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1 INTRODUCTION

ABSTRACT

Polar ring galaxies are ideal objects with which to study the three-dimensional shapes of
galactic gravitational potentials since two rotation curves can be measured in two perpendicular
planes. Observational studies have uncovered systematically larger rotation velocities in the
extended polar rings than in the associated host galaxies. In the dark matter context, this can
only be explained through dark haloes that are systematically flattened along the polar rings.
Here, we point out that these objects can also be used as very effective tests of gravity theories,
such as those based on Milgromian dynamics (also known as Modified Newtonian Dynamics
or MOND). We run a set of polar ring models using both Milgromian and Newtonian dynamics
to predict the expected shapes of the rotation curves in both planes, varying the total mass of
the system, the mass of the ring with respect to the host and the size of the hole at the centre
of the ring. We find that Milgromian dynamics not only naturally leads to rotation velocities
being typically higher in the extended polar rings than in the hosts, as would be the case in
Newtonian dynamics without dark matter, but that it also gets the shape and amplitude of
velocities correct. Milgromian dynamics thus adequately explains this particular property of
polar ring galaxies.

Key words: gravitation— galaxies: general —galaxies: individual: NGC 4650A — galaxies:
kinematics and dynamics — dark matter.

(Disney et al. 2008; Kroupa et al. 2010; Peebles & Nusser 2010;
Kroupa 2012; Kroupa, Pawlowski & Milgrom 2012). For instance,

Assuming General Relativity to be the correct description of grav-
ity at all scales, data ranging from the largest scales (e.g. the
cosmic microwave background) to galactic scales can be inter-
preted as a Universe dominated by dark energy and dark matter.
The nature of these is among the most challenging problems of
modern physics. While dark energy is generally assumed to be a
non-vanishing vacuum energy represented by a cosmological con-
stant A in Einstein’s equations, the currently most favoured dark
matter candidates are neutral fermionic particles, which condensed
from the thermal bath of the early Universe (Bertone, Hooper &
Silk 2005; Strigari 2012), known as ‘cold dark matter’ (CDM)
particles.

On galaxy scales, predictions of this concordance cosmolog-
ical model (ACDM) are difficult to reconcile with observations

* E-mail: fabian @astro.uni-bonn.de

many observed scaling relations (see Famaey & McGaugh 2012
for a review) involve the universal appearance of an acceleration
constant ag ~ A2 2~ 1079 ms2 ~ 3.6 pc Myr~2, whose origin is
unknown in the standard context. For instance, this constant de-
fines the zero-point of the Tully—Fisher relation, the transition of
the acceleration at which the mass discrepancy between baryonic
and dynamical mass appears in the standard picture and the transi-
tion of the central acceleration between dark-matter-dominated and
baryon-dominated galaxies (within Newtonian gravity), and it also
defines a critical mean surface density for disc stability (Famaey
& McGaugh 2012). These independent occurrences of g are not
at all understood in the standard context, whereas, surprisingly,
all these relations can be summarized by the empirical formula of
Milgrom (1983). For this formula to fit galaxy rotation curves, the
above-quoted value of a( can vary only between 0.9 and 1.5 x
10~ ms~2, but once a value is chosen, all galaxy rotation curves
must be fitted with a single value (Gentile, Famaey & de Blok 2011).
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We choose here the median value ay = 1.2 x 107'ms~2, as per
Gentile et al. (2011).

The success of Milgrom’s empirical formula lends weight to the
idea that the gravitational field in galaxies can be described by Mil-
gromian dynamics (also known as Modified Newtonian Dynamics
or MOND). Milgromian dynamics naturally explains the intimate
relation between the distribution of baryons and the gravitational
field in galaxies, and explains all the aforementioned occurrences
of g in galactic dynamics without any fine-tuning. Given the pre-
dictive nature of Milgromian dynamics on galaxy scales, it is of
great interest to test whether the formula can explain all probes of
galactic gravitational potentials, beyond spherical and axisymmetric
systems where it has mostly been tested up to now.

