112 research outputs found

    A Metabolomics Approach to Investigate Kukoamine B—A Potent Natural Product With Anti-diabetic Properties

    Get PDF
    Due to the surge in type 2 diabetes mellitus (T2DM), treatments for chronic metabolic dysregulations with fewer side-effects are sought. Lycii Cortex (LyC), a traditional Chinese Medicine (TCM) herb has a long history of being widely prescribed to treat T2DM as alternative medicine; however, the bioactive molecules and working mechanism remained unknown. Previous studies revealed kukoamine B (KB) as a major and featured compound for LyC with bioactivities for anti-oxidation and acute inflammation, which may be related to anti-diabetes properties. This study aims to understand the efficacy and the mode of action of KB in the diabetic (db/db) mouse model using a metabolomics approach. Parallel comparison was conducted using the first-line anti-diabetic drugs, metformin and rosligtazone, as positive controls. The db/db mice were treated with KB (50 mg kg−1 day−1) for 9 weeks. Bodyweight and fasting blood glucose were monitored every 5 and 7 days, respectively. Metabolomics and high-throughput molecular approaches, including lipidomics, targeted metabolomics (Biocrates p180), and cytokine profiling were applied to measure the alteration of serum metabolites and inflammatory biomarkers between different treatments vs. control (db/db mice treated with vehicle). After 9 weeks of treatment, KB lowered blood glucose, without the adverse effects of bodyweight gain and hepatomegaly shown after rosiglitazone treatment. Lipidomics analysis revealed that KB reduced levels of circulating triglycerides, cholesterol, phosphatidylethanolamine, and increased levels of phosphatidylcholines. KB also increased acylcarnitines, and reduced systemic inflammation (cytokine array). Pathway analysis suggested that KB may regulate nuclear transcription factors (e.g., NF-κB and/or PPAR) to reduce inflammation and facilitate a shift toward metabolic and inflammatory homeostasis. Comparison of KB with first-line drugs suggests that rosiglitazone may over-regulate lipid metabolism and anti-inflammatory responses, which may be associated with adverse side effects, while metformin had less impact on lipid and anti-inflammation profiles. Our research from holistic and systemic views supports the conclusion that KB is the bioactive compound of LyC for managing T2DM, and suggests KB as a nutraceutical or a pharmaceutical candidate for T2D treatment. In addition, our research provides insights related to metformin and rosiglitazone action, beyond lowering blood glucose

    Comparative analysis of RNA sequencing methods for degraded or low-input samples

    Get PDF
    available in PMC 2014 January 01RNA-seq is an effective method for studying the transcriptome, but it can be difficult to apply to scarce or degraded RNA from fixed clinical samples, rare cell populations or cadavers. Recent studies have proposed several methods for RNA-seq of low-quality and/or low-quantity samples, but the relative merits of these methods have not been systematically analyzed. Here we compare five such methods using metrics relevant to transcriptome annotation, transcript discovery and gene expression. Using a single human RNA sample, we constructed and sequenced ten libraries with these methods and compared them against two control libraries. We found that the RNase H method performed best for chemically fragmented, low-quality RNA, and we confirmed this through analysis of actual degraded samples. RNase H can even effectively replace oligo(dT)-based methods for standard RNA-seq. SMART and NuGEN had distinct strengths for measuring low-quantity RNA. Our analysis allows biologists to select the most suitable methods and provides a benchmark for future method development.National Institutes of Health (U.S.) (Pioneer Award DP1-OD003958-01)National Human Genome Research Institute (U.S.) (NHGRI) 1P01HG005062-01)National Human Genome Research Institute (U.S.) (NHGRI Center of Excellence in Genome Science Award 1P50HG006193-01)Howard Hughes Medical Institute (Investigator)Merkin Family Foundation for Stem Cell ResearchBroad Institute of MIT and Harvard (Klarman Cell Observatory)National Human Genome Research Institute (U.S.) (NHGRI grant HG03067)Fonds voor Wetenschappelijk Onderzoek--Vlaandere

    Safety and pharmacokinetics of multiple dose myo-inositol in preterm infants

    Get PDF
    BACKGROUND: Preterm infants with respiratory distress syndrome (RDS) given inositol had reduced bronchopulmonary dysplasia (BPD), death and severe retinopathy of prematurity (ROP). We assessed the safety and pharmacokinetics of daily inositol to select a dose providing serum levels previously associated with benefit, and to learn if accumulation occurred when administered throughout the normal period of retinal vascularization. METHODS: Infants ≤ 29 wk GA (n = 122, 14 centers) were randomized and treated with placebo or inositol at 10, 40, or 80 mg/kg/d. Intravenous administration converted to enteral when feedings were established, and continued to the first of 10 wk, 34 wk postmenstrual age (PMA) or discharge. Serum collection employed a sparse sampling population pharmacokinetics design. Inositol urine losses and feeding intakes were measured. Safety was prospectively monitored. RESULTS: At 80 mg/kg/d mean serum levels reached 140 mg/l, similar to Hallman's findings. Levels declined after 2 wk, converging in all groups by 6 wk. Analyses showed a mean volume of distribution 0.657 l/kg, clearance 0.058 l/kg/h, and half-life 7.90 h. Adverse events and comorbidities were fewer in the inositol groups, but not significantly so. CONCLUSION: Multiple dose inositol at 80 mg/kg/d was not associated with increased adverse events, achieves previously effective serum levels, and is appropriate for investigation in a phase III trial

    Adjusting Choice Models to Better Predict Market Behavior

    Full text link
    The emergence of Bayesian methodology has facilitated respondent-level conjoint models, and deriving utilities from choice experiments has become very popular among those modeling product line decisions or new product introductions. This review begins with a paradox of why experimental choices should mirror market behavior despite clear differences in content, structure and motivation. It then addresses ways to design the choice tasks so that they are more likely to reflect market choices. Finally, it examines ways to model the results of the choice experiments to better mirror both underlying decision processes and potential market choices.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47012/1/11002_2005_Article_5885.pd

    Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia.

