification of the number of daughter cell divisions, defined by a 

Nkx2.1::mCherry daughter from a previous division that goes on to divide again. The 

number of daughter divisions is divided by the total number of Nkx2.1::mCherry 

divisions counted.  The addition of aPKCi significantly increases the percentage of 

Nkx2.1::mCherry progenitors that divide again (pooled data from five independent 

experiments; 95 divisions counted in –aPKCi treated condition, 84 divisions counted 

in +aPKCi condition; *p < 0.05). Error bars indicate SEM. Scale bars 30μm in A, C. 
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becomes expressed in the post-mitotic interneuron precursors and is maintained 

in those cells thereafter (Figure 2.5 B)269. Thirty days post-transplantation, the 

fates of transplanted cells was assayed via immunostaining for GFP, 

parvalbumin (PV), and somatostatin (SST). aPKCi treated cultures resulted in a 

tremendous enrichment of PV-expressing interneurons at the expense of those 

expressing SST (Figure  2.5 C, D). Immunostaining for the MGE-derived cIN 

marker Sox6, together with GABA, confirms that aPKCi treated cells retain the 

appropriate lineage markers (Figure 2.6). 
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Figure 2.5. Strategy to enhance the generation of parvalbumin (PV)-expressing 

interneurons from a dual Nkx2.1:mCherry-Lhx6:GFP mouse stem cell reporter 

line. 

(A). Representative FACS plot of the JQ27 line (Tyson et al., 2015) at DD11 shows 

segregation of mCherry-only (red), mCherry/GFP co-expressing (yellow), and GFP-

only (green) expressing populations from non-fluorescent cells (black). (B). 

Schematic of reporter progression in mESCs differentiated towards Nkx2.1-and Lhx6-

expressing fates, then subjected to FACS for mCherry on DD11, followed by 

transplantation into neonatal mouse cortex. After 30 days the animals are sacrificed 

and the fates of transplanted cells are assayed.  (C). Quantification of SST or PV 

expression in Lhx6::GFP-expressing cells differentiated in the presence or absence 

of aPKCi from DD8-DD11 (-aPKCi 31.3±2.4% PV, 33.5±2.14% SST and 35.3±0.87% 

double negative; +aPKCi 51.9±4.5% PV, 9.03±1.4% SST, 39.1±3.6% double 

negative, SEM).The addition of aPKCi from DD8-DD11 significantly increases the 

ratio of PV to SST cells generated (n=4 independent differentiations, 8 brains total; 

P<0.005). (D). PV immunofluorescence on Lhx6::GFP expressing cells from the 

aPKCi condition 30 days post-transplant. PV, parvalbumin; SST, somatostatin. Scale 

bars 50 μm in D; 400μm in B. 
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Discussion 

Cortical interneurons represent a remarkably heterogeneous population of cells 

in terms of their morphology, connectivity, electrophysiology, and neurochemical 

profiles. As a consequence, interneuron subtypes differentially contribute to 

network processing that underlies a wide range of cortical functions. By 

extension, dysfunction of distinct interneuron subtypes is implicated in the 

specific pathobiology of major neurological and psychiatric diseases. Thus, 

considerable effort is being put forth to generate specific interneuron subgroups 

or subtypes from embryonic stem cells. The capacity to do so would not only 

allow for the study of factors that regulate the type, number, or function of 

interneurons, but would enable their use in cell-based therapies. 

Our previous study showed that manipulations of sonic hedgehog (Shh) 

exposure and time in culture differentially enrich for PV- versus SST-fated mESC 

derived cINs280. While early born cells exposed to higher levels of Shh produced 

a ~6.4:1 ratio of SST to PV, increased duration in culture combined with lower 

levels of Shh generated a ~2.6:1 ratio of PV to SST. Another study using the 

Figure 2.6. aPKCi treated cells express Sox6 and GABA. 

(A). Representative brain sections containing transplanted Lhx6:GFP cells 

immunostained for Sox6, GABA, and GFP, with high-magnification images of 

individual cells expressing Sox6 and GABA. (B). aPKCi does not significantly change 

the percentage of transplanted cells that express Sox6 or GABA (pooled data from 

four independent experiments). Error bars indicate SEM. Scale bars 40μm in A; 

10μm in insets. 
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forced expression of transcription factors in a gain-of-function approach found 

that Lmo3 expression after the expression of Nkx2.1 and Dlx2 was able to 

achieve a 2.7:1 ratio of PV to SST281. In this study, we used aPKC inhibition to 

achieve a ~5.8:1 ratio of PV to SST. This is to our knowledge the greatest 

enrichment for PV expressing subtypes that has been obtained from mESCs to-

date. 

Although it remains unclear how aPKCi promotes intermediate neurogenesis in 

the context of our “MGE” differentiation system, there are several intriguing 

possibilities. First, the atypical PKC subgroup contains two isoforms, iota (ι or λ) 

and zeta (ζ), which have been shown to have numerous, distinct functions in the 

regulation of cell polarity, proliferation, and neural differentiation 284,287,288. Loss of 

aPKCλ in mouse stem cells enhances self-renewal through the activation of 

NOTCH1 and its downstream effectors289. Similarly, in dorsal neocortex, 

knockdown of aPKCλ delays neural differentiation and expands the pool of Tbr2+ 

intermediate progenitors, whereas knockdown of aPKCζ promotes radial glia 

self-renewal287.  Taken together, these studies show that aPKC λ and ζ largely 

promote stem cell differentiation through partially overlapping pathways. In our 

system, we use transient, partial inhibition of both aPKC isoforms to enhance the 

production of CD2+ intermediate progenitors. We favor the idea that partial 

inhibition of both isoforms promotes a balance between differentiation and self-

renewal, resulting in the expansion of basal progenitors. Additional studies 

focusing on the selective loss of either isoform during directed differentiations of 
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stem cells into interneuron progenitors are needed to fully understand their 

individual roles in interneuron genesis. Based on the result of this study, such 

knowledge might have profound implications for enhancing the generation of 

interneuron subtypes from directed differentiations of stem cells.    

In the field of cancer biology, aPKCs have generated considerable interest due to 

their roles in driving cellular proliferation. Interestingly, in basal cell carcinomas, 

aPKCλ forms a complex with missing-in metastatis (MIM) that potentiates sonic 

hedgehog (Shh) signaling290. Genetic or pharmacological loss of aPKCλ blocks 

Shh signaling and cancer cell proliferation. Previous studies from our lab have 

shown that lower levels of Shh signaling preferentially bias MGE progenitors to 

PV-expressing interneuron fates127,280. It is tempting to speculate that aPKCi may 

also bias progenitors to produce PV-fated interneurons through manipulation of 

Shh signaling. In fact, loss of Shh signaling in embryonic mice initially reduces 

proliferation in the MGE ventricular zone while simultaneously upregulating it in 

the MGE SVZ125. Taken together, our study provides evidence that aPKCs play a 

role in interneuron development and fate determination and may be doing so 

through interactions with the NOTCH and Shh signaling pathways.  

Although our study significantly enhances the generation of PV-fated 

interneurons, we also find that between 35-40% of cells lack expression of either 

marker (Figure 2.5 C). This increase in non-labeled cells is approximately 10-

15% greater than reported in our previous studies, which typically show around 

25% of cells being non-labeled269. The non-labeled cells are presumably Lhx6+ 
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on the basis of their being Lhx6:GFP+, and a substantial fraction also express 

Sox6 and GABA (Figure 2.6). Thus, these cells are more likely to represent 

MGE-like subtypes, as opposed to CGE-derived cells. In addition, staining for the 

CGE-derived interneuron marker CR showed that less than 1% of all cells were 

CR+ (data not shown). Since PV is an activity dependent gene, it is possible that 

Lhx6:GFP+ cells who have sub-optimally integrated fail to turn on PV 

appropriately. It would be interesting to do in situ hybridization for the potassium 

channel Kv3.1, which colocalizes with PV but not SST subtypes, on transplanted 

tissue. 
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CHAPTER 3 

Function of the Zinc Finger SWIM Domain-

Containing Proteins 5 & 6 in Forebrain Development 

 

 

 

 

3.1 Introduction to Zinc-Finger SWIM Domain-Containing Proteins 

 Overview 

Given evidence from our lab as well as others indicating that PV+ interneurons 

primarily arise from cyclin D2-mediated divisions of intermediate progenitors in 

the MGE SVZ130,133, we set out to find candidate transcriptional regulators of 

intermediate progenitor cell identity and/or proliferation. A literature search for 

genes with patterns of expression restricted to the MGE SVZ led us to the zinc-

finger SWIM domain-containing protein 5 (Zswim5).  Zswim5 was identified in a 

microarray screen comparing gene expression profiles between the MGE and 

LGE291. qPCR analysis showed that Zswim5 expression in the MGE was 4 fold 

greater than in the LGE291. In situ hybridization for Zswim5 confirmed these 
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findings and showed that its expression is largely restricted to a narrow band of 

cells within the MGE SVZ291. Although no functional studies had been published 

on Zswim5, it belongs to a family of zinc-finger SWIM domain-containing proteins 

that are conserved across vertebrates292. In addition, RNAseq and microarray 

data indicate strong, restricted expression of Zswim5 in the human MGE293. 

Thus, Zswim5 represented an ideal candidate for the study of SVZ proliferation 

and its relationship to interneuron fate determination. In order to study Zswim5 

function, we opted to generate Zswim5 loss-of-function mice. However, online 

gene expression atlases indicated that Zswim5 had a highly homologous 

paralogue, Zswim6, which was also expressed in the MGE293. Like Zswim5, no 

studies on Zswim6 function had been published nor was it associated with any 

diseases at the time. Thus, without additional data to indicate whether Zswim6 

might compensate for Zswim5 loss-of-function, we opted to generate Zswim6 

mutant mice as well. As will be described in this chapter, we found little to no 

involvement for Zswim5 or Zswim6 in the regulation of PV+ interneurongenesis.  

Thus, we accepted our null hypothesis and set out to understand what other 

processes these genes might regulate, which eventually led us to focus on 

Zswim6 and its role in striatal development. The following chapter will consist of 

three parts. The first part describes what is known about SWIM domain-

containing proteins, focusing on Zswim4, 5, 6, and 8. The second part will 

investigate our early hypothesis that Zswim5 and Zswim6 regulate interneuron 

development through the generation and characterization of Zswim5 and Zswim6 
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loss-of-function mice. The third part will include a thorough anatomical and 

behavioral characterization of Zswim6 mutant mice, with special emphasis on the 

role of Zswim6 in striatal development. 

 SWIM Domain-Containing Proteins 4, 5, 6, and 8 

SWIM protein domains are zinc-finger-like domains found in bacteria, archaea, 

and eukaryotes292. As their name implies, zinc-finger domains bind zinc ions via 

a combination of cysteine and histidine residues. Although they share this 

commonality, zinc-finger domains are highly diverse in terms of their structure 

and function. The SWIM domain has the amino acid motif CxCxnCxH, with n 

varying between 6 to 25 residues292. Alignment across multiple species revealed 

that SWIM domains are present in bacterial SWI2/SNF2 ATPases of the helicase 

superfamily II, in which the SWIM domain is located at the N terminus, upstream 

of the ATPase domain292. SWIM domains are also found in plant MuDR 

transposases, plant FAR1 nuclear proteins, vertebrate MEK kinase-1, and 

numerous uncharacterized proteins in prokaryotes and eukaryotes292. Structural 

analysis suggests that the SWIM domain adopts a ββα structure, which may be 

similar to the classical C2H2 zinc-finger conformation292. Interestingly, in several 

species of bacteria, genes that encode for SWI2/SNF2 ATPases that lack the 

amino terminal SWIM domain are located adjacent to genes containing SWIM 

domains, likely within the same operon. This suggests a functional link between 

the two domains and that the origin of SWIM domain-containing ATPase proteins 

may be related to the fusion of adjacent genes292. Of note, several eukaryotic 
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SWIM domain-containing proteins also have an additional α-helix domain 

downstream of the SWIM-domain. This feature is also found in bacterial SWIM 

domain-containing SWI2/SNF2 proteins, suggesting that eukaryotic proteins with 

this feature, such as Zswim5 and Zswim6, might functionally interact with 

chromatin-associated SWI2/SNF2 ATPases of the Trithorax group of chromatin 

remodelers/histone modifiers292. 

In mammals, the SWIM domain-containing family of proteins has 8 members 

(Zswim1 to Zswim8). Of these, Zswim4/5/6 and 8 are paralogues of each other. 

With the exception of the SWIM domain, which is 37 amino acids long, 

Zswim1/2/3 and 7 have little to no significant homology with Zswim4/5/6 and 8. 

While Zswim4/5 and 6 are similar in structure and length (1100-1200 amino 

acids), Zswim8 is much larger (~1800 amino acids), though still shares 

considerable homology.  An analysis of comparative genomics shows that 

Zswim4/5/6 and 8 all originated from the same ancestral gene found in bilateria 

approximately 937 million years ago. From this ancestral gene, Zswim8 split off 

and became EBAX-1 in C.elegans. A series of speciation and duplication events 

in early vertebrates formed Zswim4 and the ancestral gene for Zswim5 and 

Zswim6. Thus, Zswim5 and Zswim6 are closer to each other evolutionarily than 

Zswim4 (Figure 3.1). 
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While the function of Zswim4/5/6 and 8 in mammals is currently unknown, the 

homolog of Zswim8 in C.elegans, EBAX-1, has been studied. EBAX-1 is a 

substrate recognition subunit in the Elongin BC-containing Cullin-RING ubiquitin 

ligase (CRL) complex, which performs protein quality control by targeting 

unfolded or misfolded proteins to the proteasome for destruction1. During 

Figure 3.1. Gene Tree for Zswim4, 5, 6, and 8 Gene Evolution 

The above diagram represents a simplified gene tree of that contained within the 

Ensemble Genome Browser and illustrates the evolutionary relationships between 

Zswim4, 5, 6, and 8. 
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C.elegans development, EBAX-1 cooperates with DAF-21/Hsp90 to control the 

protein quality of the SAX-3/Robo receptor, which is essential to ensure proper 

axon targeting1. In the absence of EBAX-1, AVM axons are significantly 

misrouted. EBAX-1 interacts with the CRL complex through its N-terminal BC-

box and Cul2-box motifs, which are upstream of the SWIM domain and 

conserved across species294. In HEK293 cells, ZSWIM8 has been shown to 

interact with Elongin B/C proteins via its BC-box and the Cullin2 protein via its 

Cul2-box294. A screen for additional proteins that could direct the recruitment of 

Cul2 modules to Elongin BC-based ubiquitin ligases revealed that Zswim5 and 

Zswim6 also contained these motifs and could bind Elongin BC294. A follow-up 

analysis of mine revealed that Zswim4 also contained the BC-box and Cul2 

motifs (Figure 3.2). 