Polar ring galaxies (PRGs) are non-axisymmetric systems fea-
turing an outer ring of stars and gas rotating over the poles. The
host galaxy is usually characterized by a compact bulge and a
small bright gas-poor disc, while the gas-rich polar structure has
photometric properties roughly similar to those of gas-rich spirals
(e.g. Whitmore et al. 1990). The observer can typically measure
two perpendicular rotation curves (Schweizer, Whitmore & Rubin
1983; Sackett & Sparke 1990; Reshetnikov & Combes 1994; Sack-
ett et al. 1994; Combes & Arnaboldi 1996; Iodice et al. 2003, 2006;
Iodice 2010), one in the host, often by deriving an asymmetric-drift-
corrected rotation curve from the observed stellar kinematics (see,
e.g., Combes & Arnaboldi 1996), and one in the polar ring (PR),
by directly measuring the velocity of the H 1 gas. This makes PRGs
ideal test objects for gravity theories because any given theory of
gravity then has to explain two rotation curves in two perpendicular
planes, both derived from the same baryonic mass density distribu-
tion. Interestingly, observational studies (Iodice et al. 2003; Moiseev
et al. 2011) consistently show rotational velocities in the PRs to be
systematically larger than in the hosts. These observations may only
be explained in the standard context by dark haloes systematically
flattened along the PRs (see Iodice et al. 2003). In any case, given
these specific observational properties of PRGs, it is of great in-
terest to investigate whether the general predictions of Milgromian
dynamics for such objects would conform with these observational
properties, namely whether larger velocities in the extended PRs
than in the hosts are a generic prediction of Milgromian dynamics,
by exploring a wide range of baryonic mass distributions.

In Section 2, we recall the basics of Milgromian dynamics and
the specific quasi-linear formulation we are dealing with. We then
present a grid-based prescription to solve the modified Poisson
equation (Section 3) and an iterative method to find rotation curves
of non-circular orbits (Section 4), and apply it to a set of models in
Section 5. Results are presented and discussed in Section 6 and we
conclude in Section 7.

2 MILGROMIAN DYNAMICS

In recent years, a plethora of generally covariant modified gravity
theories have been developed, yielding a Milgromian behaviour in
the weak-field limit (Famaey & McGaugh 2012). One such a re-
cent formulation (Milgrom 2009) has a non-relativistic quasi-static
weak-field limit, for a specific given set of parameters, yielding the
following Poisson equation:

V2 =4nGp, + V - [v (V| /ag) Vo], ey

where @ is the total (Milgromian) potential, pp, is the baryonic
density, ¢ is the Newtonian potential such that V¢ = 471G py,, and
v(x) — 0 for x > 1 and v(x) — x~'/? for x < 1. One family
of functions that fulfil the definition of v(x) (see, e.g., Famaey &
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McGaugh 2012) is
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Hereafter, when not stated otherwise, we use n = 1, a function
which is known to reproduce well the rotation curves of most spiral
galaxies' (Gentile et al. 2011).

This means that the total gravitational potential ® = ¢ + ®y
can be divided into a classical (Newtonian) part, ¢, and a Milgro-
mian part, ®,,. The matter density distribution oy, that would, in
Newtonian gravity, yield the additional potential &, and therefore
obeys Vv? ®,n = 471G ppp, is known in the Milgromian context as the
‘phantom dark matter’ (PDM)? density,

V- (V¢l/ag) Vo]
P = 4G ’

This is the density of dark matter that would boost the Newtonian
gravitational field to give precisely the same effect as the boost of
gravity predicted by Milgromian dynamics. For a disc galaxy, it
will typically resemble a round isothermal halo at large radii, but
exhibits an additional disc of PDM aligned with the baryonic disc
(but with a different scalelength and scaleheight), most prominent
at smaller radii (Milgrom 2001). At each spatial point, p,, is a non-
linear function of the Newtonian potential. As the non-linearity of
equation (1) is only present on the right-hand side of the equation,
it is called the quasi-linear version of MOND (Milgrom 2010),
whereas in older versions of Milgromian dynamics theories the
Laplacian operator on the left-hand side was replaced by a non-
linear one (Bekenstein & Milgrom 1984). In the next section, we
present a grid-based prescription to calculate the PDM density. We
will then be able to compute the rotation curves from the velocity
of the closed orbits crossing the planes of symmetry of the non-
axisymmetric system (i.e. the plane of the host galaxy and of the
PR).

