205 research outputs found

    Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling

    Get PDF
    Anti-angiogenic therapies have generated significant interest for their potential to combat tumor growth. However, tumor overproduction of pro-angiogenic ligands can overcome these therapies, hampering success of this approach. To circumvent this problem, we target the resynthesis of phosphoinositides consumed during intracellular transduction of pro-angiogenic signals in endothelial cells (EC), thus harnessing the tumors own production of excess stimulatory ligands to deplete adjacent ECs of the capacity to respond to these signals. Using zebrafish and human endothelial cells in vitro, we show ECs deficient in CDP-diacylglycerol synthase 2 are uniquely sensitive to increased vascular endothelial growth factor (VEGF) stimulation due to a reduced capacity to re-synthesize phosphoinositides, including phosphatidylinositol-(4,5)-bisphosphate (PIP2), resulting in VEGF-exacerbated defects in angiogenesis and angiogenic signaling. Using murine tumor allograft models, we show that systemic or EC specific suppression of phosphoinositide recycling results in reduced tumor growth and tumor angiogenesis. Our results suggest inhibition of phosphoinositide recycling provides a useful anti-angiogenic approach

    Defining and unpacking the core concepts of pharmacology education

    Get PDF
    Pharmacology education currently lacks a research-based consensus on which core concepts all graduates should know and understand, as well as a valid and reliable means to assess core conceptual learning. The Core Concepts in Pharmacology Expert Group (CC-PEG) from Australia and New Zealand recently identified a set of core concepts of pharmacology education as a first step toward developing a concept inventory—a valid and reliable tool to assess learner attainment of concepts. In the current study, CC-PEG used established methodologies to define each concept and then unpack its key components. Expert working groups of three to seven educators were formed to unpack concepts within specific conceptual groupings: what the body does to the drug (pharmacokinetics); what the drug does to the body (pharmacodynamics); and system integration and modification of drug–response. First, a one-sentence definition was developed for each core concept. Next, sub-concepts were established for each core concept. These twenty core concepts, along with their respective definitions and sub-concepts, can provide pharmacology educators with a resource to guide the development of new curricula and the evaluation of existing curricula. The unpacking and articulation of these core concepts will also inform the development of a pharmacology concept inventory. We anticipate that these resources will advance further collaboration across the international pharmacology education community to improve curricula, teaching, assessment, and learning.Marina Santiago, Elizabeth A. Davis, Tina Hinton, Thomas A. Angelo, Alison Shield, Anna-Marie Babey, Barbara Kemp-Harper, Gregg Maynard, Hesham S. Al-Sallami, Ian F. Musgrave, Lynette B. Fernandes, Suong N. T. Ngo, Arthur Christopoulos, Paul J. Whit

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes

    Triple-Negative Breast Cancer Risk Genes Identified by Multigene Hereditary Cancer Panel Testing

    Get PDF
    Background: Germline genetic testing with hereditary cancer gene panels can identify women at increased risk of breast cancer. However, those at increased risk of triple-negative (estrogen receptor-negative, progesterone receptor-negative, human epidermal growth factor receptor-negative) breast cancer (TNBC) cannot be identified because predisposition genes for TNBC, other than BRCA1, have not been established. The aim of this study was to define the cancer panel genes associated with increased risk of TNBC. Methods: Multigene panel testing for 21 genes in 8753 TNBC patients was performed by a clinical testing laboratory, and testing for 17 genes in 2148 patients was conducted by a Triple Negative Breast Cancer Consortium(TNBCC) of research studies. Associations between deleterious mutations in cancer predisposition genes and TNBC were evaluated using results from TNBC patients and reference controls. Results: Germline pathogenic variants in BARD1, BRCA1, BRCA2, PALB2, and RAD51D were associated with high risk (odds ratio > 5.0) of TNBC and greater than 20% lifetime risk for overall breast cancer among Caucasians. Pathogenic variants in BRIP1, RAD51C, and TP53 were associated with moderate risk (odds ratio > 2) of TNBC. Similar trends were observed for the African American population. Pathogenic variants in these TNBC genes were detected in 12.0% (3.7% non-BRCA1/2) of all participants. Conclusions: Multigene hereditary cancer panel testing can identify women with elevated risk of TNBC due to mutations in BARD1, BRCA1, BRCA2, PALB2, and RAD51D. These women can potentially benefit from improved screening, risk management, and cancer prevention strategies. Patients with mutations may also benefit from specific targeted therapeutic strategies.Peer reviewe

    Defining and unpacking the core concepts of pharmacology education

    Get PDF
    Pharmacology education currently lacks a research-based consensus on which core concepts all graduates should know and understand, as well as a valid and reliable means to assess core conceptual learning. The Core Concepts in Pharmacology Expert Group (CC-PEG) from Australia and New Zealand recently identified a set of core concepts of pharmacology education as a first step toward developing a concept inventory—a valid and reliable tool to assess learner attainment of concepts. In the current study, CC-PEG used established methodologies to define each concept and then unpack its key components. Expert working groups of three to seven educators were formed to unpack concepts within specific conceptual groupings: what the body does to the drug (pharmacokinetics); what the drug does to the body (pharmacodynamics); and system integration and modification of drug–response. First, a one-sentence definition was developed for each core concept. Next, sub-concepts were established for each core concept. These twenty core concepts, along with their respective definitions and sub-concepts, can provide pharmacology educators with a resource to guide the development of new curricula and the evaluation of existing curricula. The unpacking and articulation of these core concepts will also inform the development of a pharmacology concept inventory. We anticipate that these resources will advance further collaboration across the international pharmacology education community to improve curricula, teaching, assessment, and learning

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    corecore