77 research outputs found

    Remote automated multi-generational growth and observation of an animal in low Earth orbit

    Get PDF
    The ultimate survival of humanity is dependent upon colonization of other planetary bodies. Key challenges to such habitation are (patho)physiologic changes induced by known, and unknown, factors associated with long-duration and distance space exploration. However, we currently lack biological models for detecting and studying these changes. Here, we use a remote automated culture system to successfully grow an animal in low Earth orbit for six months. Our observations, over 12 generations, demonstrate that the multi-cellular soil worm Caenorhabditis elegans develops from egg to adulthood and produces progeny with identical timings in space as on the Earth. Additionally, these animals display normal rates of movement when fully fed, comparable declines in movement when starved, and appropriate growth arrest upon starvation and recovery upon re-feeding. These observations establish C. elegans as a biological model that can be used to detect changes in animal growth, development, reproduction and behaviour in response to environmental conditions during long-duration spaceflight. This experimental system is ready to be incorporated on future, unmanned interplanetary missions and could be used to study cost-effectively the effects of such missions on these biological processes and the efficacy of new life support systems and radiation shielding technologies

    Remote automated multi-generational growth and observation of an animal in low Earth orbit

    Get PDF
    The ultimate survival of humanity is dependent upon colonization of other planetary bodies. Key challenges to such habitation are (patho)physiologic changes induced by known, and unknown, factors associated with long-duration and distance space exploration. However, we currently lack biological models for detecting and studying these changes. Here, we use a remote automated culture system to successfully grow an animal in low Earth orbit for six months. Our observations, over 12 generations, demonstrate that the multi-cellular soil worm Caenorhabditis elegans develops from egg to adulthood and produces progeny with identical timings in space as on the Earth. Additionally, these animals display normal rates of movement when fully fed, comparable declines in movement when starved, and appropriate growth arrest upon starvation and recovery upon re-feeding. These observations establish C. elegans as a biological model that can be used to detect changes in animal growth, development, reproduction and behaviour in response to environmental conditions during long-duration spaceflight. This experimental system is ready to be incorporated on future, unmanned interplanetary missions and could be used to study cost-effectively the effects of such missions on these biological processes and the efficacy of new life support systems and radiation shielding technologies

    Muscle strength deficiency and mitochondrial dysfunction in a muscular dystrophy model of C. elegans and its functional response to drugs

    Get PDF
    Muscle strength is a key clinical parameter used to monitor the progression of human muscular dystrophies, including Duchenne and Becker muscular dystrophies. Although Caenorhabditis elegans is an established genetic model for studying the mechanisms and treatments of muscular dystrophies, analogous strength-based measurements in this disease model are lacking. Here, we describe the first demonstration of the direct measurement of muscular strength in dystrophin-deficient C. elegans mutants using a micropillar-based force measurement system called NemaFlex. We show that dys-1(eg33) mutants, but not dys-1(cx18) mutants, are significantly weaker than their wild-type counterparts in early adulthood, cannot thrash in liquid at wild-type rates, display mitochondrial network fragmentation in the body wall muscles, and have an abnormally high baseline mitochondrial respiration. Furthermore, treatment with prednisone, the standard treatment for muscular dystrophy in humans, and melatonin both improve muscular strength, thrashing rate and mitochondrial network integrity in dys-1(eg33), and prednisone treatment also returns baseline respiration to normal levels. Thus, our results demonstrate that the dys-1(eg33) strain is more clinically relevant than dys-1(cx18) for muscular dystrophy studies in C. elegans. This finding, in combination with the novel NemaFlex platform, can be used as an efficient workflow for identifying candidate compounds that can improve strength in the C. elegans muscular dystrophy model. Our study also lays the foundation for further probing of the mechanism of muscle function loss in dystrophin-deficient C. elegans, leading to knowledge translatable to human muscular dystrophy

    "Nutraceuticals" in relation to human skeletal muscle and exercise.