3

3 GRID-BASED CALCULATION OF THE PDM
DENSITY

The PDM density that would source the Milgromian force field
in Newtonian gravity is defined by equation (3) and can be calcu-
lated from the known classical (Newtonian) potential ¢. To evaluate
this term, we devise a numerical, grid-based scheme that calculates
pph from any (discrete) Newtonian potential ¢"/** (see Angus &
Diaferio 2011; Angus et al. 2012; Famaey & McGaugh 2012, equa-
tion 35).
The discrete form of equation (3) then reads

1 1

P]igiqj’k _ mﬁ[ (¢i+1,j,k — i k) Vs,
(@17 — i1 k) vy

4 (@K — i)

(§iik — pii=1k)

! Nowadays, galaxy data still allow some, but not much, wiggle room on
choosing the interpolating function v(x) (equation 2): they tend to favour
the n = 1 function from the family used here, some interpolation between
n =1 and 2, or functions from other families which actually reduce, for
accelerations typical of galaxies, to the n = 1 case used here. See, e.g.,
section 6.2 of Famaey & McGaugh (2012) for a review.

2 In the Mil gromian context, PDM is not real matter but a numerical ansatz
which helps to compute the additional gravity predicted by Milgromian
dynamics and gives it an analogue in Newtonian dynamics.
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Figure 1. Illustration of the discretization scheme in the x—y plane, referring
to equation (4). The grid has N® nodes (i, j, k) with i, j, k € {1,..., N} that
are separated by a constant grid step size h. The values of v(x) are evaluated
at the points A, and By in the k-direction using equation (5).

+ (¢i,/"k+l _ d)l/k) Vg,
= (¢t =g ] )

with £ being the constant one-dimensional grid step size. The whole
discretization scheme is illustrated in Fig. 1. Note that this equation
was first derived for older versions of Milgromian dynamics by
Brada & Milgrom (1999) and Tiret & Combes (2007) and we derive
it for the quasi-linear formulation here (see also Angus & Diaferio
2011; Angus et al. 2012). The function v(x) is evaluated at the points
marked by squares in Fig. 1. The gradient of ¢ in v(|Vé|/ap) at the
point B, has been approximated by

4 (¢i+1,j,k _ ¢i,j,k)
V¢ — L ¢i+l,j+l,1< _ ¢i+l.j—l,k +¢i.j+l,k _ ¢i,j—|,k . (5)
ah Gl i d k=T g i Lk il k]

Having evaluated this field, the Newtonian Poisson equation,
V2® = 47tG(py + ppn), can be solved to find the effective Mil-
gromian force field. This can be done using the same grid. In this
paper, grids with a resolution of 4 = 0.23 kpc are used to calculate
the rotation curves (see the next section) from 2 to 16 kpc, and grids
with & = 0.47 kpc for radii larger than 16 kpc. The resolution was
chosen such that it is sufficiently fine that the form of the rotation
curves does not change if the resolution is further increased.

4 CALCULATION OF ROTATION CURVES

From a given Milgromian potential ® (see the next section for a
detailed description of PRG models), rotation curves (or rather,
their non-circular equivalent in non-axisymmetric configurations)
can be calculated. In an axisymmetric potential, the circular rotation
velocity v(r), which results in closed orbits with radius r, readily
follows as v(r) = /—r - d®/dr in the plane of the galactic disc.
This equation however loses validity in a non-axisymmetric poten-
tial like the one of a PRG because the closed orbits are generally
not circular. The existence of two massive systems in perpendicular
orientations means that circular orbits do not exist in either system,
neither the equatorial nor the polar one: in each plane, the poten-
tial well corresponding to the other perpendicular system produces
the equivalent of a (non-rotating) bar along the line of nodes. In
that case, it becomes necessary to obtain the velocities in the disc
and PR in a more general way. In this work, an iterative method is
applied: test stars are shot through the galactic potential, which is