 

 

 

     BC-box   Cullin-box 

Zswim4  25  AARGRGRPEALLDLSAKRVAESWAFEQVEERFSRVPEPVQKRIVFWSFPRSEREICMYSS  84 

Zswim5  55  GARPHLQPDSLLDCAAKTVAEKWAYERVEERFERIPEPVQRRIVYWSFPRNEREICMYSS  114 

Zswim6  69    GKTQSPESLLDIAARRVAEKWPFQRVEERFERIPEPVQRRIVYWSFPRSEREICMYSS  126 

 

Figure 3.2. Multiple sequence alignment of BC- and Cullin-boxes in ZSWIM4, 

5, and 6. 

Protein sequences for human ZSWIM4, ZSWIM5, and ZSWIM6 were obtained from 

NCBI’s protein sequence database and manually aligned to identify the BC- and 

Cullin-box domains. Amino acids that are identical to classical BC- and Cullin-box 

motifs are highlighted in yellow, very similar ones in blue, and similar amino acids in 

green.  
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The entire Elongin BC complex acts as an adaptor to link a substrate recognition 

complex (e.g. Zswim8) to Cullin2 and a ring-box protein, such as Rbx1. The ring-

box protein binds to an E2 ubiquitin ligase, which catalyzes the reaction of 

ubiquitin onto the adaptor-linked substrate. In the case of Ebax-1, Hsp90 was 

shown to bind the SWIM domain. Aside from the BC-box, Cul2, and SWIM 

domains, Zswim4/5/6 and 8 also contain a conserved A domain downstream of 

the SWIM domain that aligns to cut8/STS1, which targets proteasomes to the 

nucleus295. The last ~75 amino acids of the C-terminus show similarity to 

structurally defined portions of four paired amphipathic helix Sin3 proteins, which 

have been shown to interact with RE1-silencing transcription factor (REST, or 

NRSF) to repress the expression of neuron-specific genes in nonneural cells and 

neuronal progenitors295 (Figure 3.3). 
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Evidence suggesting that Zswim4/5/6 and 8 might bind to ring containing proteins 

is interesting in light of their possible association with chromatin remodelers 

and/or histone modification complexes. The Polycomb group of transcriptional 

regulators is a group of proteins that bind to DNA and are traditionally thought to 

Figure 3.3. Schematic illustration of putative Zswim-type cullin-RING E3 

ubiquitin ligase 

The following schematic is derived from studies of Ebax-1/Zswim8 in C.elegans1. 

Ebax-1 encodes a conserved BC-box-containing protein and functions as part of a 

protein quality control mechanism that ensures proper axon guidance. Specifically, 

EBAX-1 functions as a substrate-recognition subunit for misfolded SAX-3 in an 

Elongin BC-containing Cullin-RING ubiquitin ligase (CRL) complex that promotes 

degradation of misfolded SAX-3/Robo receptor. The asterisk indicates that Hsp90 

has been shown to bind Ebax-1 via its SWIM domain, but that this has not been 

tested for Zswim5 or Zswim6. 
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repress gene transcription. However, this view has been recently challenged by 

new data indicating that Polycomb complexes can activate gene transcription in 

certain contexts296,297. Polycomb group proteins usually belong to one of two 

multi-subunit protein complexes, either Polycomb repressive complex 1 (PRC1), 

which adds an ubiquitin residue to histone H2A at Lys119, or PRC2, which 

catalyzes the addition of methyl groups to histone H3 at Lys27298. Of particular 

interest is the PRC1 complex, which is built around the RING domain-containing 

proteins RING1 and RING2. These proteins bind to six alternative Polycomb 

group RING finger (PCGF) proteins that together catalyze the transfer of ubiquityl 

moieties298. A major question in the field of gene regulation centers on how 

chromatin remodeling complexes such as Polycomb and Trithorax are 

dynamically directed to regions of the genome at the appropriate time in a cell 

type specific context to regulate gene expression. The ability to do so in part 

stems from the various compositions of Polycomb and Trithorax group 

complexes, of which upwards of 200 different permutations have been identified 

and continues to increase297,299. These complexes have been shown to bind 

transcription factors in a cell type specific manner that then recruit them to 

specific regions of the genome. For example, REST/NRSF has been shown to 

recruit Polycomb repressor complexes to distinct regions of the genome in 

mammalian cells, as has the autism susceptibility candidate 2 (Auts2)296,300. It is 

intriguing to speculate that Zswim proteins 4/5/6 and 8 might interact with these 

complexes in a cell type specific manner during brain development to recruit 
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them to specific genomic loci. As mentioned previously, Zswim proteins have 

been shown to bind RING-domain containing proteins to catalyze the transfer of 

ubiquityl moieties1,294. It would be interesting if Zswim proteins interacted with 

PRC1 complexes to regulate histone H2A ubiquitination during brain 

development. Some support for this idea comes from a 2012 study that did a 

mass spectrometry screen to identify proteins that interact with PRC1 

complexes301. In this study, they found that Zswim6 immunoprecipitated with 

PRC1 complexes in HEK293 cells, albeit only a single peptide301. Furthermore, 

Zswim proteins are predicted to interact with mammalian SWI2/SNF2 complexes 

through interactions with their N-terminal SWIM domain292. To test this idea, I 

overexpressed Myc-tagged Zswim5 with HA-tagged Brg1 (the core ATPase 

subunit of Trithorax complexes) in HEK293 cells and found that both proteins 

were capable of immunoprecipitating the other (Figure 3.4). 

 



 
 

76 
 

 

The C-terminus of Zswim proteins 4/5/6 and 8 also have structural similarity to 

Sin3 proteins, which have been shown to interact with REST/NSRF, SWI2/SNF2, 

and NURD complexes to regulate gene transcription302,303. Further support for 

this idea comes from analysis of Zswim5 and Zswim6 gene expression patterns 

across human brain development. Using the Allen Brain gene expression atlas of 

human brain development, it is possible to identify genes whose expression is 

correlated with a gene of interest within particular brain regions across 

development. Thus, I generated a list of 1000 genes whose expression is most 

highly correlated with Zswim5 and Zswim6 across all areas of the brain from 

early embryonic development up until adulthood. I then ran the top 1000 genes 

through the DAVID functional gene classifier to segregate them into functional 

groups by order of significance (Table 3.1). 

Figure 3.4. Zswim6 co-immunoprecipitates with Brg1, the main ATPase subunit 

of SWI/SNF chromatin remodeling complex, in HEK293 cells. 

(A) Myc-Zswim6 was co-expressed with HA-Brg1 in HEK293 cells. Myc-Zswim6 was 

immunoprecipitated using anti-Myc magnetic beads and the eluant was run on 

western blot. The blot was then probed using an anti-HA antibody, which detects a 

clear band at ~220kD corresponding to HA-Brg1. The control indicates co-

immunoprecipitation with nonreactive, non-antibody tagged magnetic beads. 

(B) Myc-Zswim6 was co-expressed with HA-Brg1 in HEK293 cells. HA-Brg1 was 

immunoprecipitated using anti-HA magnetic beads and the eluant was run on 

western blot. The blot was then probed using an anti-Myc antibody, which detects a 

clear band at ~132kD corresponding to Myc-Zswim6. The control indicates co-

immunoprecipitation with nonreactive, non-antibody tagged magnetic beads. 
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Functional annotation clustering revealed that the most significant cluster is 

related to transcriptional regulation and zinc-finger (C2H2-like) proteins.  The 

second most significant cluster was related to proteins localized to the nucleus 

and the third most significant cluster is related to zinc-finger proteins. The fourth 

most significant cluster and of particular relevance is related to chromatin 

regulation, modification, and organization. Within just the top 50 associated 

genes, at least 32 have been shown to be involved in transcriptional regulation, 

chromatin remodeling, or histone modification (Table 3.1). I would argue that 

proteins that function together are more likely to be expressed together, lending 

further support to the notion that Zswim proteins may functionally interact with 

chromatin remodeling/modifying complexes. If this were true, we would expect 

Zswim5 to be predominantly localized in the nucleus, which is what we find when 

recombinant Myc-tagged Zswim5 is expressed in HEK293 cells (Figure 3.5). 

Table 3.1. Functional gene ontology analysis for genes whose expression 

correlates with Zswim5 & Zswim6 expression during human brain 

development.  

The top 1000 genes whose expression most highly correlates with Zswim5 and 

Zswim6 during human brain development were obtained from the Allen Brain Atlas. 

For Zswim5 and Zswim6, correlated genes were ranked according to most 

correlated (#1, #2, etc.) to least correlated. The rank values for genes correlated 

with Zswim5 and Zswim6 were then combined to get a combined rank score. The 

1000 genes with the lowest combined rank scores (most highly correlated with 

Zswim5 and Zswim6) were then run though a functional gene ontology analysis 

using the DAVID functional gene classifier. The top portion shows this analysis 

done for the top 1000 genes, and the bottom portion shows this analysis done on 

the top 50 genes. The same analysis done for genes correlated with either Zswim5 

or Zswim6 (but not both) yielded similar results (not shown).  
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In sum, multiple lines of evidence, both direct and indirect, implicate the 

involvement of Zswim4/5/6 and 8 in the regulation of gene expression through 

interactions with Polycomb, Trithorax, and other chromatin associated 

complexes.  

 Zswim6 and Human Disease 

From a human disease standpoint, the potential of Zswim4/5/6 and 8 to 

participate in the process of chromatin modeling is interesting in light of evidence 

showing that mutations in proteins associated with chromatin remodeling are 

highly involved in the pathogenesis of major neurological and psychiatric 

diseases such as epilepsy, autism, and schizophrenia296,299,302,304-313. In a recent, 

large scale genome wide association study for schizophrenia, a single nucleotide 

polymorphism located ~50kB upstream of Zswim6 was identified as the 8th most 

significantly associated SNP in schizophrenia to date251. While little is known 

Figure 3.5. Zswim5 predominantly localizes to the nucleus.  

(A) Recombinant myc-tagged Zswim5 was expressed in HEK293 cells. Nuclear and 

cytoplasmic fractionation followed by detection of the myc-tagged protein via western 

blotting shows that the majority of Zswim5 protein is localized in the nucleus. Cyto, 

cytoplasmic.  
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about Zswim6 function, its dynamic expression during human brain 

development293 and association with chromatin remodeling complexes makes it 

well suited to be a schizophrenia candidate gene. Additionally, two studies have 

identified the same, recurring point mutation in Zswim6 in patients with acromelic 

frontonasal dysostosis295,314, a rare disorder characterized by brain, limb, and 

craniofacial abnormalities. In at least 8 different probands a heterozygous 

cysteine to threonine mutation at position 3487 has been identified, leading to an 

arginine to tryptophan substitution at amino acid position 1163. Interestingly, this 

mutation occurs in the Sin3-like C-terminal domain of Zswim6. From the 

spectrum of clinical phenotypes, which include neurocognitive and motor delays, 

severe symmetric frontonasal dysplasia associated with median cleft face, widely 

spaced nasal alae, hypertelorbitism, bilateral tibial hemimelia, and preaxial 

polydactyly, together with changes in gene expression in patient cell lines, the 

authors of one of these studies concluded that this particular Zswim6 mutation 

results in Hedgehog pathway activation295 (Figure 3.6). 
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Whether or not this proves true, it is interesting to note the similarities between 

patients with Zswim6 mutations and those with mutations in members of the 

SWI/SNF chromatin remodeling complex. De novo dominant mutations in 

different SWI/SNF proteins have been identified in individuals with Coffin-Siris 

(CSS) and Nicolaides-Baraitser (NCBRS) syndromes299,315,316. CSS is 

characterized by mild to severe intellectual disability, hypoplasia of the tips of the 

fingers and toes, and various craniofacial abnormalities315. NCBRS is 

characterized by severe intellectual disability, seizures, short stature, 

microcephaly, and facial coarseness316. Given the role of SWI/SNF proteins in 

Figure 3.6. Craniofacial phenotype of a Zswim6 human mutation patient, 

evolutionary comparative analysis, genomic structure, and predicted protein 

regions. 

(A). Anteroposterior view of the facial features of one patient shown to have a 

c.3487C>T mutation in Zswim6. 

(B). Coronal MRI demonstrating a large interhemispheric lipoma from the patient 

shown in (A).  

(C and D). Craniofacial CT scans showing disrupted cranial development, including 

disruption of the nasal structures and medial cleft palate (C), and symmetric parietal 

foramina (D).  

(E). Protein alignments for the region surrounding the p.Arg1163Trp mutation 

(yellow) for multiple species shows that this region is highly conserved. Divergent 

residues are shown in red, and conservative substitutions are shown in green. 

(F). Zswim6 contains 14 exons and spans a large genomic region. Only one 

transcript has been described. Analysis of Zswim6 protein structure indicates that 

Zswim6 has a low complexity, keratin-like N-terminal region, followed by the SWIM 

domain, a cut8/STS-1 like region, and a sin3-like region at the C-terminus. The 

location of the p.Arg1163Trp mutation is indicated by the black arrow. 

Modified from Smith et al. 2014 
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regulating gene expression in multiple tissues, it is not surprising that mutations 

in SWI/SNF proteins have pleiotropic effects of varying severity. While the 

association is tenuous at best, it is intriguing to link mutations in Zswim6 to its 

role as a putative chromatin modifier.  As will be discussed in the forthcoming 

sections, the heterozygous point mutation identified in Zswim6 is likely a 

dominant gain-of-function mutation, since Zswim6 loss-of-function mice display a 

much different phenotype than the human c.3487C>T point mutation patients295.  

3.2 Generation of Zswim5 and Zswim6 Knockout Mice and Characterization 

of their Role in Interneuron Development 

 Generation of Zswim5 Knockout Mice 

Over the course of these studies, we used two independently generated Zswim5 

knockout mice. The first was obtained from the Knockout Mouse Project (KOMP) 

and the second was designed in collaboration with Ingenious Targeting Labs, 

who physically generated the mouse. The Zswim5 KOMP mouse (Z5-KOMP) 

was generated using homologous recombination, whereby exons 2 and 3 were 

replaced with a targeting cassette containing a lacZ reporter (Figure 3.7 A). 
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Figure 3.7. Targeting strategy and characterization of Zswim5 knockout mouse 

obtained from the Knockout Mouse Project (KOMP).  

(A). Schematic of the Zswim5 locus after homologous recombination with a targeting 

construct electroporated into mouse embryonic stem cells. Exons 2 and 3 are 

replaced by the targeting construct, which contains a lacZ reporter gene. The 

neomycin (neo) insert was removed by crossing heterozygous mice to FLP-deleter 

mice before beginning our studies. 

(B). Detection of β-galactosidase in embryonic day (E) 13.5 Zswim5 lacZ/+ and control 

mice shows that lacZ expression recapitulates Zswim5’s endogenous expression.  

(C). In situ mRNA hybridization of three different RNA probes to various regions of 

the Zswim5 transcript in wildtype and knockout mice. As expected, a probe spanning 

the exons removed in the knockout mouse (exon 2-4 probe) shows no signal, 

whereas probes to regions downstream of the deleted region detect the presence of 

residual transcript. 
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This results in a frameshift mutation that is predicted to cause nonsense 

mediated decay of the transcript. Importantly, there is only one known transcript 

for Zswim5. While a southern was not done to confirm the targeting, several 

other quality control measures were, including long range PCR and copy number 

testing (data not shown). In addition, lacZ staining on E13.5 Zswim5lacZ/+ mouse 

forebrain confirms that the lacZ reporter recapitulates endogenous Zswim5 

forebrain expression (Figure 3.7 B). To determine whether this mouse was a 

functional null, we first did in situ hybridization with a probe directed against 

exons 2 and 3, which were replaced with the targeting construct. As expected, 

knockout tissue showed no signal with this probe when compared to wildtype. 

However, in situ hybridization using several other probes downstream of the 

deleted exons showed that the transcript was still present in knockout mice 

(Figure 3.7 C).To determine whether alternative transcripts might be present that 

could still produce a functional protein, such as through exon skipping, we did 5’ 

RACE and found no alternative transcripts (data not shown). With no evidence to 

suggest that an alternative transcript with protein-coding potential was being 

transcribed, we considered this mouse a functional null.  From a biological 

standpoint, the in situ analysis we performed highlights the fact that not all 

transcripts may be subject to nonsense mediated decay to the same extent, and 

in the case of Zswim5, a substantial amount of mutant transcript remained. Since 

this mouse was a constitutive knockout, we wanted the ability to conditionally 

inactivate Zswim5 as well. Thus, we generated a conditional knockout (Z5-ITL) in 
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collaboration with Ingenious Targeting Labs. To generate this mouse we used 

homologous recombination to flank exon 3 with loxP sites (Figure 3.8 A), which 

upon Cre-recombinase mediated recombination is predicted to cause a 

frameshift deletion. Southern blot using 3’ and 5’ DNA probes indicates that the 

targeting construct inserted at the correct location (Figure 3.8 B). To confirm 

whether this strategy produced a null allele, we bred Zswim5 floxed mice to a 

CMV-Cre line (Jackson Laboratory Stock #006054) to produce a germline 

knockout. Using cDNA from the offspring, we did RT-PCR with a primer set 

containing a forward primer in exon 2 and a reverse primer in exon 3 and found 

no band at the expected length relative to control (Figure 3.8 C). Additionally, 

qPCR on E13.5 mouse forebrain showed that Zswim5 transcript was reduced by 

approximately 75% in knockouts relative to control. Together, these studies 

indicate that both Zswim5 mutant mouse lines are highly likely to be functional 

nulls (Figure 3.8 D). 
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 Study of Interneuron Development in Zswim5 Knockout Mice 

To begin our study of Zswim5, we first characterized its expression using in situ 

hybridization. We find that at E12.5, E14.5 and E16.5, Zswim5 mRNA is 

predominantly restricted to the MGE SVZ, with low levels of expression in the 

LGE SVZ and cortical plate (Figure 3.9). By P0, Zswim5 expression is 

undetectable (data not shown). Next, we turned our attention to analysis of Z5-

KOMP mice. Observation of adult Zswim5 knockouts revealed no obvious 

behavioral, neurological, or anatomical phenotypes. We next examined whether 

loss of Zswim5 affected proliferation of MGE progenitors. We counted ventricular 

Figure 3.8. Generation of Zswim5 knockout (KO) mice. 

(A). Schema of constructs used in generating a null allele for Zswim5 by flanking 

exon 3 with LoxP insertions, generating a mouse line, then crossing this line with 

Cre-deleter mice.  

(B). Southern blot analysis to identify correctly targeting embryonic stem (ES) cell 

clones obtained from hybrid C57BL/6x129/SvEv ES cells electroporated with the 

targeting construct. One ES clone (A1) was identified in which there was the 

expected 5’ and 3’ recombinations. HYB, hybrid ES cell; B6, C57BL/6 ES cell; 129, 

129/SvEv ES cell. 

(C). RT-PCR reveals a loss of product created by primers flanking the exon 2 and 3 

junction in the Zswim5 knockout. 

(D). There is a 75% reduction in the relative abundance of Zswim5 mRNA in 
homozygous Zswim5 KO mice (N=3). Abbreviations: WT (wild type); Neo 
(neomycin resistance cassette); E (exon). *p<.001. Error bars indicate SEM. 
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and abventricular phospho-histone H3 mitotic figures and found a non-significant 

14% and significant 9% decrease, respectively, in knockouts relative to controls 

(Figure 3.10 A). We also pulsed with EdU for 30 min at E13.5 to look at the 

 

 

fraction of progenitors in S-phase. Although we did not quantify the number of 

EdU+ progenitors, qualitatively there did not appear to be an obvious difference 

(Figure 3.10 B). This was also true for the SVZ marker cyclin D2 (Figure 3.10 

B). Immunohistochemistry for Lhx6 also revealed no obvious changes in the 

production and/or specification of interneuron precursors (Figure 3.10 B). In 

agreement with these findings, we found no significant difference in the number 

of PV interneurons in the somatosensory cortex or hippocampus of P21 Z5-

KOMP mutants (Figure 3.11). On the basis of these results, and the observation 

Figure 3.9. Expression of Zswim5 in the developing mouse forebrain. 

In situ mRNA hybridization for Zswim5 shows strong expression in the medial 

ganglionic eminence (MGE) at embryonic day (E) 12.5, 14.5, and 16.5. Low levels 

of expression can also be detected in the lateral ganglionic eminence (LGE) and 

cortex (Cx).  
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that Zswim6 is also expressed in the MGE and may compensate for Zswim5 

loss-of-function, we decided to turn our attention away from Zswim5 single 

knockouts and focus on Zswim5/Zswim6 double mutant mice. 

 

 

Figure 3.10. Analysis of proliferation and molecular specification in the medial 

ganglionic eminence (MGE) of Zswim5 mutant mice.  

(A). Immunostaining for the M-phase marker phospho-histone H3 on embryonic day 

(E) 13.5 mouse forebrain sections shows that there is no change in ventricular zone 

(VZ) mitoses and a 9% reduction in subventricular zone (SVZ) mitoses.  

(B). Immunostaining for Lhx6, a marker of post-mitotic, MGE-derived neocortical 

interneurons shows no gross differences between Zswim5 knockout mice (KO) and 

wildtype (WT) controls. Similarly, examination of the SVZ proliferation marker CD2 

and the thymidine analogue EdU, which marks cells in S-phase, shows no gross 

changes in the KO relative to controls. 
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 Generation of Zswim5/Zswim6 Double Knockout Mice 

Zswim5 and Zswim6 are highly homologous proteins. If one considers identical 

and identical/similar amino acids, they are 77% and 87% homologous, 

respectively. 

 

 

They are also expressed in largely overlapping patterns, increasing the likelihood 

of genetic compensation. In order to generate Zswim6 mutants, we adopted a 

conditional knockout strategy that was similar in approach to Zswim5. Since 

Zswim5 and Zswim6 were formed through gene duplication, they have a nearly 

identical genomic structure. The only major difference is that exon 1 in Zswim5 

was split into two exons in Zswim6. Thus, exon 3 in Zswim6 is identical to exon 2 

in Zswim5. Zswim5 has 14 exons in total and Zswim6 has 15, with exons 1 and 2 

being equivalent to exon 1 in Zswim5. Like our Zswim5 conditional mutant, we 

Figure 3.11. Cortical parvalbumin interneuron numbers are normal in Zswim5 

knockout mice.  

Counts of parvalbumin-expressing interneurons (PV) in primary somatosensory 

cortex (S1) and hippocampus (HPC) shows no difference in the number of PV 

interneurons in Zswim5 knockout mice relative to controls. 
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used homologous recombination to flank exon 4 of Zswim6 with loxP sites 

(Figure 3.12 A), which upon Cre-recombinase mediated recombination is 

predicted to cause a frameshift deletion. Southern blot using 3’ and 5’ DNA 

probes indicates that the targeting construct inserted at the correct location 

(Figure 3.12 B). To confirm whether this strategy produced a null allele, we bred 

Zswim6 floxed mice to a CMV-Cre line to produce a germline knockout. We then 

did in situ mRNA hybridization using a probe against the deleted exon to confirm 

its deletion (Figure 3.12 C). Using cDNA E13.5 KOs, we also did RT-PCR with a 

primer set containing a forward primer in exon 3 and a reverse primer in exon 4 

and found no band at the expected length relative to control (Figure 3.12 D). 

Additionally, qPCR on adult mouse striatum showed that Zswim6 transcript was 

reduced by approximately 70% in knockouts relative to control (Figure 3.12 E). A 

more detailed analysis of Zswim6 single knockout mice will be provided in the 

following data section. In order to generate constitutive Zswim5/Zswim6 double 

knockouts, we bred each floxed line to CMV-cre line as previously described. 

After breeding out the CMV-cre allele, we bred the offspring together to generate 

Zswim5+/-Zswim6+/- compound heterozygotes. These were subsequently bred to 

generate Zswim5-/-Zswim6-/- double knockout mice. 
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Figure 3.12. Generation of Zswim6 null mutant mice. 

(A). Schema of constructs used in generating a null allele for Zswim6 by flanking 

exon 4 with LoxP insertions, generating a mouse line, then crossing this line with 

Cre-deleter mice.  

(B). Southern blot analysis to identify correctly targeted embryonic stem (ES) cell 

clones obtained from hybrid C57BL/6x129/SvEv ES cells electroporated with the 

targeting construct. Four ES clones (Z1-Z4) were identified in which there was the 

expected 5’ and 3’ recombinations. HYB, hybrid ES cell; B6, C57BL/6 ES cell; 129, 

129/SvEv ES cell.  

(C). In situ hybridization (ISH) for Zswim6 using a probe spanning exon 3 to the 

beginning of exon 5 shows loss of expression in coronal sections from embryonic day 

(E) 14.5 forebrain of homozygous Zswim6 nulls.  

(D). RT-PCR reveals a loss of product created by primers flanking the exon 4 and 5 

junction in the Zswim6 KO.  

(E). There is a significant reduction in the relative abundance of Zswim6 mRNA in 

homozygous Zswim6 KO mice (N=3). Abbreviations: WT (wild type); Neo (neomycin 

resistance cassette); E (exon). ***p<.001. Scale bar 400μm in C. Error bars SEM. 
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 Study of Interneuron Development in Zswim5/6 Double Knockout Mice 

While Zswim5 knockouts have no observable phenotype, constitutive 

Zswim5/Zswim6 double knockouts die within the first 24-48 hours after birth. 

These mice have no obvious deformities, are well perfused without cyanosis, and 

have visible milk spots. Thus, their cause of death remains largely unknown. 

Since parvalbumin and somatostatin are not expressed in PV+ and SST+ fated 

cortical interneurons, respectively, until early adolescence in both mice and 

humans317,318, the early fatality of these double mutants precludes any analysis of 

adult cortical interneuron numbers. Thus, we took advantage of our mutant 

mouse lines’ conditional potential and generated Nkx2.1-cre double mutants 

(Nkx2.1dKO)44. The Nkx2.1-cre line allows us to interrogate the function of 

Zswim5 and Zswim6 within Nkx2.1-expressing progenitors of the MGE and 

PoA44. While this line also expresses cre-recombinase in other tissues that 

express Nkx2.1, including the hypothalamus, thyroid, and lung, we did not 

examine these structures44. Nkx2.1dKO mice do not differ from their wildtype 

littermates in terms of survival or size (data not shown). Stereological analysis of 

cortical and striatal volumes showed no change in the volume of either structure 

(Figure 3.13 A). Next, we counted the number of PV+ and SST+ interneurons in 

the cortex and striatum of Nkx2.1dKO mice and found no difference in the 

number of either subgroup relative to controls (Figure 3.13 C). We also counted 

striatal ChAT+ interneurons, which originate from Nkx2.1+ progenitors in the 

MGE, and found a 20% decrease in their total number (Figure 3.13 C). Naturally, 
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we followed up on this finding by examining whether either of the single mutants 

showed a reduction in striatal ChAT+ cells and found that neither of them did 

(Figure 3.13 B). 

 Discussion  

Here, we examined the role of Zswim5 and Zswim6 in the production of cortical 

and striatal interneurons. Analysis of Zswim5 single mutants showed no change 

in the number of PV+ cortical interneurons. Armed with this data and knowledge 

of Zswim6 expression in the MGE, we opted to analyze Nkx2.1dKO mice in lieu 

of spending additional time and resources examining Zswim5 single mutants.  
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The observation that constitutive double knockouts die shortly after birth 

suggests that Zswim5 and Zswim6 can at least partially compensate for loss of 

one another. In support of this, we found no change in the number of striatal 

ChAT+ interneurons in either of the single mutants, but found a 20% reduction of 

ChAT+ interneurons in Nkx2.1dKO mice.  PV+, SST+ and ChAT+ interneurons are 

derived from common Nkx2.1+ progenitors, which upon exit from the cell cycle 

express Lhx6, GABA, and, at least in a subset, Lhx7116. In cells that are fated to 

become cholinergic subtypes Islet1 is upregulated116. Islet1 is cross repressive 

with Lhx6 and causes it to downregulate in ChAT+ fated cells. Interestingly, Lhx7 

is required to maintain Islet1 expression, and lack of Lhx7 causes cells to revert 

into a default, GABAergic Islet1-/Lhx6+ lineage114,116. Together, Lhx7 and Islet1 

form a complex that activates a forebrain cholinergic transcriptional program115. A 

key question that remains to be addressed is the mechanism by which nascent 

Lhx6+, bipotential precursors that are destined to become cholinergic cells 

upregulate Islet1.  It is intriguing to speculate that Zswim5 and Zswim6 might 

Figure 3.13. Analysis of striatal and cortical volume and interneuron numbers 

in Nkx2.1-cre Zswim5/Zswim6 double knockout mice.  

(A). Nkx2.1-cre Zswim5/Zswim6 (Nkx2.1dKO) mice have no change in cortical (Cx) 

or striatal (STR) volume. 

(B). Constitutive Zswim5 and Zswim6 single knockout (KO) mice have no change in 

the number of striatal cholinergic interneurons.  

(C). Nkx2.1dKO mice have no change in cortical and striatal parvalbumin- (PV) or 

somatostatin (SST)-expressing interneurons but have a 20% decrease in the number 

of striatal cholinergic interneurons.  ***p<.001. Error bars indicate SEM. 
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participate in this process. In addition, further work is necessary to understand 

the ultimate fate of the missing ChAT+ cells. We did not find an increase in the 

number of striatal PV+ or SST+ subtypes, suggesting that the missing ChAT+ 

cells did not simply adopt a GABAergic identity. It remains to be resolved 

whether these cells die, migrate elsewhere, adopt another identity, were ever 

produced in the first place, or simply fail to express choline acetyl transferase. 

Regardless, this finding has important implications, since dysfunction of 

cholinergic transmission within the ventral telencephalon is thought to contribute 

to a number of disease processes including Alzheimer’s, Parkinson’s, Tourette’s, 

schizophrenia, and addiction229,230,319-322.  

 

3.3 Loss of the Schizophrenia Associated Gene Zswim6 Alters Striatal 

Development and Motor-Dependent Behaviors 

 Overview 

The zinc-finger SWIM domain-containing protein 6 (ZSWIM6) is a little studied 

protein with unknown function that has been associated with schizophrenia by 

two independent genome-wide association studies. More recently, a recurrent 

point mutation in ZSWIM6 has been identified in several cases of acromelic 

frontonasal dysostosis and thought to be causal in the disorder. Despite the 

growing number of studies implicating ZSWIM6 as an important regulator of brain 

development, its role in this process has never been examined. Here, we report 
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the generation of Zswim6 knockout mice and provide a detailed anatomical and 

behavioral characterization of the resulting phenotype. We show that Zswim6 is 

initially expressed widely during embryonic brain development but becomes 

restricted to the striatum postnatally. Loss of Zswim6 causes a reduction in 

striatal volume and changes in medium spiny neuron morphology. These are 

associated with alterations in motor behaviors including hyperactivity, impaired 

rotarod performance, repetitive hopping, and behavioral hyperresponsiveness to 

amphetamine. Together, our results show that Zswim6 is indispensable to normal 

brain development and support the notion that Zswim6 might serve as an 

important contributor in the pathogenesis of schizophrenia.  

Introduction 

While neuropsychiatric disorders such as schizophrenia (SCZ) exhibit significant 

heritability, the underlying genetics are complex, involving multiple perturbations 

of modest effect size acting within critical temporal windows323. Efforts to 

understand the pathophysiology of SCZ are similarly complicated by the 

disorder’s diverse, partially penetrant symptomology, organized loosely around 

positive (hallucinations/ delusions and movement abnormalities) and negative 

(altered affect, reduced pleasure and motivated action) behavioral domains. 

However, after many years of stagnation, advances in genomic sequencing, 

coupled to an appreciation for the scale at which studies must be conducted in 

order to identify common risk alleles of small effect, have started to uncover the 

genetic building blocks of polygenic diseases such as SCZ. While knockout 
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animal models offer admittedly limited insight into the complex nature of these 

disorders, they may be useful in identifying molecular pathways and neural 

circuits that are uniquely vulnerable to genetic insult and that have central 

functions in regulating behavioral output. Here, we contribute to the study of 

these variants through the generation and characterization of one such SCZ-

associated risk gene, ZSWIM6. While to our knowledge no functional studies 

have been published on ZSWIM6, two independent genome-wide association 

studies have implicated it in SCZ251,324 and several additional studies have 

documented its expression in developing and adult brain293,295,325,326. At least two 

clinical studies have also identified a recurrent point mutation in ZSWIM6 in 

cases of acromelic frontonasal dysostosis, a rare disorder characterized by 

multiple brain, limb, and craniofacial abnormalities295,314. And while few of the 

known protein domains within ZSWIM6 are well characterized, gene ontology 

studies suggest that ZSWIM6 may participate in the epigenetic regulation of gene 

transcription through interactions with chromatin remodeling complexes292— a 

process extensively implicated in SCZ pathogenesis305,308,309.  

Recent evidence has implicated cortico-striato-thalamic circuit dysfunction in 

multiple neuropsychiatric diseases exhibiting motor and cognitive behavioral 

components223,327, reflecting the wide-ranging function of these pathways in 

motor control, decision-making and reward processing. Due in part to the 

dominance of the “dopamine hypothesis,” the striatum has long been considered 

a site of SCZ pathology, although how physiological dysfunction contributes to 
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specific behavioral abnormalities remains unclear. Here, through the generation 

of Zswim6 knockout (KO) mice, we provide evidence that further implicates 

striatal dysfunction in the manifestation of neuropsychiatric disease.  We show 

that Zswim6 initially exhibits widespread early embryonic expression in many 

forebrain regions, but becomes progressively restricted to the adult striatum. 

Consistent with this highly restricted expression pattern, we observed that 

Zswim6 KO mice exhibit a range of motor abnormalities consistent with striatal 

dysfunction. Many of our findings are similar in nature to phenotypes observed in 

SCZ patients, suggesting that Zswim6 KO mice may serve as a useful model for 

studying SCZ-associated endophenotypes. 

Results 

 Expression of Zswim6 in the developing and adult forebrain 

To confirm previous reports and to examine Zswim6 across forebrain 

development, Zswim6 expression was evaluated by mRNA in situ hybridization.  

Zswim6 was detected in the subventricular zone (SVZ) of the LGE and MGE at 

E12.5 (Figure 3.14 A-C). Higher expression levels appeared in the LGE than 

MGE. By E14.5 this expression remained enriched in the SVZ (Figure 3.14 E-G), 

extending into more proximal regions of the MGE and LGE mantle regions. By 

E16.5, this expression expanded into the medial cortex, the developing 

amygdala, and portions of the thalamus and hypothalamus (Figure 3.14 G-I). In 

the telencephalon, the postnatal expression of Zswim6 became more restricted 
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to the striatum (Figure 3.14 J). Similar expression patterns have been identified 

in human samples (Figure 3.15). 

 Generation of a Zswim6 null mouse 

These expression studies suggest that Zswim6 is expressed in the anlagen and 

postnatal tissue of several portions of the “limbic” forebrain. This expression 

pattern and the association of Zswim6 with schizophrenia led us to evaluate 

whether loss of Zswim6 would alter forebrain development and function. Gene 

targeting was used to create a null allele (Figure 3.12 A) in which exon 4 was 

flanked by LoxP sequences. Removal of exon 4 was predicted to result in a 

frameshift mutation. Southern blotting was used to identify correctly targeting 

embryonic stem cell clones (Figure 3.12 B). Crosses with a germline expressed 

Cre recombinase line (CMV-Cre) resulted in generation of an allele lacking 

expression of Zswim6 exon 4 by in situ hybridization and RT-PCR (Figure 3.12 

C, D). The MGE of homozygous mutants expressed Zswim6 transcript at roughly 

35% of control levels at E13.5 (Figure 3.12 E). Of note, in silico analysis  
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suggests that Zswim6 has a single transcript. Unfortunately, while the loss of 

exon 4 transcript and striatal-related phenotypes presented in this paper are 

highly encouraging that a Zswim6 null has been created, we were unable to 

confirm Zswim6 protein expression using commercial antibodies. 

Figure 3.14. Zswim6 expression 

during striatal development.  

At embryonic day (E) 12.5 (A-C) 

and E14.5 (D-F) Zswim6 is 

strongly expressed in the in the 

subventricular zone of the lateral 

and medial ganglionic eminences 

but at low to non-detectable levels 

not in the cerebral cortex. Low 

level expression can also be seen 

in the amydala (arrow in F) and 

thalamus (G-I). At E16.5 this 

expression expands to the cortical 

plate and medial habenula (arrow 

in I) and increases in intensity in 

the amygdala, as well as the 

amygdala (arrow in H).  (J) Image 

from the Allen Brain Atlas shows 

that expression of Zswim6 is 

present in the adult striatum but 

not in the overlying cerebral 

cortex. Abbreviations: LGE (lateral 

ganglionic eminence); MGE 

(medial ganglionic eminence); 

CGE (caudal ganglionic 

eminence); Cx (cortex); Th 

(thalamus); Am (amygdala); Hy 

(hypothalamus); St (striatum). 

Scale bars 300μm in A-C, 400μm 

in D-F, 500μm in G-I, 1000μm in 

J. 
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 Abnormal neocortical and striatal development in Zswim6 null mice. 

Zswim6 KO mice were born in Mendelian ratios, but showed increased neonatal 

mortality such that roughly 40% of Zswim6 KO mice survived to weaning (Fig. 

Figure 3.16 A, B). At postnatal day (PD) 21, their weight averaged about 80% of 

wild-type controls (Figure 3.16 C), although this normalized improved to 93% of 

controls by adulthood (Figure 3.16 C). Analysis of overhead-view surface area in 

adults showed a significant decrease for the Zswim6 KO cerebral cortex, and no 

such decrease for the cerebellum (Figure 3.16 D). Stereological analysis of 

cortical and striatal volumes by the Cavalieri method showed a 7% decrease of 

cortical volume and a 15% decrease in striatal volume (Figure 3.16 D).  

To determine which components of forebrain volume were contributing to the 

above-mentioned phenotypes, we conducted stereological counting of immune-

labeled neuronal subtypes in the dorsal striatum (striatum dorsal to the N. 

Figure 3.15. Zswim6 expression during human fetal forebrain development.  

(A) and (B) are pseudocolored renderings from the Allen Brain Institute’s human 

prenatal microarray study showing the relative expression levels of Zswim6 in 

different embryonic forebrain regions. 

(A). Shows the relative expression of Zswim6 in different forebrain regions from a 

single post-conception week (pcw) 21 sample. The sections are arranged from 

rostral to caudal. Red indicates higher levels of expression, whereas lower levels are 

indicated in green. The “1” marks the lateral ganglionic eminence. “2” marks the 

caudate nucleus. “3” marks the putamen. “4” marks the cortex. 

(B). Shows the relative expression of Zswim6 at three different embryonic time 

points at approximately the same coronal level. Each time point represents data from 

a single donor. The expression pattern in the anlage of the striatum is quite similar to 

that of Zswim6 in the mouse. The labeled structures are the same as in (A). 
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Acumbens) of adult mice. Remarkably, relative to wild-type controls Zswim6 nulls  

 

 

Figure 3.16. Decreased early postnatal survival and forebrain size in Zswim6 

null mutants.  

(A). Survival plot showing that the null mutant (KO) mice have a 40% mortality in the 

first few days after birth, followed by a very gradual decline through 4 weeks. Data is 

from approximately 100 mice from each group. 

(B). Analysis of the % of litters that are wild type (WT), heterozygous (HET) or KO for 

Zswim6 at embryonic day (E) 14.5, P0, and P21 is consistent with loss of KO pups 

after birth (N=79 mice for P21, chi-square with 2 degrees of freedom = 27.911). 

(C). Zswim6 KOs also show a small decrease of weight relative to controls at P21 

that persists into adulthood (N=10).  

(D). Overhead surface area of the cerebral cortex (Cx) shows a significant decrease 

in the Zswim6 KOs, but no change in the cerebellum (N=5). Volumetric 

measurements based on analysis of coronal tissue sections show a significant 

reduction of volume in both the Cx (N=5 WT, 6 KO) and the striatum (St; N=5).  

*p<.05, ** p<.01, ***p<.001, #p<.0001. Error bars indicate SEM. 
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showed a 17% reduction in the number of nuclei labeling with CTIP2, a marker of 

medium spiny neurons (Figure 3.17 A). However, the density of these neurons 

was not changed. In contrast, there was no change in the number of two major  

 

 

Figure 3.17. Zswim6 null mutants have a reduced number of medium spiny 
neurons.  

(A). Cell counts for the medium spiny neuron marker CTIP2 in adult Zswim6 KOs 
relative to WT controls shows a significant reduction of cell number in the KOs. On 
the other hand, cell density is unchanged, consistent with the reduced total dendritic 
length (N=3; see Fig. 5) combined with cell loss.  

(B). In contrast to the effects on medium spiny neurons, cell counts for several 
populations of striatal interneurons (choline acetyl transferase, ChAT; parvalbumin, 
PV; somatostatin, SST) are unchanged (N=3).  

(C). Semi-quantitative RT-PCR for striatal transcripts, including the dopamine 
receptors Drd1 and Drd2, were not altered in the Zswim6 KOs (N=3). Interestingly, in 
the KOs there was a trend for increased levels of Zswim5, which might be 
compensation by this close homologue to Zswim6. *p<.05. Error bars indicate SEM. 
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subclasses of GABAergic striatal interneurons (Figure 3.17 B), defined by 

parvalbumin (PV) and somatostatin (SST). In addition, there was no change in 

the number cholinergic interneurons defined by their expression of choline-acetyl 

transferase (Figure 3.17 B). There were no gross alterations in the expression of 
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dopamine receptors DRD1 or DRD2 by in situ hybridization (data not shown), 

and no gross change in tyrosine hydroxylase or DARPP32 (data not shown). 

Finally, there were no statistically significant changes in the expression of striatal 

genes evaluated by qPCR (Figure 3.17 C), including GPR88, PENK, Adora2a, 

Drd1, Drd2, Rgs4, TAC1, and GPR6. Interestingly, there was a non-significant 

trend for Zswim5 upregulation, by 20%. 

In addition to neuronal number, another important component to striatal size is 

dendritic arborization. Indeed, reconstructions of Golgi-stained neurons revealed 

a significant decrease in dendritic number, tips, and total length (Figure 3.18 A, 

C). There was no change in the number of branch points or mean dendritic 

length. Sholl analysis revealed that Zswim6 KOs have reduced cumulative 

dendritic length and decreased Sholl intersections (Figure 3.18 B). Spine density 

was reduced in the KOs by about 15% (Figure 3.18 D).  

Figure 3.18. Dendritic abnormalities in striatal medium spiny neurons of 

Zswim6 null mutants.   

(A). The number of primary dendrites, dendritic ends (tips), and total length were 

decreased in the KOs, whereas there was an insignificant trend towards a reduced 

number of branch points, and no difference in mean length (N=3, 7 MSN/animal). 

(B). Consistent with the results in (A), Scholl analysis revealed decreased cumulative 

length and number of intersections in the KOs.  

(C). Shows an example of the reconstructions from Golgi-stained sections used in 

these analyses.  

(D). Spine density was also decreased on the medium spiny neurons of Zswim6 

KOs. Scale bars 50μm in C, 5μm in D. *p<.05, ** p<.01, ***p<.001. Error bars 

indicate SEM. 
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These results suggest that the reduction of striatal volume involves both a 

reduction in the number of medium spiny neurons, and a reduction in their 

dendrites. To determine whether the dendritic arborization phenotype is specific 

to the striatum, we examined layer 3 pyramidal neurons of the medial frontal 

cortex. While the apical dendrites of Zswim6 KO pyramidal neurons were 

unchanged from controls, the basilar dendrites had reduced dendritic complexity 

and length (Figure 3.19 A, B). This result contrasted to that of layer 3 of 

somatomotor cortex, which was not altered in the Zswim6 KO brains (Figure 

3.19 A). As for the striatum, Sholl analysis of the medial frontal cortical layer 3 

pyramidal neuron basilar dendrites revealed that Zswim6 nulls have reduced 

cumulative dendritic length and decreased Sholl intersections (Figure 3.19 C). 

