24 research outputs found

    MOND and the Galaxies

    Full text link
    We review galaxy formation and dynamics under the MOND hypothesis of modified gravity, and compare to similar galaxies in Newtonian dynamics with dark matter. The aim is to find peculiar predictions both to discriminate between various hypotheses, and to make the theory progress through different constraints, touching the interpolation function, or the fundamental acceleration scale. Galaxy instabilities, forming bars and bulges at longer term, evolve differently in the various theories, and help to bring constraints, together with the observations of bar frequency. Dynamical friction and the predicted merger rate could be a sensitive test of theories. The different scenarios of galaxy formation are compared within the various theories and observations.Comment: 8 pages, 7 figures, Invited paper to "The Invisible Universe International Conference", ed. J-M. Alimi, A. Fuzfa, P-S. Corasaniti, AIP pu

    Polar ring galaxies as tests of gravity

    Get PDF
    Polar ring galaxies are ideal objects with which to study the three-dimensional shapes of galactic gravitational potentials since two rotation curves can be measured in two perpendicular planes. Observational studies have uncovered systematically larger rotation velocities in the extended polar rings than in the associated host galaxies. In the dark matter context, this can only be explained through dark halos that are systematically flattened along the polar rings. Here, we point out that these objects can also be used as very effective tests of gravity theories, such as those based on Milgromian dynamics (MOND). We run a set of polar ring models using both Milgromian and Newtonian dynamics to predict the expected shapes of the rotation curves in both planes, varying the total mass of the system, the mass of the ring with respect to the host, as well as the size of the hole at the center of the ring. We find that Milgromian dynamics not only naturally leads to rotation velocities being typically higher in the extended polar rings than in the hosts, as would be the case in Newtonian dynamics without dark matter, but that it also gets the shape and amplitude of velocities correct. Milgromian dynamics thus adequately explains this particular property of polar ring galaxies.Comment: 9 pages, 8 Figures, 1 Table, Accepted for publication by MNRA

    Evolution of spiral galaxies in modified gravity: II- Gas dynamics

    Get PDF
    The stability of spiral galaxies is compared in modified Newtonian Dynamics (MOND) and Newtonian dynamics with dark matter (DM). We extend our previous simulations that involved pure stellar discs without gas, to deal with the effects of gas dissipation and star formation. We also vary the interpolating function between the MOND and Newtonian regime. Bar formation is compared in both dynamics, from initial conditions identical in visible component. One first result is that the MOND galaxy evolution is not affected by the choice of the mu-function, it develops bars with the same frequency and strength. The choice of the mu-function significantly changes the equivalent DM models, in changing the dark matter to visible mass ratio and, therefore, changing the stability. The introduction of gas shortens the timescale for bar formation in the DM model, but is not significantly shortened in the MOND model. As a consequence, with gas, the MOND and DM bar frequency histograms are now more similar than without gas. The thickening of the plane occurs through vertical resonance with the bar and peanut formation, and even more quickly with gas. Since the mass gets more concentrated with gas, the radius of the peanut is smaller, and the appearance of the pseudo-bulge is more boxy. The bar strength difference is moderated by saturation, and feedback effects, like the bar weakening or destruction by gas inflow due to gravity torques. Averaged over a series of models representing the Hubble sequence, the MOND models have still more bars, and stronger bars, than the equivalent DM models, better fitting the observations. Gas inflows driven by bars produce accumulations at Lindblad resonances, and MOND models can reproduce observed morphologies quite well, as was found before in the Newtonian dynamics.Comment: 9 pages, 11 figures, accepted in A&