. Line of sight
\/

20

galacticI disk plane

10 20

Figure 2. Closed orbits (black solid lines) within the potential of the bench-
mark model (Sequence 1, Mpr = 1.45 Mg ) in the plane of the host galaxy.
The PR, which is located in the y—z plane, is illustrated by the thick grey
line. The blue dashed line is a circle which, by comparison, demonstrates
the non-circularity of the closed-loop orbits. The major axis of the eccentric
orbits points in the x-direction, because the test particles orbiting in the
galactic disc (x—y) plane ‘fall’ through the PR (y—z) plane, i.e. they feel a
stronger acceleration in x than in the y-direction. However, to fulfil closed
orbits, the oscillation period in both directions must be the same, which
means that the oscillation amplitude in the x-direction must be larger (major
axis) than that in the y-direction (minor axis). The rotation velocity thus is
minimal at point A (along the line of sight) and maximal at point B.

computed numerically from analytical density distributions follow-
ing the prescription in Section 3. The initial velocity (perpendicular
to the radius) of these test particles is adjusted until a closed orbit is
found. The orbit is integrated using the simple leapfrog integration
scheme. Typical closed orbits in a PRG potential are shown in Fig. 2
(detailed description of the model in the next section).

5 MODELS

In order to explore the consequences of Milgromian dynamics for
the rotation curves in PRs, we start from a benchmark model adopted
from Combes & Arnaboldi (1996), which represents a prototypical
example of PRG (NGC 4650A, see also Morishima & Saio 1995).
From this model, we will construct a Milgromian potential in which
the orbits of test particles will be computed. The host galaxy is
made of a small Plummer bulge (Plummer 1911) weighing M, =
0.2 x 10° M, with a Plummer radius r, = 0.17 kpc,

N =572
(M) (14 (2 (6)
po(r) = 403 P )

and of a Miyamoto—Nagai disc (Miyamoto & Nagai 1975) with disc
mass My = 11 x 10° M, scalelength h, = 0.748kpc and scale-
height 7, = 0.3 kpc,

hzsz
pa(R, 2) = 1
T 2
WR Oy +3VE 0D (b +VEHRE) @)
X .

52

{h% + (h,. +vV2+ hzz)z} (22 + hzz)3/2
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Figure 3. The PR density profile is made from the difference of two
Miyamoto—Nagai density profiles (p; and p7). Its density is zero at the
centre. This example is a demonstration of a ring with a total mass M =
9.5 x 10° M@, ascaleheight 2, = 0.3 kpc and scaleradii &, = 6.8 kpc and
hy, = 5.95kpc.

To this parent galaxy a PR of stars and another one of gas is added.’
Each ring is built by the difference of two Miyamoto—Nagai den-
sity distributions of scaleheight 4, = 0.3 kpc, and with scaleradii
h,, and h,, (see Fig. 3 for an illustration, where one sees that the
baryonic density is precisely zero at the centre and positive else-
where). The masses of these two discs are chosen such that their
difference equals the total mass of the ring and that the central mass
density of the ring is zero. The stellar ring weighs 9.5 x 10° Mg,
and has h}; = 6.8kpc and /;) = 5.95kpc, while the gaseous ring
weighs 6.4 x 10° M, and has hE* = 15.3kpc and A" = 3.4 kpe.
The parameters of these rings are such that the density in the centre
is zero and positive everywhere else. Note that these parameters
are adopted exactly as per Combes & Arnaboldi (1996), but that in
reality, some freedom on the mass of the stellar components in both
the host and ring of NGC 4650A is possible. As we do not intend
here to make a full detailed fit of the rotation curves of NGC 4650A,
which will be the topic of a following paper, including other indi-
vidual PR systems observed in H 1 with the Westerbork Synthesis
Radio Telescope (WSRT), we keep the benchmark model as such.
From this density of baryonic matter, we compute the correspond-
ing PDM density using equation (4). The computed distribution of
PDM in the plane orthogonal to both the disc and ring is plotted
in Fig. 4. This figure illustrates that, in addition to the oblate PDM
halo (isothermal at large radii), there are also two PDM discs aligned
with the baryonic discs of the host and of the PR.

To investigate whether the results we obtain (see Section 6) for
this benchmark model are actually a generic prediction of Milgro-
mian dynamics, we will then vary the parameters of this benchmark
model in five different ways (including changing the ring into a
Miyamoto—Nagai disc) computing a total of 45 models spanning a
wide range of parameters. All models and their different parameters
are summarized in Table 1.