Again, these differences were not found in the basilar dendrites of layer 3 

pyramidal neurons in somatomotor cortex (Figure 3.19 C). Spine density on 

medial frontal cortical layer 3 pyramidal neuron basilar dendrites was reduced by 

about 13% (Figure 3.19 D). 
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To evaluate potential mechanisms behind the reduction of striatal medium spiny 

neurons, we quantified markers of proliferation during embryonic development. 

Counts of the m-phase marker PH3, and the S-phase marker EdU, showed no 

differences in the LGE between Zswim6 KO embryos and wild-type controls 

(Figure 3.20). In addition, there was no gross difference in the density of cells 

expressing cyclin-D2, expressed primarily in subventricular zone progenitors 

(data not shown). While these analyses cannot definitely rule out the presence of 

a relatively subtle proliferation deficit, they do suggest that the adult striatal 

phenotype in Zswim6 KO embryos is not secondary to a major proliferation 

deficit. In addition, we also investigated the presence of cleaved caspase-3 as an 

indicator of apoptosis in Zswim6 KO and control mice at E14.5, P0, P21, and P60 

and found no increase in its expression (data not shown). 

Figure 3.19. Zswim6 null mutants have decreased dendritic complexity in 

medial frontal cortex but not somatomotor cortex.  

(A). For pyramidal neurons (PN)s of the medial frontal cortex (mfCx), the Zswim6 

KOs had a significant decrease of branch points, tips, total length and mean length in 

the basilar dendritic tree, whereas the apical trees were not affected. In contrast, the 

basilar dendrites were unchanged in the KOs somatomotor cortex (smCx) (N=3, 6 

PN/animal) 

(B). Shows an example of the reconstructions from Golgi-stained sections used in 

these analyses.  

(C). Sholl analysis of the basilar dendrites revealed decreased cumulative length and 

number of intersections in the mfCx of the KOs, but no change in the smCx.  

(D). Spine density was also decreased on the basilar dendrites of Zswim6 KO mfCx 

pyramidal neurons . Scale bar 50μm in B.  ** p<.01, ***p<.001. Error bars indicate 

SEM. 
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 Loss of Zswim6 results in behavioral deficits 

To determine whether the alterations in medium spiny neuron number and 

arborization are accompanied by behavioral abnormalities in Zswim6 nulls, mice 

were subjected to a battery of tests. Consistent with an alteration of striatal 

function, Zswim6 nulls had a performance worse that controls on the rotarod 

Figure 3.20. No evidence for reduced proliferation by striatal progenitors in 
Zswim6 null mutants.  

(A). At embryonic day (E) 14.5, mice were pulsed with the thymidine analogue EdU 
30 minutes before fixation and the location of s-phase cells identified by 
histochemistry. The boxed region shows the areas for which EdU+ nuclei were 
counted in the lateral ganglionic eminence, the origin of medium spiny neurons of 
the adult striatum. There were no differences in EdU expression in the Zswim6 KOs.  

(B). PH3 labels m-phase cells. Again, there were no differences in this marker of 
proliferation in either the ventricular zone (bin 1) or subventricular zone (bins 2 and 
3) of the KOs relative to WT controls (N=5). Scale bar 300μm. Error bars indicate 
SEM. 
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(Figure 3.21 A). In the open field test they showed increased horizontal beam 

breaks, increased rearing, and decreased thigmotaxis (Figure 3.21 B). 

Hyperactivity was also apparent in the force plate test, and hind limb jumping 

was greatly increased (Figure 3.21 C). In agreement with the open field findings, 

Zswim6 nulls also had fewer low mobility bouts and spent less time in the center 

of the arena (Figure 3.21 C). In the elevated zero maze the Zswim6 nulls 

showed a non-significant trend towards increased time in the open arm, and an 

increased average speed (Figure 3.21 D). Remarkably amphetamine, at a dose 

(2mg/kg) that did not alter the activity of controls, significantly increased the 

activity of the Zswim6 nulls (Figure 3.21 E). This result is consistent with 

enhanced striatal dopamine signaling in these mutants.  

We also attempted to assess sensorimotor gating by measuring prepulse 

inhibition (PPI) of the acoustic startle reflex. However, during the initial acoustic 

habituation trials, we discovered that Zswim6 nulls have a dramatically blunted 

response to increasing auditory stimulation, indicating a potential for hearing loss 

(Figure 3.22 A). Follow-up brainstem auditory evoked response testing (ABR) on 

three Zswim6 nulls revealed that two animals had normal ABR thresholds to a 16 

kHz pure tone, which is the frequency at which mice hear best, while one animal 

had no response (Figure 3.22 A, C, D). Overall, knockout mice did not appear to 

have altered thresholds over a 20 kHz range (Figure 3.22 C).  
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Discussion 

To our knowledge this is the first paper to describe a loss of function model of the 

schizophrenia-associated gene Zswim6 in mice. Zswim6 is strongly expressed 

within the subventricular and mantle zones of the striatal anlage. Broadly, it has a 

dynamic expression pattern in multiple regions, including the medial frontal 

cortex, medial habenula, and the amygdala. This expression pattern in regions of 

the “limbic” forebrain is particularly intriguing in light of the association of Zswim6 

with schizophrenia.  

Zswim6 null mutants are born at Mendelian ratios, but roughly half fail during the 

neonatal age range. The cause of this death is not clear, but the Zswim6 mutants 

lag behind their littermates in weight through weaning and into adulthood, then 

appear to breed normally. Due to the strong persistent expression of Zswim6 in 

the adult striatum, where the close homologue Zswim5 is weakly expressed, and 

due to the relevance of striatum to the pathology of schizophrenia, we focused on 

striatum and related phenotypes in this study.  

Striatal volume was reduced by 15% in Zswim6-/- adults. This occurred in part 

due to a reduction in the number of medium spiny neurons (Figure 3.17). To 

examine the mechanism of reduced medium spiny neuron number, proliferation 

was examined in embryonic Zswim6 mutants. No gross change was found at 

E14.5 (Figure 3.20), although an alteration in proliferation that caused a 15% 

difference in neuron number could be very difficult to detect. There was no 
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increase in the expression of the apoptosis marker cleaved caspase 3 at E14.5, 

P0, P21 or in adults (data not shown).  
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To determine whether striatal volume loss could also be secondary to defective 

dendritic arborization in the Zswim6 mutants, adults were subjected to Golgi-Cox 

staining (Figure 3.18). Indeed, there was a significant reduction in total dendritic 

length and in the number of dendrites per cell. Spine density was also 

significantly decreased, suggesting a loss of synaptic input.  

To determine whether this effect is striatal specific, we also examined the 

neocortex. Neocortical volume was less affected than that of the striatum in 

Zswim6 mutants, but was significantly reduced by about 7% (Figure 3.16). 

Figure 3.21.  Behavioral defects in Zswim6 null mutants.  

(A). Zswim6 KOs achieved significantly lower terminal speeds on the rotarod test 

(N=14 WT, 15 KO). 

(B). In the open field the KOs had more beam breaks, more rearing events, and 

decreased thigmotaxis (N=16 WT, 19 KO). 

(C). Force plate analysis showed greater distance traveled, increased hind limb 

jumps, decreased low mobility bouts, and increased time in the center (N=9 WT, 7 

KO). 

(D). In the elevated zero maze there were non-significant trends towards increased 

percent time in the open sections and increased average speed for the KOs (N=12 

WT, 13 KO).  

(E). Amphetamine (2mg/kg; administered at 30 minutes) did not alter motility of 

controls (dark blue and purple lines show wild-types treated with amphetamine or 

saline, respectively; N=12 WT-amph, 13 KO-amph, 4 WT-saline, 4 KO-saline). In 

contrast, 2mg/kg amphetamine significantly increased the motility of the Zswim6 

KOs over its moderately elevated baseline. *p<.05, **p<.01, ***p<.001. Error bars 

indicate SEM. 
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Analysis of layer 3 pyramidal neurons of medial frontal cortex revealed reduced 

total length of the basilar dendrites in the mutants, whereas the apical dendrites  
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were not affected (Figure 3.19). Interestingly, layer 3 pyramidal neurons in the 

somatomotor region were unchanged in the mutants, suggesting that the deficits 

may be most pronounced in areas such as the medial frontal cortex and striatum 

most associated with neuropathological findings in schizophrenia. How Zswim6 

loss of function results in these abnormalities is unclear although, since the 

targeting construct included the capacity to generate conditional mutants, future 

studies will be able to evaluate whether, for example, striatal or cortical specific 

loss of this putative chromatin regulator alters gene expression and cortico-

striatal circuitry during development. 

Based on the findings of striatal defects Zswim6 mice were subjected to a battery 

of behavioral tests. Remarkably, they showed defects in the rotarod, increased 

rearing and hind limb jumping behavior, and hyperactivity in the open field which 

was further increased by a dose of amphetamine that did not alter the activity of 

Figure 3.22. Brainstem auditory evoked response testing on Zswim6 knockout 

mice. 

(A). Zswim6 knockout (KO) mice have a dramatically reduced startle response to 

increasing auditory stimulation. 

(B). Electrophysiological tracings of brainstem responses to a 16 kHz pure tone 

played at three different sound intensities shows that one Zswim6 knockout has no 

response, indicating a potential for deafness. 

(C). KO mice have on average normal auditory thresholds at different frequencies. 

(D). Electrophysiological brainstem responses to a 16 kHz pure tone for three WT 

and three KO mice. 
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controls (Figure 3.21). These alterations are consistent with defects in striatal 

functioning.  

In sum, we have generated null mutant mice for the schizophrenia-associated 

gene Zswim6. While our analysis is not exhaustive, loss of Zswim6 results in 

striatal and cortical abnormalities that are consistent with schizophrenia-

associated endophenotypes, including spine density reduction in frontal cortex 

and hypersensitivity to amphetamine. We thus conclude that this appears to be a 

useful model for studying the function of a schizophrenia-associated gene at the 

molecular, functional circuitry, and behavioral levels. 
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CHAPTER 4 

Ongoing Studies & Future Directions 

 

 

 

 

4.1 Overview 

The work in this dissertation largely seeks to identify novel molecular-genetic 

pathways that regulate the production of distinct neuronal subtypes from within 

the embryonic subpallium.  We harnessed information gleamed from studying the 

development of cortical interneurons in vivo to enhance the production of PV  

cortical interneurons from embryonic stem cells in vitro. In an effort to identify 

new genes that control interneurongenesis, specifically within the SVZ, we 

inadvertently discovered novel genetic regulators of striatal ChAT interneurons 

and MSN. With an enhanced ability to produce PV cortical interneurons, we can 

now begin to explore with greater precision the pathways that regulate PV vs 

SST cortical interneuron development, as well as use enriched populations of 

cortical interneuron subtypes for cell-based transplantation assays. In addition, 

we also provide evidence for the role of Zswim6, and to a lesser extent Zswim5, 
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in the development and function of the telencephalon. As a significant 

schizophrenia candidate gene, insight into Zswim6 function will hopefully take us 

closer to understanding the biological pathways that are affected in different 

neuropsychiatric disease states. With rapidly evolving technologies that enable 

quicker and higher resolution genome editing, genetic sequencing, and 

epigenetic profiling on multiple scales, combined with greater access to large 

genetic patient datasets, we are now poised to answer some of the most 

challenging questions in neuroscience. The following chapter will discuss our 

ongoing efforts to build upon the work presented in this thesis, as well as 

describe future directions that these projects could move in.  

4.2 RNA and Epigenetic Profiling of mESC-Derived Fate Committed Cortical 

Interneurons 

Evidence from fate mapping studies has shown that interneuron subtypes have 

distinct spatiotemporal origins. Knowledge of the transcriptional programs that 

direct interneurongenesis will likely reveal how different interneuron fates are 

determined. In addition, many studies have demonstrated that neuronal fate 

determination occurs before or around the time of cell cycle exit, often based on 

the functions of transcription factors expressed selectively within the proliferative 

zones. However, cortical interneurons undergo an extended period of migration 

prior to their maturation into interneurons with subgroup or subtype-defining 

features. In mouse, migration from the MGE, LGE, and CGE into the overlying 

cortex takes approximately one week. A highly similar migration occurs in 
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humans328,329, where it may require 4 to 8 weeks. During this time, interneuron 

morphology and migratory behavior is indistinguishable across interneuron 

subgroups. However, the mechanisms by which distinct neuronal fates are 

maintained during the migration period, when they may no longer express the 

genes initially required for their fate determination, is largely unknown. A major 

advance that our current mESC study makes is the ability to strongly enrich for 

either PV or SST subtypes, using a single cell line and without the need for 

forced gene expression. We are thus in a unique position to profile early post-

mitotic, differentially fate-committed cortical interneurons in vitro.  

We hypothesize that the mechanism by which interneuron fate potential is 

maintained throughout the extended migration period depends upon either a 

RNA transcript(s) and/or epigenetic landscape(s). In order to identify these 

molecular memory traces, we have begun collecting differentially fated 

Lhx6:GFP+ cortical interneuron precursors for RNA-seq and ATAC-seq. RNA-seq 

will allow us to identify RNA transcripts that are differentially expressed between 

PV and SST-fated populations. ATAC-seq will enable us to identify regions of 

open and closed chromatin that correlate with expressed transcripts, enhancers, 

and, potentially, regions of the genome that are poised to be expressed (e.g. 

open) but remain inactive until migration has ended. For the latter possibility, our 

hypothesis is that genes driving subgroup-selective differentiation after the 

migratory phase will be “poised” for transcription in newly born Lhx6:GFP+ cells 

from one subgroup and “closed” for transcription in the other. Ultimately, this 
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would be combined with chromatin signature analysis by ChIP-seq to compare 

“poised” and repressed loci across the PV- and SST-fated cells. A similar 

approach has recently been used to correlate cell type-specific transcriptomes 

with an atlas of open chromatin to identify novel genes and transcriptional 

regulatory elements that confer cell-type identity, while simultaneously retaining 

cell-fate plasticity, in purified populations of human pancreatic α- and β-cells330. 

