685 research outputs found

    Management recommendations for pancreatic manifestations of von Hippel–Lindau disease

    Get PDF
    Von Hippel–Lindau disease (VHL) is a multineoplasm inherited disease manifesting with hemangioblastoma of the central nervous system and retina, adrenal pheochromocytoma, renal cell carcinoma, pancreatic neuroendocrine tumors and cysts, and neoplasms/cysts of the ear, broad ligament, and testicles. During 2018-2020, the VHL Alliance gathered several committees of experts in the various clinical manifestations of VHL to review the literature, gather the available evidence on VHL, and develop recommendations for patient management. The current report details the results of the discussion of a group of experts in the pancreatic manifestations of VHL along with their proposed recommendations for the clinical surveillance and management of patients with VHL. The recommendations subcommittee performed a comprehensive systematic review of the literature and conducted panel discussions to reach the current recommendations. The level of evidence was defined according to the Shekelle variation of the Grading of Recommendations, Assessment, Development, and Evaluation grading system. The National Comprehensive Cancer Network Categories of Evidence and Consensus defined the committee members' interpretation of the evidence and degree of consensus. The recommendations encompass the main aspects of VHL-related pancreatic manifestations and their clinical management. They are presented in a clinical orientation, including general planning of screening and surveillance for pancreatic neuroendocrine tumors, utility of biochemical biomarkers, the optimal choice for imaging modality, indirect risk stratification, indications for tissue sampling of VHL-related pancreatic neuroendocrine tumors, and interventions. These recommendations are designed to serve as the reference for all aspects of the screening, surveillance, and management of VHL-related pancreatic manifestations

    Development of intuitive rules: Evaluating the application of the dual-system framework to understanding children's intuitive reasoning

    Get PDF
    This is an author-created version of this article. The original source of publication is Psychon Bull Rev. 2006 Dec;13(6):935-53 The final publication is available at www.springerlink.com Published version: http://dx.doi.org/10.3758/BF0321390

    The second-generation antipsychotic drug aripiprazole modulates the serotonergic system in pancreatic islets and induces beta cell dysfunction in female mice

    Get PDF
    [Aims/hypothesis]: Second-generation antipsychotic (SGA) drugs have been associated with the development of type 2 diabetes and the metabolic syndrome in patients with schizophrenia. In this study, we aimed to investigate the effects of two different SGA drugs, olanzapine and aripiprazole, on metabolic state and islet function and plasticity. [Methods]: We analysed the functional adaptation of beta cells in 12-week-old B6;129 female mice fed an olanzapine- or aripiprazole-supplemented diet (5.5–6.0 mg kgβˆ’1 dayβˆ’1) for 6 months. Glucose and insulin tolerance tests, in vivo glucose-stimulated insulin secretion and indirect calorimetry were performed at the end of the study. The effects of SGAs on beta cell plasticity and islet serotonin levels were assessed by transcriptomic analysis and immunofluorescence. Insulin secretion was assessed by static incubations and Ca2+ fluxes by imaging techniques. [Results]: Treatment of female mice with olanzapine or aripiprazole for 6 months induced weight gain (p<0.01 and p<0.05, respectively), glucose intolerance (p<0.01) and impaired insulin secretion (p<0.05) vs mice fed a control chow diet. Aripiprazole, but not olanzapine, induced serotonin production in beta cells vs controls, likely by increasing tryptophan hydroxylase 1 (TPH1) expression, and inhibited Ca2+ flux. Of note, aripiprazole increased beta cell size (p<0.05) and mass (p<0.01) vs mice fed a control chow diet, along with activation of mechanistic target of rapamycin complex 1 (mTORC1)/S6 signalling, without preventing beta cell dysfunction. [Conclusions/interpretation]: Both SGAs induced weight gain and beta cell dysfunction, leading to glucose intolerance; however, aripiprazole had a more potent effect in terms of metabolic alterations, which was likely a result of its ability to modulate the serotonergic system. The deleterious metabolic effects of SGAs on islet function should be considered while treating patients as these drugs may increase the risk for development of the metabolic syndrome and diabetes.This work was funded by H2020 Marie Sklodowska-Curie ITN-TREATMENT (Grant Agreement 721236, European Commission). We also acknowledge grants RTI2018-094052-B-100/ AEI/10.13039/501100011033 (Ministerio de Ciencia e InnovaciΓ³n y Fondo Europeo de Desarrollo Regional [FEDER]) and S2017/BMD-3684 (Comunidad de Madrid, Spain), and grants from FundaciΓ³n RamΓ³n Areces (Spain) and CIBERDEM (ISCIII, Spain)

    Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma

    Get PDF
    Human cancers are complex ecosystems composed of cells with distinct phenotypes, genotypes, and epigenetic states, but current models do not adequately reflect tumor composition in patients. We used single-cell RNA sequencing (RNA-seq) to profile 430 cells from five primary glioblastomas, which we found to be inherently variable in their expression of diverse transcriptional programs related to oncogenic signaling, proliferation, complement/immune response, and hypoxia. We also observed a continuum of stemness-related expression states that enabled us to identify putative regulators of stemness in vivo. Finally, we show that established glioblastoma subtype classifiers are variably expressed across individual cells within a tumor and demonstrate the potential prognostic implications of such intratumoral heterogeneity. Thus, we reveal previously unappreciated heterogeneity in diverse regulatory programs central to glioblastoma biology, prognosis, and therapy.National Institutes of Health (U.S.) (U24 CA180922

    Nonspecific Protein-DNA Binding Is Widespread in the Yeast Genome

    Get PDF
    Recent genome-wide measurements of binding preferences of ~200 transcription regulators in the vicinity of transcription start sites in yeast, have provided a unique insight into the cis- regulatory code of a eukaryotic genome (Venters et al., Mol. Cell 41, 480 (2011)). Here, we show that nonspecific transcription factor (TF)-DNA binding significantly influences binding preferences of the majority of transcription regulators in promoter regions of the yeast genome. We show that promoters of SAGA-dominated and TFIID-dominated genes can be statistically distinguished based on the landscape of nonspecific protein-DNA binding free energy. In particular, we predict that promoters of SAGA-dominated genes possess wider regions of reduced free energy compared to promoters of TFIID-dominated genes. We also show that specific and nonspecific TF-DNA binding are functionally linked and cooperatively influence gene expression in yeast. Our results suggest that nonspecific TF-DNA binding is intrinsically encoded into the yeast genome, and it may play a more important role in transcriptional regulation than previously thought

    Evolution of a Membrane Protein Regulon in Saccharomyces

    Get PDF
    Expression variation is widespread between species. The ability to distinguish regulatory change driven by natural selection from the consequences of neutral drift remains a major challenge in comparative genomics. In this work, we used observations of mRNA expression and promoter sequence to analyze signatures of selection on groups of functionally related genes in Saccharomycete yeasts. In a survey of gene regulons with expression divergence between Saccharomyces cerevisiae and S. paradoxus, we found that most were subject to variation in trans-regulatory factors that provided no evidence against a neutral model. However, we identified one regulon of membrane protein genes controlled by unlinked cis- and trans-acting determinants with coherent effects on gene expression, consistent with a history of directional, nonneutral evolution. For this membrane protein group, S. paradoxus alleles at regulatory loci were associated with elevated expression and altered stress responsiveness relative to other yeasts. In a phylogenetic comparison of promoter sequences of the membrane protein genes between species, the S. paradoxus lineage was distinguished by a short branch length, indicative of strong selective constraint. Likewise, sequence variants within the S. paradoxus population, but not across strains of other yeasts, were skewed toward low frequencies in promoters of genes in the membrane protein regulon, again reflecting strong purifying selection. Our results support a model in which a distinct expression program for the membrane protein genes in S. paradoxus has been preferentially maintained by negative selection as the result of an increased importance to organismal fitness. These findings illustrate the power of integrating expression- and sequence-based tests of natural selection in the study of evolutionary forces that underlie regulatory change

    Gene Expression Divergence is Coupled to Evolution of DNA Structure in Coding Regions

    Get PDF
    Sequence changes in coding region and regulatory region of the gene itself (cis) determine most of gene expression divergence between closely related species. But gene expression divergence between yeast species is not correlated with evolution of primary nucleotide sequence. This indicates that other factors in cis direct gene expression divergence. Here, we studied the contribution of DNA three-dimensional structural evolution as cis to gene expression divergence. We found that the evolution of DNA structure in coding regions and gene expression divergence are correlated in yeast. Similar result was also observed between Drosophila species. DNA structure is associated with the binding of chromatin remodelers and histone modifiers to DNA sequences in coding regions, which influence RNA polymerase II occupancy that controls gene expression level. We also found that genes with similar DNA structures are involved in the same biological process and function. These results reveal the previously unappreciated roles of DNA structure as cis-effects in gene expression

    Global Mapping of DNA Conformational Flexibility on Saccharomyces cerevisiae

    Get PDF
    In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3’UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3’-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a strategy for its characterization inside human fragile sites

    Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast

    Get PDF
    Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD

    Enhanced Transferrin Receptor Expression by Proinflammatory Cytokines in Enterocytes as a Means for Local Delivery of Drugs to Inflamed Gut Mucosa

    Get PDF
    Therapeutic intervention in inflammatory bowel diseases (IBDs) is often associated with adverse effects related to drug distribution into non-diseased tissues, a situation which attracts a rational design of a targeted treatment confined to the inflamed mucosa. Upon activation of immune cells, transferrin receptor (TfR) expression increases at their surface. Because TfR is expressed in all cell types we hypothesized that its cell surface levels are regulated also in enterocytes. We, therefore, compared TfR expression in healthy and inflamed human colonic mucosa, as well as healthy and inflamed colonic mucosa of the DNBS-induced rat model. TfR expression was elevated in the colonic mucosa of IBD patients in both the basolateral and apical membranes of the enterocytes. Increased TfR expression was also observed in colonocytes of the induced colitis rats. To explore the underlying mechanism CaCo-2 cells were treated with various proinflammatory cytokines, which increased both TfR expression and transferrin cellular uptake in a mechanism that did not involve hyper proliferation. These findings were then exploited for the design of targetable carrier towards inflamed regions of the colon. Anti-TfR antibodies were conjugated to nano-liposomes. As expected, iron-starved Caco-2 cells internalized anti-TfR immunoliposomes better than controls. Ex vivo binding studies to inflamed mucosa showed that the anti-TfR immunoliposomes accumulated significantly better in the mucosa of DNBS-induced rats than the accumulation of non-specific immunoliposomes. It is concluded that targeting mucosal inflammation can be accomplished by nano-liposomes decorated with anti-TfR due to inflammation-dependent, apical, elevated expression of the receptor
    • …
    corecore