(i) First, the density of the PRs and accordingly their mass,
Mpg, relative to the mass of the host galaxy are varied. The re-
sulting models are collected into two sequences: Sequence 1 and

3 We do not consider the possibility of two gaseous discs to avoid orbit
crossing, unless there is a very small gas disc and a much larger gaseous PR
which never intersect. In our models, we make no distinction between gas
and stars in the host disc.
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Figure 4. Contours of the mass density of the PDM of the benchmark
model seen edge-on (x—z plane, y = 0). The colour bar shows the logarithm
of the PDM density in M kpc ™. In addition to the oblate PDM halo,
the horizontal overdensity shows clearly the PDM in the host disc and the
vertical overdensity shows the PDM in the PR. The dashed circles are to
demonstrate that the phantom halo is nearly spherical and slightly oblate.

Sequence 2. Starting from Mpr = 0, the ring mass is increased to
Mpr = (0.1, 0.25,0.33, 0.5, 0.75, 1 and 1.45) x Mgis.. Sequence 1
has a constant disc mass of My = 11 x 10° M@, Sequence 2 has
Mdisc =33 x 109 M@

(ii) To obtain Sequence 3, Sequence 1 is repeated while replacing
the PR by a polar disc of mass Mpp. This polar disc is shaped like
a Miyamoto—Nagai density distribution with &, = 0.748 kpc and
h, = 0.3kpc. The polar disc mass, Mpp, is varied analogously to
Sequences 1 and 2. In this sequence, the model with Mpp / Myis. = 1
is symmetric; the rotation curves in the galactic plane and in the
polar plane are consequently identical.

(iii) To investigate the influence of the PR shape, we vary the
shape of the ring in Sequence 4. The size parameters of the gaseous
ring (h$* and 7£*) and of the stellar ring (4" and /') are summa-
rized in Table 1.

(iv) Models of Sequence 5 have again the same structural param-
eters as the benchmark model, but their densities are scaled such
that their total masses (of the whole system) range from 6.8 x 10°
to 10'' M. The size parameters remain unchanged.

(v) Sequence 6 is a series of four different Milgromian potentials
computed for the benchmark model for n = 1, 2, 3, 4 in equation
(2), to check whether the qualitative results are independent of the
v-function.

6 RESULTS

The rotation curves of the benchmark model are presented in Fig. 5,
both in Newtonian without dark matter and Milgromian dynamics.
In both cases, the velocity is higher in the ring, but of course, Mil-
gromian dynamics is needed to get the amplitude and shape of the
rotation curves right. This is a key result for Milgromian dynamics,
since observational studies (Iodice et al. 2003) have measured rota-
tion velocities in extended PRs being systematically larger than in
the host galaxies when both systems are seen roughly edge-on. If
this result is generic, it means that this particular property of PRGs
does not exclude Milgromian dynamics. To investigate whether this
is indeed a generic prediction of Milgromian dynamics, we vary the
parameters of this benchmark model as explained in Section 5. Al-
together, the rotation velocities, corresponding to the line-of-sight
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Table 1. Model parameters. In the presented models of PRGs, each ring is built by the difference of two Miyamoto—Nagai discs (see the
text for more details), whose radial parameters are /,, and h,,. Model 7 of Sequence 1 and Model 4 of Sequence 4 equal the benchmark

model. The models of Sequence 3 do not feature a PR but a polar disc of stars and gas with radial parameters i

included in this table; it corresponds to the benchmark model with four different v-functions.

gas/st

. Sequence 6 is not

Sequence Mg (10° M) Mpgr /My RS (kpe) k5 (kpe) A5 (kpe)  ASt (kpe)
1 11.0 0.1,0.25,0.33,0.5,0.75, 1, 1.45 6.8 5.95 15.3 3.4
2 33.0 0.1,0.25,0.33,0.5,0.75, 1, 1.45 6.8 5.95 15.3 34
3 11.0 0.1,0.25,0.33,0.5,0.75, 1, 1.45 0.748 - 0.748 -
4 11.0 1.45 15.3 34 15.3 34
7.8 4.95 15.3 3.4
5.8 4.95 15.3 34
6.8 5.95 15.3 3.4
6.8 5.95 11.3 7.4
6.8 5.95 6.8 5.95
10.8 9.95 10.8 9.95
5 2.8,3.7,5.6,7.5,84,11.2,13.0, 1.45 6.8 5.95 15.3 3.4
14.6, 16.4, 18.4,20.7, 23.7, 30.6,
33.6,36.8,41.3
extended ring (see Fig. 2), and when observing the PRG edge-on,
150 - i the minimum velocities of these eccentric orbits (point A in Fig. 2)

rotation velocity [km/s]