To test whether this approach will be useful in identifying novel transcripts and/or 

epigenetic landscapes specific to PV and SST subtypes, we have collected PV- 

and SST-fated cells for this purpose. To enrich for SST-subtypes, we used a 

modified version of our previously published protocol280. We grew cells under 

high Shh conditions from DD8-12 and then collected Lhx6:GFP-only expressing 

cells on DD12. During cell sorting, 3 x 125,000 cells were collected for RNA-seq, 

followed by 4 x 50,000 cells for ATAC-seq. To confirm that the collected cells are 

enriched to become SST subtypes, we sorted additional cells for transplantation 

into neonatal neocortex. Only those differentiations that produce the intended 

ratio (i.e. 6:1 SST:PV for the SST-enriched protocol and greater than 5:1 PV:SST 

for the PV-enriched protocol) will be used for downstream analyses. To enrich for 

PV-subtypes, we grew cells under low Shh conditions (SAG from DD8-10, 

combined with aPKCi from DD8-16) and collected Lhx6:GFP::Nkx2.1:mCherry 

double-positive cells on DD16. We collected cells 5 days later than the PV-

protocol described in this dissertation in an attempt to further enrich for PV, since 

previous work from our lab has shown that increased time in culture enhances 



 
 

123 
 

the genesis of PV subtypes at the expense of SST subtypes. Upon confirmation 

of cell fate, members of Zhaolan Zhou’s lab at the University of Pennsylvania will 

proceed with preparing DNA and RNA libraries for ATAC-seq and RNA-seq, 

respectively, from the sorted populations. Bioinformatic analyses will then be 

used to identify transcripts enriched in either the SST or PV-fate cells. Gene 

expression analyses including qPCR, immunohistochemistry, and in situ 

hybridization will be used to confirm the expression of any candidate genes 

identified in this analysis. In parallel with the RNA-seq data, bioinformatic 

analyses of the ATAC-seq data will be used to identify regions of open and 

closed chromatin. We anticipate that a large number of genes will be co-

expressed in both populations and that these will correlate with regions of open 

chromatin. However, we also anticipate finding regions of chromatin that are 

open in one population but closed in the other, and then correlate this with RNA-

seq data to identify regions that are poised for transcription but not yet active. We 

will then use previously published gene expression datasets of mature PV and 

SST populations to see if any poised regions (e.g. closed in one population and 

open in the other but not transcribed) become active upon terminal 

differentiation. Follow-up analyses would show that poised regions identified on 

the basis of RNA-seq and ATAC-seq data are defined by the simultaneous 

presence of histone modifications associated with both gene activation and 

repression (e.g. H3K4me3 and H3K27me3, respectively)331. Meanwhile, the 

same regions of chromatin in the other cell population should be defined by the 
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presence of histone modifications associated with gene repression. Finally, gene 

and chromatin loci “hits” will be tested functionally in mESC differentiations. 

Candidate genes will be knocked down via RNAi or CRISPR-Cas9 mediated 

mechanisms to determine their influence on cell fate. Meanwhile, candidate 

genomic loci will be activated or repressed using CRISPR-Cas9 mediated gene 

activation and/or repression. 

4.3 Notch Inhibition to Enhance the Generation of SST-subtypes from 

Embryonic Stem Cells 

As mentioned earlier, a previous study from our lab used electroporation of a 

dominant-negative version of the Mastermind-like-1 protein (dnMAML) to block 

notch signaling within apical MGE progenitors and force them out of the cell-

cycle133. The result was a remarkable enhancement of SST-interneurongenesis 

at the expense of PV subtypes. In parallel with our current effort to enhance SVZ-

like neurogenesis in vitro via aPKC inhibition, we are using notch inhibition in our 

stem cell system to promote early cell cycle exit, and by extension, SST-fate 

specification. To do so, we are using the well-established γ-secretase inhibitor 

DAPT to block notch signaling in vitro332,333. Γ-secretase is required to cleave the 

notch intracellular domain (NICD), which translocates to the nucleus to activate 

notch effector genes. When γ-secretase is inhibited, NICD is prevented from 

entering the nucleus and notch signaling is effectively eliminated. We 

hypothesize that interneuron progenitors forced to undergo cell-cycle exit will 

preferentially produce SST-fated interneurons at the expense of PV subtypes 
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secondary to intermediate progenitor cell depletion. To this end, we added DAPT 

to our stem cell cultures from DD10-12 and then collected Lhx6:GFP+ and 

Lhx6:GFP::Nkx2.1:mCherry double-positive cells on DD12 for transplantation. Of 

note, time lapse video microscopy shows that GFP is expressed at cell cycle exit, 

when Nkx2.1 is downregulated in cortical interneurons, but that there is a brief 

window when mCherry perdures, enabling the isolation of newly born, post-

mitotic GFP+/mCherry+ cells269.  In agreement with our in vivo findings, we find 

that the addition of DAPT (10μM) to our mESC cultures from DD10-12 causes a 

~2 fold increase in the fraction of GFP+ and GFP+/mCherry+ cells together with a 

27% decrease in the fraction of mCherry-only expressing cells (Figure 4.1). 

These results are consistent with a dramatic increase in cell cycle exit. These 

experiments are currently ongoing. 
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4.4 Embryonic Stem Cell-Derived Interneuron Based Therapy for Epilepsy 

Now armed with the ability to generate enriched populations of PV expressing 

interneurons from mESCs, we are exploring the potential for using mESC derived 

cortical interneuron transplantation as a cell based therapy for Dravet syndrome. 

Dravet syndrome, also known as Severe Myoclonic Epilepsy of Infancy (SMEI), 

is a malignant seizure disorder in which affected children develop medication 

resistant seizures, developmental delay, and severe to profound intellectual 

impairment.  About 10-15% of children with Dravet syndrome will eventually die 

from status epilepticus or sudden unexpected death in epilepsy (SUDEP).  

Approximately 80% of SMEI cases are due to mutations in the gene SCN1A334. 

Importantly, several studies have shown that loss of SCN1A causes impaired 

action potential firing of inhibitory interneurons with little to no effect on the 

activity of excitatory neurons. This suggests that interneuron dysfunction, 

particularly of PV subtypes, is the cause of seizures in Dravet syndrome185,186.  

Based on these studies, we hypothesize that transplantation of mESC-derived 

PV interneuron precursors into neonatal cortex and hippocampus will mitigate the 

Figure 4.1. DAPT forces progenitors to exit the cell cycle. 

We added the notch inhibitor DAPT from differentiation days 10-12 during directed 

differentiations of our Nkx2.1:mCherry::Lhx6:GFP dual reporter mouse embryonic 

stem cell line and measured the percentage of mCherry+ (Nkx2.1+ progenitors), 

mCherry+/GFP+ (early post-mitotic precursors), and GFP+ (later post-mitotic 

precursors) cells via FACS. DAPT causes a ~ two-fold increase in the percentage of 

mCherry+/GFP+ and GFP+ cells and a corresponding ~25% reduction in the 

percentage of mCherry+ progenitors.  
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development of epilepsy in transgenic mice engineered to harbor a mutation in 

SCN1A (Scn1aRH) that is associated with cases of Dravet syndrome. 

Furthermore, we hypothesize that transplants enriched for PV interneurons will 

more efficiently modify epilepsy in Scn1aRH mouse pups than either mixed 

transplants or those enriched for SST-subtypes. To this end, we will perform 

stereotaxic injections into five sites bilaterally (frontal, parietal, and occipital 

neocortex, and dorsal and ventral hippocampus) at P0 and P1. We will inject four 

different treatment conditions: (1) PV-enriched interneuron cell transplants; (2) 

SST-enriched interneuron cell transplants; (3) freeze-killed interneuron cell 

transplants; and (4) untransplanted negative controls. Based on our previous 

studies, we anticipate that mESC-derived interneurons will occupy appropriate 

cell type-specific niches and integrate functionally into host cerebral cortical brain 

circuits, thereby augmenting cortical inhibition.  Approximately four weeks post-

transplantation, intracranial EEG electrodes will be surgically implanted into 

Scn1aRH mice and controls. In conjunction with video monitoring, EEG data from 

P28-P35 will be analyzed to determine whether interneuron cell transplants delay 

the onset, frequency, or duration of seizure activity in Scn1aRH mice, as well as 

quantify the rate of epilepsy-associated cell death. We are also developing 

several additional variants of our Nkx2.1:mCherry::Lhx6:GFP line that will enable 

us to pharmacologically or optogenetically control the activity of transplanted 

cells. By using the PiggyBac transposon system, we can insert stable transgenes 

into our dual reporter mESC line. We have begun generating a dual reporter line 
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that expresses the inhibitory DREADD (designer receptor exclusively activated 

by designer drugs;335,336), hM4DGi, which enables us to “turn off” transplanted 

interneurons in the intact animal en masse to allow for confirmation of continued 

presence of the cell graft as required for seizure suppression. We have also 

started the generation of another line engineered to express the red-shifted 

channelrhodopsin ChrimsonR337, which will allow “on-demand” recruitment of 

transplanted interneurons to terminate ongoing seizures in Scn1aRH mice using 

a closed-loop stimulation system coupled to a wireless EEG transmitter. To date, 

we have done two rounds of PV-enriched interneuron cell transplants into 

Scn1aRH mice and controls. For reasons that we do not fully understand, our 

first series of injections were largely unsuccessful in that we failed to achieve 

large numbers of cell engraftment in the cortex. We injected upwards of 400,000 

cells into each animal over the course of two days, and upon immunohistological 

examination of the transplanted tissue found fewer than 1000 cells within the 

cortex, with many cells engrafted into the amygdala and ventricular walls. 

Reasons for the poor outcome may be related to the number of cells we injected 

(too many cells may elicit an immunogenic response leading to decreased 

survival), the age of the cells we injected (cells taken from later stage cultures 

have reduced survival relative to progenitors isolated from early stage cultures), 

incorrect targeting (differences in cortical thickness between mouse strains may 

have caused our injections to enter the ventricles rather than the cortex), or the 

volume of solution that we injected. For our second experiment we injected at 
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only one time point (P1), bilaterally into the cortex with 100,000 cells per injection 

site. We are currently awaiting results from this experiment. If successful, this 

project will help us determine whether mESC-derived interneuron transplants 

have the potential to help human patients with SCN1A mutations. In addition, we 

will hopefully gain insight into whether PV-enriched, SST-enriched, or mixed cell 

transplants are more or less efficacious in mitigating seizure activity.  

4.5 Ongoing Studies and Future Directions for Understanding Zswim6 

Function 

The data presented in this thesis suggest that Zswim6 plays an important role in 

brain development and function. However, there are many questions that remain 

to be addressed. As a schizophrenia candidate gene, it is important to determine 

whether Zswim6 acts predominately during embryonic development to regulate 

the production of forebrain derivatives or during postnatal periods to regulate the 

function of MSN and their associated circuits (or both). Although schizophrenia 

typically manifests in the late teens and early 20’s, it is thought to have a strong 

developmental component that affects the formation of essential brain circuits. 

Zswim6 is expressed at high levels in the developing striatum and limbic regions, 

including the cortex. Postnatally, its expression becomes restricted to the 

striatum. Does Zswim6 function in progenitors to regulate the production of 

different neuronal subtypes? Or does it act as a transcriptional regulator in 

mature MSN to fine tune gene expression? The changes in morphology and 

spine density that we found on adult MSN and frontal cortex pyramidal neurons 
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begs the question as to whether those changes are also present during 

adolescence. If not, then this supports a predominantly later occurring phenotype 

that more closely mimics the biological changes that occur in the context of 

schizophrenia. We are currently measuring striatal volume and analyzing 

MSN/frontal cortex neuronal morphology on P21 mutants and controls. Another 

way we are addressing the time frame and neuronal circuits that Zswim6 

predominantly functions in is by breeding our Zswim6 conditional line to several 

cre-recombinase expressing lines. These include the DRD1-cre and A2a-cre 

lines, which perturb Zswim6 expression in direct and indirect pathway MSN, 

respectively.  These lines will not only enable us to determine whether loss of 

Zswim6 function in post-mitotic MSN is sufficient to recapitulate the behavioral 

changes found in our Zswim6 constitutive knockout, but which striatal 

subdomains are most important for Zswim6 function. Such an approach was 

recently used to understand the synaptic basis of repetitive behaviors observed 

in mice harboring mutations in the autism-associated gene neuroligin-3 (NL3)338. 

Despite NL3 being expressed throughout the brain, the authors showed that 

conditional loss of NL3 within D1-expressing MSN of the nucleus accumbens 

was sufficient to recapitulate the repetitive motor routines observed in NL3 

mutant mice. On the contrary, loss of NL3 within D2-expressing MSN was 

insufficient to induce the behavioral phenotype338. If we discover that loss of 

Zswim6 within either of these circuits is capable of recapitulating our behavioral 

phenotypes, then we can further dissect which striatal subdomains are involved 
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through the use of adenoviral injections that either rescue or knockdown Zswim6 

expression. For example, if we find that Zswim6 knockdown within D1-expressing 

MSN is capable of recapitulating our behavioral findings, then we can cross our 

Zswim6 constitutive knockout to the DRD1-cre line and inject an adenovirus that 

expresses Zswim6 in a cre-dependent fashion into different striatal subdomains 

to rescue the phenotype. Alternatively, we can inject a cre-recombinase 

expressing adenovirus into different striatal subdomains of Zswim6Fl/Fl mice to 

determine which regions are capable of recapitulating the phenotype. We have 

also started to breed our Zswim6 constitutive knockout to DRD1-tomato and 

DRD2-EGFP lines, which allow for the unambiguous identification of all major 

striatal cell types. We intend to use these lines to do whole cell voltage clamp 

recordings of MSN to explore how loss of Zswim6 function affects their excitatory 

and inhibitory synaptic parameters, as well as potential alterations in synaptic 

plasticity. Using these same lines, we can also FACS isolate mature DRD1- and 

DRD2-expressing MSN for gene profiling. If Zswim6 functions as a chromatin 

modifier, then we would expect to find changes in gene expression that correlate 

with changes in chromatin accessibility. Given that the striatum plays important 

roles in decision-making and reward processing, we hypothesize that loss of 

Zswim6 will cause additional phenotypes in the initiation or persistence of goal-

directed actions, which are particularly affected in schizophrenia339,340. To test 

this, Zswim6 mutant mice will be subjected to an operant choice paradigm that 

enables us to determine whether Zswim6 mutants exhibit deficits in their ability to 
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use reinforcing stimuli (e.g. rewards) to reliably reinforce future behavior.  In 

addition to behavioral experiments, it would be interesting to determine how 

Zswim6 functions on a biochemical level. To start, one might identify Zswim6 

binding partners using mass spectrometry. Previous studies have found that 

Zswim6 is expressed in HEK293 cells294,301. Thus, while its binding partners in 

HEK293 cells may differ from those in the brain, we can still learn a great deal 

about the type of complexes it is capable of forming. Ultimately, we eventually 

want to determine whether Zswim6 function in mice is similar to its function in 

human. To do so, one might use CRISPR-Cas9 to inactivate Zswim6 in human 

stem cells, then differentiate these cells into distinct neuronal subtypes, including 

MSN, for which there are established differentiation protocols341,342. 

At present, a shortcoming of this study is our inability to explain the reduction in 

MSN number that we observe in adult Zswim6 knockout mice.  Although we did 

not find a decrease in proliferation at E14.5, this was the only age we analyzed. 