    Get PDF
    Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and "nutraceutical" compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to1) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and2) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine

    A Modular Hardware and Software Architecture for a Student-Designed BioCubeSat Prototype Using Autonomous Operations

    Get PDF
    BAMMsat-on-BEXUS is a student-led project aiming to design, manufacture, and fly a CubeSat-compatible payload on a stratospheric balloon. The payload – BAMMsat (Biology, Astrobiology, Medicine, and Materials Science on satellite) – is a modular CubeSat-format laboratory termed a bioCubeSat. The mission is realized under the bilateral REXUS/BEXUS programme run by the German Aerospace Center (DLR) and the Swedish National Space Agency (SNSA), with the Swedish payload share available to students through a European Space Agency (ESA) collaboration. The core objective of the prototype payload is to perform a technology demonstration of the core bioCubeSat technology, demonstrating its capability to support biological experiments in space. Additionally, the mission aims to validate pre-flight and flight operations, with a particular focus on biological operations. This will increase TRL for future bioCubeSat spaceflight with the goal to eventually enable better and cheaper biological, pharmaceutical, and materials science research in space environments. The BEXUS mission follows a typical space mission framework with reduced timeframe, therefore trade-offs prioritize commercial-off-the-shelf components and simple software using open-source solutions. The payload comprises a 2U pressurized laboratory payload (BAMMsat) and 1U avionics bus. The former contains experiment hardware including a Multi-Chamber Sample Disc, rotary mechanism, imager, the microfluidics system, active thermal control, and supporting avionics. The bus contains two flight computers, multiple custom avionics PCBs, and serves as the interface between BAMMsat and the BEXUS balloon gondola. The BAMMsat-on-BEXUS prototype will likely fly in October 2021. The prototype flight should prove that the system can perform varied microfluidics operations on multiple C. elegans samples, capture detailed imagery of the samples, provide general system housekeeping and communications, and provide life support for samples, including stable temperature and pressure despite operating within an extreme temperature and near-vacuum environment. The system and biological operations are designed to be fully automatic during flight, with some subsystems continually autonomously operating and others following sequenced events. Future work will aim for greater use of autonomous operations to reduce operating costs and enable more advanced system control, particularly for precise active thermal control and experiment sequencing. The next iteration of BAMMsat is targeting low Earth orbit missions, after further hardware upgrades and the inclusion of fluorescence microscopy and additional chemical sensors

    Mitochondrial dysfunction causes Ca2+ overload and ECM degradation–mediated muscle damage in C. elegans

    Get PDF
    Mitochondrial dysfunction impairs muscle health and causes subsequent muscle wasting. This study explores the role of mitochondrial dysfunction as an intramuscular signal for the extracellular matrix (ECM)–based proteolysis and, consequentially, muscle cell dystrophy. We found that inhibition of the mitochondrial electron transport chain causes paralysis as well as muscle structural damage in the nematode Caenorhabditis elegans. This was associated with a significant decline in collagen content. Both paralysis and muscle damage could be rescued with collagen IV overexpression, matrix metalloproteinase (MMP), and Furin inhibitors in Antimycin A–treated animal as well as in the C. elegans Duchenne muscular dystrophy model. Additionally, muscle cytosolic calcium increased in the Antimycin A–treated worms, and its down-regulation rescued the muscle damage, suggesting that calcium overload acts as one of the early triggers and activates Furin and MMPs for collagen degradation. In conclusion, we have established ECM degradation as an important pathway of muscle damage

    Sulfur amino acid supplementation displays therapeutic potential in a C. elegans model of Duchenne muscular dystrophy

    Get PDF
    Mutations in the dystrophin gene cause Duchenne muscular dystrophy (DMD), a common muscle disease that manifests with muscle weakness, wasting, and degeneration. An emerging theme in DMD pathophysiology is an intramuscular deficit in the gasotransmitter hydrogen sulfide (H2S). Here we show that the C. elegans DMD model displays reduced levels of H2S and expression of genes required for sulfur metabolism. These reductions can be offset by increasing bioavailability of sulfur containing amino acids (L-methionine, L-homocysteine, L-cysteine, L-glutathione, and L-taurine), augmenting healthspan primarily via improved calcium regulation, mitochondrial structure and delayed muscle cell death. Additionally, we show distinct differences in preservation mechanisms between sulfur amino acid vs H2S administration, despite similarities in required health-preserving pathways. Our results suggest that the H2S deficit in DMD is likely caused by altered sulfur metabolism and that modulation of this pathway may improve DMD muscle health via multiple evolutionarily conserved mechanisms

    Worms in Space for Outreach on Earth:Space Life Science Activities for the Classroom