100 .
——_ _host galaxy ——
——— polarring ———-
50 1 1
0 10 20 30 40

radius [kpc]

Figure 5. Rotation curves of the host galaxy (black solid line) and PR
(black dashed line) for the benchmark model. These rotation curves are
derived from the Milgromian potential. For comparison, the lower blue
lines show the rotation curves derived from the Newtonian potential of the
same model. Observationally, the rotation velocity in the host is generally
obtained indirectly from the measured stellar velocity dispersion, which
means that the maximum velocity is most likely not measured in the very
flat part. To account for this issue, the theoretical rotation velocities from
the models are computed at both » = 40 and 15 kpc. The circle and cross
at these two radii thus mark the rotation velocities that are summarized in
Fig. 8. In the case where both the host and PR are gas rich, the PR curve
should start where the host curve ends (e.g. at 15 kpc) to avoid collisional
orbit crossing.

velocities that would be measured when observing the PRG edge-
on, of 45 models in total are evaluated. The rotation curves of the
benchmark model are presented in Fig. 5. Fig. 6 contains all eval-
uated rotation curves of Sequences 1-4. See the caption for more
details. Sequence 6 is plotted in Fig. 7. Finally, the shapes of the ro-
tation curves of Sequence 5 are all similar to the benchmark model,
but their amplitude varies as in Fig. 8.

6.1 Newtonian dynamics

Fig. 5 and the first column of Fig. 6 show the rotation curves com-
puted using standard Newtonian dynamics without dark matter for
Sequence 1. As we can see, the velocities at radii larger than ap-
proximately 6 kpc are larger in the polar plane. The reason for this
is that the closed orbits are much more eccentric in the host galaxy
than in the plane of the PR due to the compact host galaxy and the

are measured. The eccentricity can be explained as follows. The
potential due to the compact host galaxy component appears nearly
spherical at large* radii for test particles in both the plane of the
host galaxy and the plane of the PR. The potential generated by the
extended PR, however, does appear spherical to particles orbiting
within the ring, but not to particles orbiting in the host plane.’ This
gives rise to lower line-of-sight velocities when the host disc and
PRs are seen edge-on.

Atradii smaller than the size of the hole (the region where the den-
sity increases with radius), the eccentricity argument turns around.
The test particles are near the centre of the galaxy and accordingly
near the centre of the hole of the PR. At these radii, all test particles
experience the gravitational field caused by the PR rather spheri-
cally, while the potential by the galactic disc appears spherical only
to the test objects orbiting within the disc, not to those moving in
the polar plane. The transition appears around approximately 6 kpc,
i.e. between the radial size of the galactic disc, which is smaller
than 6 kpc, and that of the PR, which is larger than 6 kpc.

This ellipticity of the orbits in the host is enhanced by the actual
presence of the hole at the centre of the PR, because, in order to
have the same mass in the polar structure as in a corresponding
disc, one needs to increase the density at large r in the polar plane,
making it more extended (see Fig. 3).

6.2 Milgromian dynamics

In Milgromian dynamics, all investigated models (see Fig. 6) that (i)
feature a PR (i.e. Sequences 1, 2,4, 5 and 6) and (ii) has a total mass
(i.e. gaseous plus stellar mass) comparable to the mass of the host
galaxy (within a factor of ~2) show higher velocities in the polar
plane at radii larger than approximately 6 kpc. Indeed, the reason
is the same as in Newtonian dynamics without dark matter, and
is even boosted by the additional gravity provided by Milgromian
dynamics. Because the host is more compact than the ring, it appears

“41n the context of investigated PRG models, large means larger than the size
of the host galaxy.

