290 research outputs found

    Urine as a High-Quality Source of Host Genomic DNA from Wild Populations

    Get PDF
    The ability to generate genomic data from wild animal populations has the potential to give unprecedented insight into the population history and dynamics of species in their natural habitats. However, in the case of many species, it is impossible legally, ethically, or logistically to obtain tissues samples of high-quality necessary for genomic analyses. In this study we evaluate the success of multiple sources of genetic material (feces, urine, dentin, and dental calculus) and several capture methods (shotgun, whole-genome, exome) in generating genome-scale data in wild eastern chimpanzees (Pan troglodytes schweinfurthii) from Gombe National Park, Tanzania. We found that urine harbors significantly more host DNA than other sources, leading to broader and deeper coverage across the genome. Urine also exhibited a lower rate of allelic dropout. We found exome sequencing to be far more successful than both shotgun sequencing and whole-genome capture at generating usable data from low-quality samples such as feces and dental calculus. These results highlight urine as a promising and untapped source of DNA that can be noninvasively collected from wild populations of many species

    An accurate in vitro model of the E. coli envelope

    No full text
    Gram-negative bacteria are an increasingly serious source of antibiotic-resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir-Blodgett and Langmuir-Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development

    Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens

    Get PDF
    © 2015 Brabec et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars

    Get PDF
    All MSL data used in this manuscript (REMS and SAM) are freely available on NASA's Planetary Data System (PDS) Geosciences Node, from within 6 months after receipt on Earth (http://pds‐geosciences.wustl.edu/missions/msl/). The mixing ratios developed and presented in this paper are available at a publicly available archive (dataverse.org: doi.org/10.7910/DVN/CVUOWW) as cited within the manuscript. The successful operation of the Curiosity rover and the SAM instrument on Mars is due to the hard work and dedication of hundreds of scientists, engineers, and managers over more than a decade. Essential contributions to the successful operation of SAM on Mars and the acquisition of SAM data were provided by the SAM development, operations, and test bed teams. The authors gratefully thank the SAM and MSL teams that have contributed in numerous ways to obtain the data that enabled this scientific work. We also thank NASA for the support of the development of SAM, SAM data analysis, and the continued support of the Mars Science Laboratory mission. The contribution of F. Lefèvre was supported by the Programme National de Planétologie (PNP). R. Navarro‐Gonzalez acknowledges support from the Universidad Nacional Autónoma de México (PAPIIT IN111619). LPI is operated by USRA under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. We thank members of the SAM and larger MSL team for insightful discussions and support. In particular, we thank R. Becker and R. O. Pepin for careful review of data analysis and interpretation. We thank M. D. Smith for discussion of CRISM CO measurements. We thank A. Brunner, M. Johnson, and M. Lefavor for their development of customized data analysis tools used here and in other SAM publications.Peer reviewedPublisher PD

    Enhanced formation of giant cells in common variable immunodeficiency: Relation to granulomatous disease.

    Get PDF
    Peripheral monocytes from patients with common variable immunodeficiency (CVID) had on average a 2 fold greater tendency to form giant cells in medium without additional cytokines. Giant cell formation was faster and 3 to 5 fold higher in most CVID cells compared to normal. Addition of IL4, GMCSF, IFNγ, TNFa and both T cell and monocyte conditioned media promoted monocyte fusion of some CVID individuals over 5 fold the normal average level, with combinations of cytokines and monokines acting synergistically. The reduction of normal giant cell formation by anti-IFNγ antibody and a greater tendency of CVID cells to fuse in immunoglobulin conditioned media suggests that standard IVIg treatment contributes to granuloma formation. CVID and normal giant cells expressed similar levels of phenotypic molecules and had similar phagocytic activity. Monocytes from many CVID patients have an elevated tendency to fuse which may explain the high incidence of granulomatous complications in CVID

    Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.