Measuring proliferation at other time points may reveal a subtle proliferation 

defect. Along the same vein, we only looked for apoptosis at P0, P21, and in 

adult. It is possible that MSN undergo apoptosis during a very narrow time 

window that we have missed in our analysis. It will be important to quantify MSN 

number using the aforementioned cre-recombinase lines to determine whether 

loss of MSN is due to a lack of production, apoptosis, or a combination of the 

two, as well to determine whether the decreased number of MSN contributes 

significantly the phenotypes we observe.  
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Another potential shortcoming of this study is the possibility of inner ear defects 

in Zswim6 mutant mice, since inner ear dysfunction has been shown to cause 

hyperactivity by inducing specific molecular changes in the striatum343. However, 

it is unclear whether hyperactivity due to inner ear defects is secondary to 

hearing loss, vestibular dysfunction, or a combination of the two. Zswim6 mutant 

mice do not exhibit circling behavior, a hallmark of vestibular dysfunction, 

suggesting that if they have inner ear dysmorphogenesis, it primarily affects their 

hearing ability.  Zswim6 is expressed at low levels in many developing brain 

areas related to hearing, including the cochlear membrane, spiral ganglion cells, 

cochlear nucleus, thalamus, and auditory cortex (D.J. Epstein, V.E. Abraira, 

personal communication)293,325. Despite the widespread expression of Zswim6, 

its relative significance in these regions, if any, remains to be determined. For 

future studies, it will be important to determine whether Zswim6 mutant mice are 

indeed deaf. We will need to perform brainstem auditory evoked response testing 

(BAER) on a large (N=12-15) cohort of mice. In addition, we can also do BAER 

testing using various cre-recombinase expressing lines (e.g. nestin-cre) to 

perturb Zswim6 function in particular circuits. Such an analysis would help 

determine whether Zswim6 causes neural/sensorineural or conductive hearing 

loss, if at all.  
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CHAPTER 5 

Materials and Methods 

 

 

 

 

5.1 Materials and Methods for mESC Studies 

Mouse Embryonic Stem Cell Culture. 

Mouse ES cells (the JQ27 mESC-Nkx2.1::mCherry:Lhx6::GFP line) were grown 

on mouse embryonic fibroblasts (MEF CF-1 MITC7M, GSC-6101M, Global Stem) 

in standard mESC medium (knock-out DMEM (Invitrogen), 15% FBS (Invitrogen-

Thermo Fisher Scientific), supplemented with L-glutamine, MEM nonessential 

amino acids, β-mercaptoethanol, and LIF (1.4ul/mL [107 U/mL] ESG1107, 

Millipore).  To eliminate MEFs, mESCs were replated on a 0.1% gelatin coated 

plate for 1-2 days prior to differentiation. 

Telencephalic mESC Differentiation.   
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For neural induction, mESCs were harvested and floated on non-tissue culture 

treated plates in a 1:1 mixture of KSR (10828-028, Invitrogen) and N2 media 

(DMEM:F12, 11330, Invitrogen, with N2 07156, Stemgent) supplemented with 

LDN-193189 (250nM, 04-0074, Stemgent) and XAV939 (10μM 04-0046, 

Stemgent) as described previously (Maroof et al 2010 & Watanabe et al., 2005). 

At differentiation day 3 (DD3), embryoid bodies (EBs) were enzymatically 

dissociated using Accutase (A1110501, Invitrogen) and single cells were replated 

onto poly-L-Lysine (P6282, Sigma)- and laminin (L2020, Sigma)-coated plates at 

(37,500 cells/cm2) in the same media supplemented with Y-27632 (10nM, 1254, 

Tocris).  For the dorsal/ventral (D/V) patterning, cells were treated with KSR/N2 

media supplemented with FGF-2 (10 ng/ml, DD5–9, 233-FB, R&D Systems), 

IGF1 (20 ng/ml, day 5–9, 291-G1-200/CF, R&D Systems) from DD5 to DD8.  At 

DD8, cells were replated on PLL- and LN-coated plates at 200,000 cells/cm2 and 

treated with KSR/N2 media supplemented with SAG (30 nM, EMD Biosciences, 

Inc.) and protein kinase C ζ Inhibitor (PKCi) (2 µM, EMD Biosciences, Inc.).  Cells 

were cultured until DD11 and then processed for FACS or IHC. For DAPT 

experiments, DAPT was added to a final concentration of 10μM from DD10-12. 

Cells were then sorted on DD12 and transplanted. 

Cell Sorting.   

Samples at DD11 or later were treated with Accutase (Invitrogen) for 15 min, 

centrifuged at 900 rpm for 5 min, and resuspended in Hiberante E (Invitrogen) 

supplemented with B27, glutamax, and Y-27632 (10nM, 1254, Tocris).  After 
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filtration twice through a 40μm filter, samples were kept on ice until FACS (Aria II, 

BD Biosciences) and analyzed using FACS Diva software (Version 6.1.3).  

Cortical Transplantation.  

Transplantation of neural precursors into the somatosensory cortex of cooling-

anesthetized neonatal pups was conducted as described previously (Maroof et al 

2010 and Wonders et al., 2008).  After sorting for Nkx2.1::mCherry progenitors, 

cells were resuspended in neurobasal medium (NBM) supplemented with Y-

27632 (10 nM), glutamax, and B27 at 30,000 ~ 50,000 cells/µL.  About 6 µL of 

cell suspension medium was bilaterally injected into the somatosensory cortex at 

the following coordinates from bregma (2.0 mm anterior, 2.5 mm lateral, 1.0 mm 

deep), targeting cortical layers 3–6 of CD1 pups at P0-2.  Mice were perfused 

and analyzed 30 days post-transplant.  Care of animals was in accordance with 

institutional guidelines at The Children’s Hospital of Philadelphia.  

Immunohistochemistry.  

Samples were fixed in 4% paraformaldehyde in PBS and blocked in 5% BSA in 

0.1% PBST.  For antibodies requiring the use of antigen retrieval (mouse-

Nkx2.1), samples were pretreated with 1mM ETDA in PBS for 5 min at 65°C.  

After washing, samples were incubated in primary antibodies, followed by 

secondary antibodies with DAPI for nuclear staining. Primary antibodies used 

were chicken anti-GFP (Abcam, ab13970; 1:1000), rabbit-Nkx2.1 (1:1000, 

Abcam ab76013), mouse anti-Nkx2.1 (Abcam, ab76013; 1:200), rabbit anti-PV 
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(Swant, PV-25; 1:2000), rat anti-SST (Millipore, 14224; 1:200), rabbit anti-GABA 

(Sigma-Aldrich, A2052; 1:1000), rabbit anti-Sox6 (Abcam, ab30455; 1:2000), 

rabbit anti-cyclinD2 (Santa Cruz, M-20, 1:5000), rabbit anti-Ki-67 (Thermo, RB-

9043, 1:200), and rat anti-RFP antibody (Chromtek, 5F8; 1:400). Secondary 

antibodies were conjugated to Alexa fluorophores (488, 568 or 680, Invitrogen). 

EdU signals were detected with the Click-iT EdU Alexa Fluor 647 imaging kit 

(Invitrogen, Carlsbad, CA, USA). 

In Vivo Fate Quantification.  

30 days post-transplantation, mice were perfused and fixed with 4% 

paraformaldehyde in PBS.  Fixed brains were sectioned in the coronal plane at 

50μm on a vibrating microtome (Leica).  To identify the fate of the transplanted 

cells, sections including somatosensory cortex, rostral to the hippocampal 

commissure and caudal to the genu of the corpus collosum, were incubated with 

the aforementioned antibodies. Generally, 12-15 sections were evaluated per 

marker. Transplanted animals were excluded if there were fewer than 25 total 

GFP+ cells present, and only GFP+ cells engrafted in cortical layers 2-6 were 

included in fate analysis. Each condition was repeated on 4 separate occasions, 

with a minimum of two transplanted mice per condition. Therefore, a statistical n 

represents counts from multiple transplants of one differentiation experiment. 

Statistical significance was determined using a two-tailed Student’s t-test. 
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Live Imaging Analysis.  

At DD8, cells were replated on PLL- and LN-coated chamber slides (Nunc Lab-

Tek II Chambered Coverglass #1.5 Borosilicate) at a density of 200,000 

cells/cm2. Time-lapse images were acquired every 15 minutes over the course of 

48 hours with an Olympus Fluoview (FV10i) confocal microscope at 37°C, 5% 

CO2 at 10x magnification. T-stacks were compiled in ImageJ with GFP and 

mCherry channels pseudocolored green and red, respectively. Only cells that 

could be visualized throughout the entire imaging session were included in the 

daughter cell analysis. The percentage of daughter divisions was calculated as 

follows: % daughter division = # daughter divisions/(mCherry parent division + 

daughter division). At least 20 divisions were counted for each condition across 

five independent experiments. Statistical significance was determined using a 

two-tailed Student’s t-test. 

Cell Counting.  

For CD2, EdU, and Ki-67 co-expression analyses, multichannel stacks were 

generated in ImageJ. For each experiment, at least 500 clearly labeled Nkx2.1 or 

RFP cells were marked using the ImageJ cell counter plugin. After marking, 

these cells were examined for CD2, EdU, or Ki-67 co-expression by alternating 

between channels. Each condition was repeated on at least 3 separate 

occasions. Statistical significance was determined using a two-tailed Student’s t-

test. 
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5.2 Materials and Methods for Zswim5 and Zswim6 Studies 

 Mouse Lines 

This study was carried out in strict accordance with the recommendations in the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of 

Health. The protocol was approved by the Institutional Animal Care and Use 

Committee at The Children’s Hospital of Philadelphia (Protocol Number: 2012-4-

1004). ABR measurements were performed under anesthesia (ketamine 

(100mg/kg)/xylazine (10mg/kg) cocktail). Adult mice were euthanized by 

isoflurane overdose, followed by cervical dislocation. All efforts were made to 

minimize suffering. Behavioral experiments were performed during the first 3 

hours of the light phase (7:00-11:00am) and animals were allowed to acclimate 

to the procedure room for at least 15 minutes before beginning experiments. 

Primers used for genotyping animals and for generating in situ hybridization 

probes are summarized in (Table 5.1).  
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We worked with Ingenious Targeting Laboratories (Ronkonkoma, New York, 

USA) to make the Zswim5 and Zswim6 conditional knockouts.  For Zswim6, a 

13.75-kb Zswim6 genomic fragment was subcloned from a C57BL/6 BAC clone 

to construct the targeting vector using homologous recombination. A FRT-LoxP-

Neo-FRT-LoxP cassette was inserted downstream of exon 4 and the third single 

LoxP site was inserted upstream of exon 4. The region flanked by the second 

and third LoxP sites is approximately 569bp. Exon 4 encodes amino acids 337-

386 and its deletion causes an early stop. The short homology arm extends 

2.1kb to the 3’ end of the FRT-LoxP-Neo-FRT-LoxP cassette, whereas the long 

homology arm extends 5.1kb from the 5’ side of the third loxP site. The linearized 

Mouse lines Primer Name Sequence Floxed Allele WT Allele KO or Cre Allele Purpose

Zswim6 Z6-3G-FWD catggaagtacttgggtccga 893 716 ~300 Genotyping

Z6-3G-REV ttctccatgtgggaaaactagaaag 893 716 ~300 Genotyping

DelExonP1-F TGGCCATCAGCTTTGATCGT 328 no band Confirm KO

DelExonP1-R TCGTCAATACTAGCACCCGC 328 no band Confirm KO

3'UTR_ISH-F tacattacgcctttgcagtg 524 ISH

3'UTR_ISH-R ACATGAGTGAAGAAGTACAACC 524 ISH

Exon3-5_F GCAAGCCAGAGCAGGTCAAAC 478 ISH

Exon3-5_R TCATCCCAGAGCTGCCTATACTTG 478 ISH

Zswim5 Z5-2G-FWD atgccgtggaatgtagaacagat 1031 846 ~380 Genotyping

Z5-2G-REV ctgatttcgaggctgggctta 1031 846 ~380 Genotyping

DelExonP1-F CGGCTGTGGGAATAAGGACA 369 no band Confirm KO

DelExonP1-R CCCCCAATGATACCGAGACC 369 no band Confirm KO

3'UTR_ISH_F TCAGGACAAGGACTCTGAAAC 550 ISH

3'UTR_ISH_R ATCTTCAGGCCACAGTTTCTG 550 ISH

Exon2-4_F GAGCCAGCAGTGACTTACAAGG 504 ISH

Exon2-4_R cctggctccattagaatctctc 504 ISH

Exon5-8_F GGATGGAAACTATGGGCATGAG 484 ISH

Exon5-8_R CAAAGTGAGAAACAGGCAGCCAA 484 ISH

Nkx2.1-Cre P1 CCACAGGCACCCCACAAAAATG no band 666 Genotyping

P2 GCCTGGCGATCCCTGAACAT no band 666 Genotyping

KOMP-Zswim5 CSD-F tgtagaagatgctggatgaattgtgc ~420 ~270 Genotyping

Exon2REV GTTGATTTCTGAGTTGGAGGAC ~420 ~270 Genotyping

Lar3 cacaacgggttcttctgttaqgtcc ~420 ~270 Genotyping

Table 5.1. List of primers used in this study. 
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targeting vector was then electroporated into iTL BA1(C57BL/6X129/SvEv) 

hybrid embryonic stem cells.  

A 16.64kb genomic fragment of the Zswim5 gene was used to construct the 

targeting vector. A FRT-LoxP-Neo-FRT-LoxP cassette was inserted downstream 

of exon 3 and the third single LoxP site was inserted upstream of exon 3. The 

first and second LoxP sites thus flank a 620bp genomic region that includes exon 

3. Exon 3 encodes amino acids 321-370 and its deletion causes an early stop. 

The short homology arm extended 3.6kb to the first LoxP site and the long 

homology arm extended 6.4kb downstream of the LoxP-Neo-LoxP cassette.  

Targeted embryonic stem cells were microinjected into C57BL/6 blastocysts. 

Resulting chimeras with a high percentage agouti coat color were mated to 

C57BL/6 FLP mice to remove the Neo cassette. Heterozygous mice confirmed 

for somatic neo deletion were then bred to wild type C57 mice to remove the FLP 

transgene. To generate germline null alleles, Zswim5+/F and Zswim6+/F mice were 

bred to CMV-cre mice (The Jackson Laboratory Stock NO: 006054) to generate 

Zswim5+/- and Zswim6+/- animals.  

 Tissue Preparation for Immunohistochemistry 

Following euthanasia with isoflurane, mice were perfused with 4% 

paraformaldehyde (PFA) in PBS and post-fixed in 4% PFA overnight. Brains 

were then embedded in 4% low-melting-point agarose, cut in 50µm sections with 

a vibrating microtome (Leica), and stored in antifreeze solution (30% ethylene 
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glycol and 30% glycerol in 1x PBS) at -20̊C until processing. Embryonic samples 

for in situ RNA hybridization and immunohistochemistry were processed 

identically (see section Tissue Preparation for In Situ RNA Hybridization below) 

Immunohistochemistry 

Brain sections were pre-incubated for one hour in blocking buffer (5% bovine 

serum albumin with 0.1% Triton-X-100). Sections were then incubated overnight 

at 4̊C with the following primary antibodies: rabbit anti-PV (Swant, PV-25; 

1:2000), rat anti-SST (Millipore, 14224; 1:200), rat anti-CTIP2(Abcam, ab18465, 

1:500), goat anti-ChAT (Chemicon, ab144P, 1:200), rabbit anti-phospho-Histone 

H3 (Millipore, 06-570, 1:400), rabbit anti-cyclinD2 (Santa Cruz, M-20, 1:5000), 

rabbit anti-DARPP32 (Abcam, ab40801, 1:1000), mouse anti-TH (Millipore, 

MAB318, 1:200). Secondary antibodies were conjugated to Alexa fluorophores 

(488, 568 or 680, Invitrogen). DAPI (300nM) was applied concurrently with 

secondary antibodies to label cell nuclei. EdU signals were detected with the 

Click-iT EdU Alexa Fluor 647 imaging kit (Invitrogen, Carlsbad, CA, USA).  

 Cell Counting 

Stereological analysis for CTIP2 was conducted on a Nikon E600 microscope 

equipped with a motorized stage and Stereoinvestigator software 

(MicroBrightField). CTIP2 cell counts were obtained using the Optical 

Fractionator Probe and systematic random sampling at 40x magnification. 

Optical dissector frame and counting grid sizes of 60µm x 60µm and 700µm x 
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700µm, respectively, were used. Striatal contours were delineated as described 

by Franklin and Paxinos (2008). Starting from the genu of the corpus callosum, 

every 5th section was evaluated for a total of 6 sections.   

For PV, SST, and ChAT cell counts, 10x montages of entire brain sections were 

generated using Stereoinvestigator’s Virtual Tissue module. Starting from the 

genu of the corpus callosum, every 5th section was imaged for a total of 6 

sections. Images were opened using ImageJ and the striatum was delineated as 

described by Franklin and Paxinos (2008). Using the ImageJ cell counter plugin, 

striatal interneurons from each brain section were counted and then summated. 

Statistical significance was determined using a two-tailed Student’s t-test. 

For PH3 and EdU counts, image stacks were opened in ImageJ and three 

120µm x 120µm boxes were drawn beginning at the apical surface and 

extending outward from LGE along a line that was approximately equidistant 

from the pallial-subpallial angle and MGE-LGE sulcus (as shown in Figure 3.20). 

Volumetric Analyses and Surface Area 

Volumetric analyses were done using the Cavalieri estimator on 

Stereoinvestigator (MicroBrightField). We used a total of 11, 50µm thick sections 

in our analysis, where section 3 of 11 along the rostrocaudal axis corresponded 

to the first section in which the genu of the corpus callosum could be identified, 

and used every 5th section from that point. Cortical contours were drawn using 

the pial surface as the outside boundary and terminated laterally at a point that 
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was perpendicular to the midline. For surface area analyses, we took overhead 

images of adult brains using a dissection microscope fitted with a digital camera. 

Images were then opened in ImageJ and analyzed using the area measure tool. 

Statistical significance for volumetric and surface area analyses were determined 

using a two-tailed Student’s t-test. 

 Quantitative PCR (qPCR) Analysis 

Following euthanasia with isoflurane, Zswim6 mice were decapitated and their 

brains rapidly dissected. Brains were then sectioned at 400µm in ice cold PBS 

using a vibrating microtome. Dorsal striatum was carefully dissected and placed 

in TRIzol reagent (Invitrogen) for RNA extraction using the PureLink RNA Mini kit 

(Invitrogen). cDNA was synthesized using the VILO cDNA synthesis kit 

(Invitrogen). qPCR was conducted using Taqman Gene Expression Assays 

(Applied Biosystems). Each sample was run in triplicate, along with probes for 

GAPDH on the same plate, on a Stratagene MX3005P real-time PCR machine 

(La Jolla, CA) following the manufacturer’s recommended protocol. Data were 

analyzed using the comparative CT method. Statistical significance was 

determined using a two-tailed Student’s t-test. 

 Golgi-Cox Staining and Neuron Reconstruction 

Golgi-Cox staining was performed using the FD Rapid GolgiStain kit (FD 

NeuroTechnologies). Brains were incubated in a potassium dichromate solution 

for 2 weeks in the dark, then with silver nitrate for another two days before being 
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cut into 150µm sections with a vibrating microtome (Leica). Golgi staining was 

then performed on slides. Cell bodies and dendrites of striatal MSN and layer 3 

cortical pyramidal neurons from each group were traced and analyzed using 

Neurolucida (MicroBrightField). Only MSN within the dorsal striatum were traced. 

We delineated medial frontal cortex as the region bounded dorsolaterally by 

motor cortex extending along the midline from 2.65mm-2.09mm rostral to 

Bregma as defined in Franklin and Paxinos (2008). We considered somatomotor 

cortex to encompass a 500µm region on either side of the boundary between 

primary motor and somatosensory cortices extending from the genu of the 

corpus callosum to where the anterior commissure connects at the midline, using 

as reference Franklin and Paxinos (2008). Morphological differences were 

analyzed using a two-tailed Student’s t-test. For Sholl analyses, a two-way 

ANOVA was used to determine significance using Prism 5 (GraphPad).  

 Β-Galactosidase Staining 

Embryos were flash frozen in liquid nitrogen, sectioned at 12µm using a cryostat, 

and stored at -80̊C. On the day of staining, the sections were fixed for 5 minutes 

in 0.2% glutaraldehyde, 2% formalin, 5mM EGTA and 2mM MgCl2 in 0.1M 

phosphate buffer (pH 7.3) for 4 hours. They were then washed three times in 

rinse buffer (0.1% sodium deoxycholate, 0.2% IGEPAL, 2mM MgCl2 in 0.1M 

phosphate buffer (pH 7.3) and incubated in the dark at 37̊C in staining solution (1 

mg/ml Salmon gal (Lab Scientific) and 0.4 mM 5-bromo-4-chloro-3-indolyl 

phosphate (TNBT) in rinse solution). The reaction was monitored every 10 
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minutes to determine the onset of staining (approximately 1 hour) and then 

quenched using 4% PFA in 1x PBS for 10 minutes. 

Spine Density Analysis 

For spine quantification, dendrites were traced using Neurolucida 

(MicroBrightField) and divided into 10μm segments using a 100x oil-immersion 

objective. For each analysis, we counted spines from a minimum of 10 neurons 

from each animal. For MSN, we counted spine density at a distance of 60-150μm 

from the soma and analyzed a minimum of 40μm from each neuron; both primary 

and secondary dendrites were included. A total of 2400μm of dendrite were 

analyzed from each group and the reported average is the spine density for each 

group between 60-150μm. For layer 3 pyramidal neurons, spine quantification 

was done on the basilar dendrites at a distance of 10-110μm from the soma with 

a minimum of 50μm analyzed from each neuron. A total of 3000μm of dendrite 

was analyzed from each group. Statistical significance was determined using a 

one-tailed Student’s t-test, where each data point represented the average 

number of spines per 10μm for the dendritic range (e.g. 60-150μm for MSN) that 

we analyzed. 

 Tissue Preparation for In Situ RNA Hybridization 

For embryonic samples, embryos were fixed overnight at 4̊C in RNase-free 4% 

PFA in 1x PBS. Embryos were then washed two times in 1x PBS and 

cryoprotected by immersion through sucrose (15 and 30% sucrose in 1x PBS; 
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solutions were changed once embryos had sunk). Afterwards they were 

embedded in freezing compound and stored at -80̊C until sectioning. For adult 

samples, mice were perfused with 4% PFA in 1x PBS and post-fixed in 4% PFA 

overnight. Brains were then embedded in 4% low-melting-point agarose, cut in 

50µm sections with a vibrating microtome (Leica), and stored in antifreeze 

solution (30% ethylene glycol and 30% glycerol in 1x PBS) at -20̊C until 

processing. On the day of in situ hybridization, sections were mounted onto 

Superfrost Plus slides (Fisher Scientific, Pittsburgh, PA) and allowed to dry at 

room temperature for 2 hours before processing.  

In Situ RNA Hybridization 

We generated cDNA templates for riboprobe synthesis for Zswim5 and Zswim6 

by nested PCR incorporation of T7 and Sp6 RNA polymerase promoters using 

the primers listed in (Table 5.1). Template cDNA was obtained from E13.5 

mouse brain. cDNA plasmids for DRD1 and DRD2 were gifts from Kenneth 

Campbell. Following incubation in prehybridization buffer for 2 hours at 60̊C, 

sections were incubated with digoxigenin-labeled riboprobes for 16 hours at 58̊C. 

After rinsing, sections were incubated with an alkaline phosphatase conjugated 

sheep anti-digoxigenin antibody (Roche, 1:2000) in blocking buffer at 4̊C for 16 

hours and developed in nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl 

phosphate solution (7μl/ml in 10% polyvinyl alcohol; Roche) in the dark for 12-48 

hours. Fresh developing solution was exchanged every 24 hours. After 

developing, material was rinsed, and alkaline phosphatase activity was quenched 
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by fixation in 4% PFA containing 0.125% glutaraldehyde. Sections were then 

rinsed, cleared in 50% glycerol in 1x PBS, and mounted using aqueous mounting 

media.  

 Brainstem Auditory Evoked Response (BAER)Testing 

BAER testing was done in collaboration with Maria Geffen’s lab at the University 

of Pennsylvania as described in344. 

Rotarod 

For high speed rotarod performance testing a five-station Rotarod treadmill (IITC) 

was used. Rotarod testing consisted of three trials per day over the course of 4 

days. Days 1 and 2 consisted of 4-40rpm trials over a 300 second period with a 

constant rate of acceleration. Days 3 and 4 consisted of 8-80rpm trials over a 

300 second period. A trial was terminated when a mouse fell off, made one 

complete backward revolution while hanging on, or after 300 seconds (maximum 

speed, no further acceleration). On day 1, mice were allowed to acclimate to the 

rod for 1 minute before beginning the first trial. On each testing day, mice were 

left in the room for 15 minutes to acclimate before testing. The machine was 

wiped down with 70% ethanol in between each trial. Groups were compared 

using the Mann-Whitney U test.  

Open Field 

Locomotor activity was assessed with the automated Photobeam Activity System 
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(San Diego Instruments). After acclimating to the room for 15 minutes, mice were 

individually placed in a 16 x 16 inch arena outfitted with photocells to detect 

horizontal and rearing activities over the course of 10 minutes. The arena was 

cleaned with 70% ethanol in between trials. For amphetamine-sensitivity testing, 

mice were placed in the open field arena for 30 minutes before being injected 

with either a 2 mg/kg D-amphetamine hemisulfate salt (Sigma) solution prepared 

in isotonic saline at a concentration of 0.2 mg/ml or isotonic saline as control. 

Immediately after injection, mice were placed back into the arena for an 

additional 1 hour. For the 10 min open field sessions, both groups were 

compared using a one-tailed Student’s t test (paired). For the amphetamine-

sensitivity testing, the effect of amphetamine on ambulation was determined 

using a two-way mixed regression analysis performed in Stata. 

 Elevated Zero Maze 

Mice were individually placed on a 2.5 inch wide circular track with an external 

diameter of 20 inches, raised 24 inches above the floor (San Diego Instruments). 

The track had two open and two walled quadrants of equal dimensions. Mice 

were placed in the center of a closed quadrant to begin a 5 min trial. A highly 

trained scorer, blind to group designation, graded the digitally recorded trials for 

time spent in the open quadrants. Mice were scored as within a segment when 

all four paws were within that segment. Transitions between quadrants were also 

noted as a measure of general locomotor activity. Groups were compared using 

a two-tailed Student’s t test (paired). 
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Force Plate Actometer 

Force-plate actometer assays345,346 were performed using standard approaches. 

Each trial was 45 minutes in length. 

Co-immunoprecipitation and Western Blot 

The coding sequence for Brg1 was subcloned from pMX-Brg1 (Addgene plasmid 

#25855) into a plasmid containing 3 sequential HA tags (Addgene plasmid 

#12555). Zswim6 was cloned from cDNA obtained from E13.5 embryonic brain 

and subcloned into a Myc-tag containing plasmid (Addgene plasmid #19400). 

Both plasmids were transfected into HEK293 cells using Lipofectamine 2000 

(Invitrogen). 48 hours post-transfection, cells were lysed in a low-stringency 

buffer (50mM NaCl, 1mM MgCl2) on ice for 20 min, followed by 4 seconds of 

low-power sonication, and then centrifuged for 5 min at max speed at 4̊C. 

Supernatants were then incubated with either anti-HA (Thermo Cat #88836) or 

anti-Myc magnetic beads (Thermo Cat #88844) for 100 minutes at room 

temperature. Beads were then washed two times with lysis buffer followed by 

one wash with ddH20. Bound proteins were eluted by heating the beads to 95̊C 

in sample loading buffer containing DTT. The control indicates co-

immunoprecipitation with nonreactive, non-antibody tagged magnetic beads 

(Thermo Cat #88826). Samples were then run on 4-12% BoltTM Bis-Tris gels 

using the BoltTM Mini Gel Tank and transferred onto nitrocellulose membranes 

using the iBlot Transfer System.  After transfer, blots were allowed to dry for one 



 
 

151 
 

hour before rehydration in 1x TBS. Blots were incubated in Odyssey Blocking 

Buffer in TBS for 1 hour then incubated overnight at 4̊C with anti-Myc (Thermo, 

MA1-980, 1:1000) or anti-HA (Cell Signaling, #3724, 1:1000) antibodies. The 

next day, blots were washed 3 times for 10 minutes in TBS with 0.1% Tween-20 

and then incubated with IRDye 800CW secondary antibodies (1:10,000). Blots 

were washed 3 times for 10 minutes in TBS with 0.1% Tween-20 and then 

imaged using the Li-COR imaging system. 

Nuclear-Cytoplasmic Fractionation 

Recombinant myc-Zswim5 was expressed in HEK293 cells using Lipofectamine 

2000 (Invitrogen). 48 hours post-transfection, HEK293 cells were collected for 

nuclear-cytoplasmic fractionation using the NE-PER Nuclear and Cytoplasmic 

Extraction Kit (ThermoFisher). Equal amounts of nuclear and cytoplasmic 

fractions were then run on western blot using the aforementioned protocol. 
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