3> We know this because in Newtonian dynamics the linearity of Poisson’s
equation allows us to separate and linearly add the different potentials.
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Figure 6. The rotation curves of all models of Sequences 1-4. The solid lines refer to Milgromian rotation velocities in the host galaxy and the long-dashed
lines to the polar plane. In Sequence 1 also the Newtonian rotation curves are shown (dotted lines: host galaxy; short-dashed: PR; no dark matter halo). Sequence
1 features a host disc, a bulge and a PR. While the disc mass Mgijsc = 11 % 10° Mg, is constant, the mass of the PR is varied from Mpr = 0to 1.45 Misc
(the bottom-left panel shows the benchmark model, see also Fig. 5). Sequence 2 is similar to Sequence 1 but is three times as dense and consequently
massive (Mgise = 33 x 10° M@). Sequence 3 features a host disc, a bulge and a polar disc instead of a ring. Models of this sequence have a disc mass of
Mgise = 11 x 10° M(; the mass of their polar component is again variable. Sequence 4 features a host disc, a bulge and a PR. Models of this sequence have a
fixed total mass M = 27.1 x 10° M and the size parameters of their PR components are variable.

more spherical to particles orbiting in the ring at large radii than the
ring appears to particles orbiting in the host at the same radii. Hence,
also in Milgromian dynamics, the closed orbits in the galactic disc
are more eccentric than in the plane of the PR. This gives rise
to lower line-of-sight velocities in the host for typical observed
systems where the host and PRs are seen approximately edge-on.
Because Milgromian dynamics adds a disc component of PDM to
the host and to the ring (see Fig. 4), this effect is even amplified
compared to Newtonian dynamics.

In Sequence 1 (Fig. 6, first column), one can see that decreasing
the PR mass compared to the host gradually cancels the above effect,
because the gravity generated by the PR becomes more and more
negligible when decreasing its mass. For the benchmark model, at
a radius of less than approximately 6 kpc, test stars orbiting in the
PR have smaller velocities than those at the same radius in the host
disc, because they are close to or in the polar hole and the mass
enclosed by their orbits is comparably small. This transition radius
changes to larger radii when decreasing the PR mass, to gradually
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arrive at the situation of no PR, where polar orbits have velocities
systematically lower than those in the disc (equal at large radii).

The same effect is observed in Sequence 2 (Fig. 6, second col-
umn) for more massive systems. Note that the velocities in the host
decrease with declining PR mass, due to the decreasing gravity of
the PR, but less so than the velocities in the ring. The reason for this
slower decrease is that the effect of decreased gravity is compen-
sated by the effect of decreasing eccentricity for particles orbiting
in the host.

On the other hand, in Sequence 3 (Fig. 6, third column), the
rotation velocities are, at radii larger than 15 kpc, very similar in
both planes, because of the special symmetry of these models. This
emphasizes the role played by the hole at the centre of the ring in
the other sequences.

Varying the form and size of the stellar and gaseous holes in the
PR in Sequence 4 (Fig. 6, fourth column) shows that for a host and
ring of comparable mass, the effect is quite generic in the presence
of a hole.

The shapes of the rotation curves of Sequence 5 are all similar to
the benchmark model, but their amplitude varies and is discussed
in Section 6.3. Sequence 6 is a series of four different Milgromian
potentials computed for the benchmark model for n =1, 2, 3, 4 in
equation (2), and confirms that the qualitative results are indepen-
dent of the v-function as illustrated in Fig. 7.

Let us finally note that if the host galaxy, here represented by a
Miyamoto—Nagai disc, is replaced by a disc that falls off exponen-
tially and therefore much faster, the host galaxy would appear more
compact and the described effect would therefore be even stronger
at small and intermediate radii, and unchanged at large radii.