    Get PDF
    Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+) T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+) T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+) T-cells in PBMC cultures required 'classical' CD14(+) monocytes, which enhanced T-cell activation. CD3(+) T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+) T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease

    Recommendations for Kidney Disease Guideline Updating: A Report by the KDIGO Methods Committee

    Get PDF
    Updating rather than de novo guideline development now accounts for the majority of guideline activities for many guideline development organizations, including Kidney Disease: Improving Global Outcomes (KDIGO), an international kidney disease guideline development entity that has produced guidelines on kidney diseases since 2008. Increasingly, guideline developers are moving away from updating at fixed intervals in favor of more flexible approaches that use periodic expert assessment of guideline currency (with or without an updated systematic review) to determine the need for updating. Determining the need for guideline updating in an efficient, transparent, and timely manner is challenging, and updating of systematic reviews and guidelines is labor intensive. Ideally, guidelines should be updated dynamically when new evidence indicates a need for a substantive change in the guideline based on a priori criteria. This dynamic updating (sometimes referred to as a living guideline model) can be facilitated with the use of integrated electronic platforms that allow updating of specific recommendations. This report summarizes consensus-based recommendations from a panel of guideline methodology professionals on how to keep KDIGO guidelines up to date

    Evaluation of the Webler-Brown model for estimating tetrachloroethylene exposure from vinyl-lined asbestos-cement pipes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>From May 1968 through March 1980, vinyl-lined asbestos-cement (VL/AC) water distribution pipes were installed in New England to avoid taste and odor problems associated with asbestos-cement pipes. The vinyl resin was applied to the inner pipe surface in a solution of tetrachloroethylene (perchloroethylene, PCE). Substantial amounts of PCE remained in the liner and subsequently leached into public drinking water supplies.</p> <p>Methods</p> <p>Once aware of the leaching problem and prior to remediation (April-November 1980), Massachusetts regulators collected drinking water samples from VL/AC pipes to determine the extent and severity of the PCE contamination. This study compares newly obtained historical records of PCE concentrations in water samples (n = 88) with concentrations estimated using an exposure model employed in epidemiologic studies on the cancer risk associated with PCE-contaminated drinking water. The exposure model was developed by Webler and Brown to estimate the mass of PCE delivered to subjects' residences.</p> <p>Results</p> <p>The mean and median measured PCE concentrations in the water samples were 66 and 0.5 μg/L, respectively, and the range extended from non-detectable to 2432 μg/L. The model-generated concentration estimates and water sample concentrations were moderately correlated (Spearman rank correlation coefficient = 0.48, p < 0.0001). Correlations were higher in samples taken at taps and spigots vs. hydrants (ρ = 0.84 vs. 0.34), in areas with simple vs. complex geometry (ρ = 0.51 vs. 0.38), and near pipes installed in 1973–1976 vs. other years (ρ = 0.56 vs. 0.42 for 1968–1972 and 0.37 for 1977–1980). Overall, 24% of the variance in measured PCE concentrations was explained by the model-generated concentration estimates (p < 0.0001). Almost half of the water samples had undetectable concentrations of PCE. Undetectable levels were more common in areas with the earliest installed VL/AC pipes, at the beginning and middle of VL/AC pipes, at hydrants, and in complex pipe configurations.</p> <p>Conclusion</p> <p>PCE concentration estimates generated using the Webler-Brown model were moderately correlated with measured water concentrations. The present analysis suggests that the exposure assessment process used in prior epidemiological studies could be improved with more accurate characterization of water flow. This study illustrates one method of validating an exposure model in an epidemiological study when historical measurements are not available.</p

    Moult cycle specific differential gene expression profiling of the crab Portunus pelagicus

    Get PDF
    Background: Crustacean moulting is a complex process involving many regulatory pathways. A holistic approach to examine differential gene expression profiles of transcripts relevant to the moulting process, across all moult cycle stages, was used in this study. Custom cDNA microarrays were constructed for Portunus pelagicus. The printed arrays contained 5000 transcripts derived from both the whole organism, and from individual organs such as the brain, eyestalk, mandibular organ and Y-organ from all moult cycle stages.Results: A total of 556 clones were sequenced from the cDNA libraries used to construct the arrays. These cDNAs represented 175 singletons and 62 contigs, resulting in 237 unique putative genes. The gene sequences were classified into the following biological functions: cuticular proteins associated with arthropod exoskeletons, farnesoic acid O-methyltransferase (FaMeT), proteins belonging to the hemocyanin gene family, lectins, proteins relevant to lipid metabolism, mitochondrial proteins, muscle related proteins, phenoloxidase activators and ribosomal proteins. Moult cycle-related differential expression patterns were observed for many transcripts. Of particular interest were those relating to the formation and hardening of the exoskeleton, and genes associated with cell respiration and energy metabolism.Conclusions: The expression data presented here provide a chronological depiction of the molecular events associated with the biological changes that occur during the crustacean moult cycle. Tracing the temporal expression patterns of a large variety of transcripts involved in the moult cycle of P. pelagicus can provide a greater understanding of gene function, interaction, and regulation of both known and new genes with respect to the moulting process
    corecore