    Loss of mass and stability of galaxies in MOND

    Full text link
    The self-binding energy and stability of a galaxy in MOND-based gravity are curiously decreasing functions of its center of mass acceleration towards neighbouring mass concentrations. A tentative indication of this breaking of the Strong Equivalence Principle in field galaxies is the RAVE-observed escape speed in the Milky Way. Another consequence is that satellites of field galaxies will move on nearly Keplerian orbits at large radii (100 - 500 kpc), with a declining speed below the asymptotically constant naive MOND prediction. But consequences of an environment-sensitive gravity are even more severe in clusters, where member galaxies accelerate fast: no more Dark-Halo-like potential is present to support galaxies, meaning that extended axisymmetric disks of gas and stars are likely unstable. These predicted reappearance of asymptotic Keplerian velocity curves and disappearance of "stereotypic galaxies" in clusters are falsifiable with targeted surveys.Comment: 4 pages, 2 figures, ApJ Letter

    Tidal dwarf galaxies as a test of fundamental physics

    Full text link
    Within the cold dark matter (CDM) framework tidal dwarf galaxies (TDGs) cannot contain dark matter, so the recent results by Bournaud et al. (2007) that 3 rotating TDGs do show significant evidence for being dark matter dominated is inconsistent with the current concordance cosmological theory unless yet another dark matter component is postulated. We confirm that the TDG rotation curves are consistent with Newtonian dynamics only if either an additional dark matter component is postulated, or if all 3 TDGs happen to be viewed nearly edge-on, which is unlikely given the geometry of the tidal debris. We also find that the observed rotation curves are very naturally explained without any free parameters within the modified Newtonian dynamics (MOND) framework if inclinations are adopted as derived by Bournaud et al. We explore different inclination angles and two different assumptions about the external field effect. The results do not change significantly, and we conclude therefore that Newtonian dynamics has severe problems while MOND does exceedingly well in explaining the observed rotation curves of the 3 TDGs studied by Bournaud et al.Comment: Accepted for publication in A&A Letters, 5 pages, 3 figure

    MOND and the dark baryons

    Full text link
    We consider for the first time the implications on the modified gravity MOND model of galaxies, of the presence of dark baryons, under the form of cold molecular gas in galaxy discs. We show that MOND models of rotation curves are still valid and universal, but the critical acceleration a0 separating the Newtonian and MONDian regimes has a lower value. We quantify this modification, as a function of the scale factor c between the total gas of the galaxy and the measured atomic gas. The main analysis concerns 43 resolved rotation curves and allows us to find the best pair (a0 = 0.96 10e-10 m.s-2, c = 3), which is also compatible to the one obtained from a second method by minimizing the scatter in the baryonic Tully-Fisher relation.Comment: 11 pages, 8 figures, accepted in A&

    Tides in colliding galaxies

    Full text link
    Long tails and streams of stars are the most noticeable upshots of galaxy collisions. Their origin as gravitational, tidal, disturbances has however been recognized only less than fifty years ago and more than ten years after their first observations. This Review describes how the idea of galactic tides emerged, in particular thanks to the advances in numerical simulations, from the first ones that included tens of particles to the most sophisticated ones with tens of millions of them and state-of-the-art hydrodynamical prescriptions. Theoretical aspects pertaining to the formation of tidal tails are then presented. The third part of the review turns to observations and underlines the need for collecting deep multi-wavelength data to tackle the variety of physical processes exhibited by collisional debris. Tidal tails are not just stellar structures, but turn out to contain all the components usually found in galactic disks, in particular atomic / molecular gas and dust. They host star-forming complexes and are able to form star-clusters or even second-generation dwarf galaxies. The final part of the review discusses what tidal tails can tell us (or not) about the structure and content of present-day galaxies, including their dark components, and explains how tidal tails may be used to probe the past evolution of galaxies and their mass assembly history. On-going deep wide-field surveys disclose many new low-surface brightness structures in the nearby Universe, offering great opportunities for attempting galactic archeology with tidal tails.Comment: 46 pages, 13 figures, Review to be published in "Tidal effects in Astronomy and Astrophysics", Lecture Notes in Physics. Comments are most welcom

    Evolution of Spiral Galaxies in Modified Gravity

    No full text
    corecore