6.3 Tully-Fisher relation

We compare our theoretically obtained rotation curves to the ob-
served PRGs of Iodice et al. (2003), showing, in Fig. 8, the max-
imal rotational velocities of both the host and PR. This gives
rise to a luminous Tully—Fisher relation. For the baryonic Tully—
Fisher relation (BTFR), we note that Milgromian dynamics predicts
V* = ay G M, for spherical systems (McGaugh 2011), where V is
the asymptotic circular velocity and M, the baryonic mass. How-
ever, PRGs are not only non-spherical but also non-axisymmetric
objects. Because of this, there is no iron-clad prediction for the
BTFR in such objects: our models indicate that the hosts typically
exhibit asymptotic velocities below this value of V, while the PRs
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Figure7. Rotation curves of the benchmark model in Milgromian dynamics
applying different v-functions, v,(x) with n = 1, 2, 3, 4 in equation (2).
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Figure 8. Comparison of observational data of PRGs with our numerical
results using the luminous Tully—Fisher relation. The plot shows the absolute
B-band luminosity in magnitudes versus the rotation velocity. Each arrow
refers to one galaxy or galaxy model. The blue and red data points are
adopted from Iodice et al. (2003) and represent measurements of various
PRGs. The circles show the rotation velocity measured in the hosts and
the arrow heads the ones measured in the PRs. The blue data correspond
to NGC 4650A. For the theoretical data points (black), the squares show
the rotation velocity in the host galaxy at » = 40kpc, the circles show the
rotation velocity in the host at » = 15kpc (where it is actually measured)
and the arrow heads point to the PR rotation velocity at » = 40kpc. The
theoretical data are obtained from models of Sequence 5. The absolute
B-band magnitude is calculated from the total mass using a mass-to-light
ratio of M /Lp = 4, as was assumed by Combes & Arnaboldi (1996).

are closer to the prediction, but can typically also exceed this ve-
locity.

In order to explore the relevant mass range in our models,
the corresponding data points in absolute B-band magnitude ver-
sus rotation velocity are compared to the models of Sequence 5
(which varies the total mass), by assuming a mass-to-light ratio of
M /Ly = 4 as in Combes & Arnaboldi (1996). We assume that the
line width Avyy = Wyy = 2vumax equals twice the maximum line-of-
sight velocity.®

From observations, the PRs are generally very extended and fea-
ture large quantities of H 1 gas. The rotation curve in this polar
plane can therefore observationally be measured even at large radii
where it is very flat. Compared to the ring, the host galaxy is usu-
ally rather small and has relatively little gas. The rotation velocity
in the host is generally obtained indirectly from the measured stellar
velocity dispersion (Iodice et al. 2003, 2006; Iodice 2010), which
means that the maximum velocity is most likely not measured in the
very flat part and does therefore not equal the maximum velocity
of the theoretical potential derived from the observed density distri-
bution. To account for this issue, the theoretical rotation velocities
from the models are computed at both r = 40 and 15 kpc, where
v(r = 15kpe) < v(r = 40kpc) (see Fig. 5).

In Fig. 8, the circles show the rotation velocity measured in the
hosts and the arrow heads the ones measured in the PRs, both for

6 Note that the observed line widths Avyq are converted into velocities by
assuming Avyg = 2umax (e.g. Verheijen 2001). Depending on line width
broadening effects, the actual velocities may be systematically smaller than
Avyo/2. In the context of the theoretical data, this would imply that NGC
4650A had actually a smaller mass-to-light ratio.



some observed PRGs and for the models of Sequence 5 (circles and
squares as per Fig. 5). We see that our models reproduce fairly well
the observations, with velocities systematically larger in the rings,
but also with comparable offsets. Since the benchmark model on
which the sequences are based was inspired from the prototypical
PRG galaxy NGC 4650A, it comes as no surprise that this PRG is
best fitted by these models.

7 CONCLUSIONS

The conclusion from all the investigated models, and the bottom
line of this study, is that Milgromian dynamics naturally predicts
that rotation velocities would be higher in the PRs than in the hosts.
This generically happens when the ring is more extended than the
host and of comparable mass and both are observed approximately
edge-on. It does not apply to faint PRs, or to PRs of similar radial
size as the host. Given the wide range of model parameters covered
within this study, this general result appears quite robust in Milgro-
mian dynamics. What is more, the magnitude of the velocity offset
predicted by the models is also comparable to the observed one (see
Fig. 8). We however did not attempt to precisely fit the full rotation
curves of individual PRGs, which will be the subject of future work,
based on observations performed on a sample of 10 such systems
at the WSRT.” These and other upcoming precise measurements of
rotation curves of individual PRGs [e.g. the future measurements
announced in Iodice (2010)] should thus allow more stringent tests,
and these will become benchmark objects with which to test gravity
in the coming years.
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