    Get PDF
    Long term spaceflight is associated with the loss of skeletal muscle mass and function. The Molecular Muscle Experiment (MME) seeks to identify the causes of muscle decline in space and test potential therapies to attenuate this in the microscopic worm,C. elegans. This is the first UK-led experiment in the almost two-decade history of the International Space Station. We therefore intend to complete significant and widespread educational outreach activities to promote interest in science, technology, engineering and maths (STEM), and to increase engagement with our space life science experiment. This paper describes three education outreach activities relating to our MME experiment that are suitable for use in the classroom, including: (i) observing normal and mutant worms; (ii) observing the effect of unloading (simulation of microgravity); and (iii) handling spaceflight hardware. Activity packs are provided at a ‘starter’ and ‘advanced’ level to support these activities. This paper also provides three posters that may be used as learning resources for educators that give information on: (i) why worms are used for research; (ii) spaceflight human physiology; and (iii) the specifics of our MME. Details of further planned engagement activities are outlined to increase the awareness of the MME

    The acute transcriptional response to resistance exercise: impact of age and contraction mode

    Get PDF
    Optimization of resistance exercise (RE) remains a hotbed of research for muscle building and maintenance. However, the interactions between the contractile components of RE (i.e. concentric (CON) and eccentric (ECC)) and age, are poorly defined. We used transcriptomics to compare age-related molecular responses to acute CON and ECC exercise. Eight young (21±1 y) and eight older (70±1 y) exercise-naïve male volunteers had vastus lateralis biopsies collected at baseline and 5 h post unilateral CON and contralateral ECC exercise. RNA was subjected to next-generation sequencing and differentially expressed (DE) genes tested for pathway enrichment using Gene Ontology (GO). The young transcriptional response to CON and ECC was highly similar and older adults displayed moderate contraction-specific profiles, with no GO enrichment. Age-specific responses to ECC revealed 104 DE genes unique to young, and 170 DE genes in older muscle, with no GO enrichment. Following CON, 15 DE genes were young muscle-specific, whereas older muscle uniquely expressed 147 up-regulated genes enriched for cell adhesion and blood vessel development, and 28 down-regulated genes involved in mitochondrial respiration, amino acid and lipid metabolism. Thus, older age is associated with contraction-specific regulation often without clear functional relevance, perhaps reflecting a degree of stochastic age-related dysregulation.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.CSD was funded by a doctoral training studentship from Bournemouth University. This work was generously supported by the Wellcome Trust Institutional Strategic Support Award (WT105618MA). RMA is generously supported by the Wellcome Trust Institutional Strategic Support Award (WT105618MA) and an EPSRC/BBSRC Innovation Fellowship (EP/S001352/1). We acknowledge the Medical Research Council [grant number MR/P021220/1] [grant number MR/K00414X/1] and Arthritis Research UK [grant number 19891] as part of the MRC-ARUK Centre for Musculoskeletal Ageing Research awarded to the Universities of Nottingham and Birmingham, and the National Institute for Health Research, Nottingham Biomedical Research Centre. This work was supported by the Biotechnology and Biological Sciences Research Council [grant number BB/N015894/1]. This work was supported by a grant from the Swedish Research Council for Sport Science (dnr 2016/125 and dnr 2017/143). C.R.G.W is supported by the Biotechnology and Biological Sciences Research Council-funded South West Biosciences Doctoral Training Partnership [BB/J014400/1; BB/M009122/1].Published versio

    A Common Allele in FGF21 Associated with Sugar Intake Is Associated with Body Shape, Lower Total Body-Fat Percentage, and Higher Blood Pressure

    Get PDF
    Summary: Fibroblast growth factor 21 (FGF21) is a hormone that has insulin-sensitizing properties. Some trials of FGF21 analogs show weight loss and lipid-lowering effects. Recent studies have shown that a common allele in the FGF21 gene alters the balance of macronutrients consumed, but there was little evidence of an effect on metabolic traits. We studied a common FGF21 allele (A:rs838133) in 451,099 people from the UK Biobank study, aiming to use the human allele to inform potential adverse and beneficial effects of targeting FGF21. We replicated the association between the A allele and higher percentage carbohydrate intake. We then showed that this allele is more strongly associated with higher blood pressure and waist-hip ratio, despite an association with lower total body-fat percentage, than it is with BMI or type 2 diabetes. These human phenotypes of variation in the FGF21 gene will inform research into FGF21’s mechanisms and therapeutic potential. : Drugs targeting the hormone FGF21 may have beneficial health effects. Variations in human DNA in the FGF21 gene provide an indication of what those effects may be. Here, we show that variation in the FGF21 gene is associated with higher blood pressure and altered body shape, despite lower total body-fat percentage. Keywords: FGF21, BMI, waist-hip ratio, blood pressure, body fat, allele, genetic variant, UK Bioban
    corecore