    Get PDF
    Non-genetic drug resistance is increasingly recognised in various cancers. Molecular insights into this process are lacking and it is unknown whether stable non-genetic resistance can be overcome. Using single cell RNA-sequencing of paired drug naïve and resistant AML patient samples and cellular barcoding in a unique mouse model of non-genetic resistance, here we demonstrate that transcriptional plasticity drives stable epigenetic resistance. With a CRISPR-Cas9 screen we identify regulators of enhancer function as important modulators of the resistant cell state. We show that inhibition of Lsd1 (Kdm1a) is able to overcome stable epigenetic resistance by facilitating the binding of the pioneer factor, Pu.1 and cofactor, Irf8, to nucleate new enhancers that regulate the expression of key survival genes. This enhancer switching results in the re-distribution of transcriptional co-activators, including Brd4, and provides the opportunity to disable their activity and overcome epigenetic resistance. Together these findings highlight key principles to help counteract non-genetic drug resistance

    Impact of pulmonary exposure to gold core silver nanoparticles of different size and capping agents on cardiovascular injury

    Get PDF
    Background:The uses of engineered nanomaterials have expanded in biomedical technology and consumer manufacturing. Furthermore, pulmonary exposure to various engineered nanomaterials has, likewise, demonstrated the ability to exacerbate cardiac ischemia reperfusion (I/R) injury. However, the influence of particle size or capping agent remains unclear. In an effort to address these influences we explored response to 2 different size gold core nanosilver particles (AgNP) with two different capping agents at 2 different time points. We hypothesized that a pulmonary exposure to AgNP induces cardiovascular toxicity influenced by inflammation and vascular dysfunction resulting in expansion of cardiac I/R Injury that is sensitive to particle size and the capping agent. Methods: Male Sprague–Dawley rats were exposed to 200 μg of 20 or 110 nm polyvinylprryolidone (PVP) or citrate capped AgNP. One and 7 days following intratracheal instillation serum was analyzed for concentrations of selected cytokines; cardiac I/R injury and isolated coronary artery and aorta segment were assessed for constrictor responses and endothelial dependent relaxation and endothelial independent nitric oxide dependent relaxation. Results: AgNP instillation resulted in modest increase in selected serum cytokines with elevations in IL-2, IL-18, and IL-6. Instillation resulted in a derangement of vascular responses to constrictors serotonin or phenylephrine, as well as endothelial dependent relaxations with acetylcholine or endothelial independent relaxations by sodium nitroprusside in a capping and size dependent manner. Exposure to both 20 and 110 nm AgNP resulted in exacerbation cardiac I/R injury 1 day following IT instillation independent of capping agent with 20 nm AgNP inducing marginally greater injury. Seven days following IT instillation the expansion of I/R injury persisted but the greatest injury was associated with exposure to 110 nm PVP capped AgNP resulted in nearly a two-fold larger infarct size compared to naïve. Conclusions: Exposure to AgNP may result in vascular dysfunction, a potentially maladaptive sensitization of the immune system to respond to a secondary insult (e.g., cardiac I/R) which may drive expansion of I/R injury at 1 and 7 days following IT instillation where the extent of injury could be correlated with capping agents and AgNP size.This work was supported by the National Institute of Environmental Health Sciences U19ES019525, U01ES020127, U19ES019544 and East Carolina Universit

    Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.

    Get PDF
    Neðst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinn View/OpenLoss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ~150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.US National Institutes of Health (NIH) Training 5-T32-GM007748-33 Doris Duke Charitable Foundation 2006087 Fulbright Diabetes UK Fellowship BDA 11/0004348 Broad Institute from Pfizer, Inc. NIH U01 DK085501 U01 DK085524 U01 DK085545 U01 DK085584 Swedish Research Council Dnr 521-2010-3490 Dnr 349-2006-237 European Research Council (ERC) GENETARGET T2D GA269045 ENGAGE 2007-201413 CEED3 2008-223211 Sigrid Juselius Foundation Folkh lsan Research Foundation ERC AdG 293574 Research Council of Norway 197064/V50 KG Jebsen Foundation University of Bergen Western Norway Health Authority Lundbeck Foundation Novo Nordisk Foundation Wellcome Trust WT098017 WT064890 WT090532 WT090367 WT098381 Uppsala University Swedish Research Council and the Swedish Heart- Lung Foundation Academy of Finland 124243 102318 123885 139635 Finnish Heart Foundation Finnish Diabetes Foundation, Tekes 1510/31/06 Commission of the European Community HEALTH-F2-2007-201681 Ministry of Education and Culture of Finland European Commission Framework Programme 6 Integrated Project LSHM-CT-2004-005272 City of Kuopio and Social Insurance Institution of Finland Finnish Foundation for Cardiovascular Disease NIH/NIDDK U01-DK085545 National Heart, Lung, and Blood Institute (NHLBI) National Institute on Minority Health and Health Disparities N01 HC-95170 N01 HC-95171 N01 HC-95172 European Union Seventh Framework Programme, DIAPREPP Swedish Child Diabetes Foundation (Barndiabetesfonden) 5U01DK085526 DK088389 U54HG003067 R01DK072193 R01DK062370 Z01HG000024info:eu-repo/grantAgreement/EC/FP7/20201

    The genetic architecture of type 2 diabetes

    Get PDF
    The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore