375 research outputs found

    Genetic variation modifies risk for neurodegeneration based on biomarker status

    Get PDF
    Background: While a great deal of work has gone into understanding the relationship between CSF biomarkers, brain atrophy, and disease progression, less work has attempted to investigate how genetic variation modifies these relationships. The goal of this study was two-fold. First, we sought to identify high-risk v. low-risk individuals based on their CSF tau and Aβ load and characterize these individuals with regard to brain atrophy in an AD-relevant region of interest. Next, we sought to identify genetic variants that modified the relationship between biomarker classification and neurodegeneration.Methods: Participants were categorized based on established cut-points for biomarker positivity. Mixed model regression was used to quantify longitudinal change in the left inferior lateral ventricle. Interaction analyses between single nucleotide polymorphisms (SNPs) and biomarker group status were performed using a genome wide association study (GWAS) approach. Correction for multiple comparisons was performed using the Bonferroni procedure. Results: One intergenic SNP (rs4866650) and one SNP within the SPTLC1 gene (rs7849530) modified the association between amyloid positivity and neurodegeneration. A transcript variant of WDR11-AS1 gene (rs12261764) modified the association between tau positivity and neurodegeneration. These effects were consistent across the two sub-datasets and explained approximately 3% of variance in ventricular dilation. One additional SNP (rs6887649) modified the association between amyloid positivity and baseline ventricular volume, but was not observed consistently across the sub-datasets.Conclusions: Genetic variation modifies the association between AD biomarkers and neurodegeneration. Genes that regulate the molecular response in the brain to oxidative stress may be particularly relevant to neural vulnerability to the damaging effects of amyloid-β

    Accuracy of Gene Expression Prediction From Genotype Data With PrediXcan Varies Across and Within Continental Populations

    Get PDF
    Using genetic data to predict gene expression has garnered significant attention in recent years. PrediXcan has become one of the most widely used gene-based methods for testing associations between predicted gene expression values and a phenotype, which has facilitated novel insights into the relationship between complex traits and the component of gene expression that can be attributed to genetic variation. The gene expression prediction models for PrediXcan were developed using supervised machine learning methods and training data from the Depression Genes and Networks (DGN) study and the Genotype-Tissue Expression (GTEx) project, where the majority of subjects are of European descent. Many genetic studies, however, include samples from multi-ethnic populations, and in this paper we evaluate the accuracy of PrediXcan for predicting gene expression in diverse populations. Using transcriptomic data from the GEUVADIS (Genetic European Variation in Disease) RNA sequencing project and whole genome sequencing data from the 1000 Genomes project, we evaluate and compare the predictive performance of PrediXcan in an African population (Yoruban) and four European ancestry populations for thousands of genes. We evaluate a range of models from the PrediXcan weight databases and use Pearson's correlation coefficient to assess gene expression prediction accuracy with PrediXcan. From our evaluation, we find that the predictive performance of PrediXcan varies substantially among populations from different continents (F-test p-value < 2.2 × 10−16), where prediction accuracy is lower in the Yoruban population from West Africa compared to the European-ancestry populations. Moreover, not only do we find differences in predictive performance between populations from different continents, we also find highly significant differences in prediction accuracy among the four European ancestry populations considered (F-test p-value < 2.2 × 10−16). Finally, while there is variability in prediction accuracy across different PrediXcan weight databases, we also find consistency in the qualitative performance of PrediXcan for the five populations considered, with the African ancestry population having the lowest accuracy across databases

    Modeling deep ocean shipping noise in varying acidity conditions

    Get PDF
    Author Posting. © Acoustical Society of America, 2010. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 128 (2010): EL130–EL136, doi:10.1121/1.3402284.Possible future changes of ambient shipping noise at 0.1–1 kHz in the North Pacific caused by changing seawater chemistry conditions are analyzed with a simplified propagation model. Probable decreases of pH would cause meaningful reduction of the sound absorption coefficient in near-surface ocean water for these frequencies. The results show that a few decibels of increase may occur in 100 years in some very quiet areas very far from noise sources, with small effects closer to noise sources. The use of ray physics allows sound energy attenuated via volume absorption and by the seafloor to be compared.This work was supported by the Ocean Acoustics Program at the U.S. Office of Naval Research, Code 321, including an ONR Postdoctoral Fellowship award to the first author

    Identity-by-descent estimation with population- and pedigree-based imputation in admixed family data

    Get PDF
    Background: In the past few years, imputation approaches have been mainly used in population-based designs of genome-wide association studies, although both family- and population-based imputation methods have been proposed. With the recent surge of family-based designs, family-based imputation has become more important. Imputation methods for both designs are based on identity-by-descent (IBD) information. Apart from imputation, the use of IBD information is also common for several types of genetic analysis, including pedigree-based linkage analysis. Methods: We compared the performance of several family- and population-based imputation methods in large pedigrees provided by Genetic Analysis Workshop 19 (GAW19). We also evaluated the performance of a new IBD mapping approach that we propose, which combines IBD information from known pedigrees with information from unrelated individuals. Results: Different combinations of the imputation methods have varied imputation accuracies. Moreover, we showed gains from the use of both known pedigrees and unrelated individuals with our IBD mapping approach over the use of known pedigrees only. Conclusions: Our results represent accuracies of different combinations of imputation methods that may be useful for data sets similar to the GAW19 pedigree data. Our IBD mapping approach, which uses both known pedigree and unrelated individuals, performed better than classical linkage analysis

    Variant-specific inflation factors for assessing population stratification at the phenotypic variance level

    Get PDF
    In modern Whole Genome Sequencing (WGS) epidemiological studies, participant-level data from multiple studies are often pooled and results are obtained from a single analysis. We consider the impact of differential phenotype variances by study, which we term \u27variance stratification\u27. Unaccounted for, variance stratification can lead to both decreased statistical power, and increased false positives rates, depending on how allele frequencies, sample sizes, and phenotypic variances vary across the studies that are pooled. We develop a procedure to compute variant-specific inflation factors, and show how it can be used for diagnosis of genetic association analyses on pooled individual level data from multiple studies. We describe a WGS-appropriate analysis approach, implemented in freely-available software, which allows study-specific variances and thereby improves performance in practice. We illustrate the variance stratification problem, its solutions, and the proposed diagnostic procedure, in simulations and in data from the Trans-Omics for Precision Medicine Whole Genome Sequencing Program (TOPMed), used in association tests for hemoglobin concentrations and BMI

    Positive priming of terrestrially derived dissolved organic matter in a freshwater microcosm system

    Get PDF
    © 2015. American Geophysical Union. All Rights Reserved. The role of priming processes in the remineralization of terrestrially derived dissolved organic carbon (TDOC) in aquatic systems has been overlooked. We provide evidence for TDOC priming using a lab-based microcosm experiment in which TDOC was primed by the addition of 13C-labeled algal dissolved organic carbon (ADOC) or a 13C-labeled disaccharide (trehalose). The rate of TDOC remineralization to carbon dioxide (CO2) occurred 4.1±0.9 and 1.5±0.3 times more rapidly with the addition of trehalose and ADOC, respectively, relative to experiments with TDOC as the sole carbon source over the course of a 301h incubation period. Results from these controlled experiments provide fundamental evidence for the occurrence of priming of TDOC by ADOC and a simple disaccharide. We suggest that priming effects on TDOC should be considered in carbon budgets for large-river deltas, estuaries, lakes, hydroelectric reservoirs, and continental shelves. Key Points Priming of organic matter exists in aquatic systems Ramifications of this work have major implications on greenhouse gas emissions First evidence for lab conditions of priming setting stage for more fieldwork

    Genome-wide Characterization of Shared and Distinct Genetic Components that Influence Blood Lipid Levels in Ethnically Diverse Human Populations

    Get PDF
    Blood lipid concentrations are heritable risk factors associated with atherosclerosis and cardiovascular diseases. Lipid traits exhibit considerable variation among populations of distinct ancestral origin as well as between individuals within a population. We performed association analyses to identify genetic loci influencing lipid concentrations in African American and Hispanic American women in the Women’s Health Initiative SNP Health Association Resource. We validated one African-specific high-density lipoprotein cholesterol locus at CD36 as well as 14 known lipid loci that have been previously implicated in studies of European populations. Moreover, we demonstrate striking similarities in genetic architecture (loci influencing the trait, direction and magnitude of genetic effects, and proportions of phenotypic variation explained) of lipid traits across populations. In particular, we found that a disproportionate fraction of lipid variation in African Americans and Hispanic Americans can be attributed to genomic loci exhibiting statistical evidence of association in Europeans, even though the precise genes and variants remain unknown. At the same time, we found substantial allelic heterogeneity within shared loci, characterized both by population-specific rare variants and variants shared among multiple populations that occur at disparate frequencies. The allelic heterogeneity emphasizes the importance of including diverse populations in future genetic association studies of complex traits such as lipids; furthermore, the overlap in lipid loci across populations of diverse ancestral origin argues that additional knowledge can be gleaned from multiple populations

    A Powerful Statistical Framework for Generalization Testing in GWAS, with Application to the HCHS/SOL

    Get PDF
    In GWAS, “generalization” is the replication of genotype-phenotype association in a population with different ancestry than the population in which it was first identified. The standard for reporting findings from a GWAS requires a two-stage design, in which discovered associations are replicated in an independent follow-up study. Current practices for declaring generalizations rely on testing associations while controlling the Family Wise Error Rate (FWER) in the discovery study, then separately controlling error measures in the follow-up study. While this approach limits false generalizations, we show that it does not guarantee control over the FWER or False Discovery Rate (FDR) of the generalization null hypotheses. In addition, it fails to leverage the two-stage design to increase power for detecting generalized associations. We develop a formal statistical framework for quantifying the evidence of generalization that accounts for the (in)consistency between the directions of associations in the discovery and follow-up studies. We develop the directional generalization FWER (FWERg) and FDR (FDRg) controlling r-values, which are used to declare associations as generalized. This framework extends to generalization testing when applied to a published list of SNP-trait associations. We show that our framework accommodates various SNP selection rules for generalization testing based on p-values in the discovery study, and still control FWERg or FDRg. A key finding is that it is often beneficial to use a more lenient p-value threshold then the genome-wide significance threshold. For instance, in a GWAS of Total Cholesterol (TC) in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), when testing all SNPs with p-values\u3c 5 × 10−8 (15 genomic regions) for generalization in a large GWAS of whites, we generalized SNPs from 15 regions. But when testing all SNPs with p-values\u3c 6.6×10−5 (89 regions), we generalized SNPs from 27 regions

    Estimating relationships between phenotypes and subjects drawn from admixed families.

    Get PDF
    Background: Estimating relationships among subjects in a sample, within family structures or caused by population substructure, is complicated in admixed populations. Inaccurate allele frequencies can bias both kinship estimates and tests for association between subjects and a phenotype. We analyzed the simulated and real family data from Genetic Analysis Workshop 19, and were aware of the simulation model. Results: We found that kinship estimation is more accurate when marker data include common variants whose frequencies are less variable across populations. Estimates of heritability and association vary with age for longitudinally measured traits. Accounting for local ancestry identified different true associations than those identified by a traditional approach. Principal components aid kinship estimation and tests for association, but their utility is influenced by the frequency of the markers used to generate them. Conclusions: Admixed families can provide a powerful resource for detecting disease loci, as well as analytical challenges. Allele frequencies, although difficult to adequately estimate in admixed populations, have a strong impact on the estimation of kinship, ancestry, and association with phenotypes. Approaches that acknowledge population structure in admixed families outperform those which ignore it
    corecore