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Using genetic data to predict gene expression has garnered significant attention in

recent years. PrediXcan has become one of the most widely used gene-based methods

for testing associations between predicted gene expression values and a phenotype,

which has facilitated novel insights into the relationship between complex traits and

the component of gene expression that can be attributed to genetic variation. The

gene expression prediction models for PrediXcan were developed using supervised

machine learning methods and training data from the Depression Genes and Networks

(DGN) study and the Genotype-Tissue Expression (GTEx) project, where the majority

of subjects are of European descent. Many genetic studies, however, include samples

from multi-ethnic populations, and in this paper we evaluate the accuracy of PrediXcan

for predicting gene expression in diverse populations. Using transcriptomic data from

the GEUVADIS (Genetic European Variation in Disease) RNA sequencing project and

whole genome sequencing data from the 1000 Genomes project, we evaluate and

compare the predictive performance of PrediXcan in an African population (Yoruban)

and four European ancestry populations for thousands of genes. We evaluate a range of

models from the PrediXcan weight databases and use Pearson’s correlation coefficient

to assess gene expression prediction accuracy with PrediXcan. From our evaluation, we

find that the predictive performance of PrediXcan varies substantially among populations

from different continents (F-test p-value < 2.2 × 10−16), where prediction accuracy is

lower in the Yoruban population from West Africa compared to the European-ancestry

populations. Moreover, not only do we find differences in predictive performance

between populations from different continents, we also find highly significant differences

in prediction accuracy among the four European ancestry populations considered

(F-test p-value < 2.2 × 10−16). Finally, while there is variability in prediction accuracy

across different PrediXcan weight databases, we also find consistency in the qualitative

performance of PrediXcan for the five populations considered, with the African ancestry

population having the lowest accuracy across databases.
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1. INTRODUCTION

In the past decade, genome-wide association studies (GWAS)
have identified thousands of genetic variants significantly
associated with a wide range of human phenotypes (Sudlow
et al., 2015; NHLBI, 2016; MacArthur et al., 2017; Visscher
et al., 2017). The vast majority of these studies, however, were
conducted in samples from European ancestry populations
(Need and Goldstein, 2009; Bustamante et al., 2011; Petrovski
and Goldstein, 2016; Popejoy and Fullerton, 2016; Bentley et al.,
2017; Hindorff et al., 2018). Differences in allele frequencies,
genetic architecture, and linkage disequilibrium (LD) patterns
across ancestries suggest that GWAS discoveries can fail to
generalize across populations, and recent publications have
provided compelling evidence that GWAS findings often do
not transfer from European populations to other ethnic groups
(Adeyemo and Rotimi, 2009; Li and Keating, 2014). For
example, Carlson et al. analyzed multi-ethnic data from the
PAGE Consortium and concluded that some variants identified
in GWAS in European ancestry populations had different
magnitude and direction of allelic effects in non-European
populations and the differential effects were more persistent in
African Americans (Carlson et al., 2013). Moreover, genetic risk
prediction models derived from European GWAS were found
to be unreliable when applied to other ethnic groups (Carlson
et al., 2013). Martin et al. examined the impact of population
history on polygenic risk scores and demonstrated that they
can be biased and confounded by population structure (Martin
et al., 2017). Since genetic risk prediction accuracy depends
on genetic similarity between the target and discovery cohorts,
Martin et al. advised against interpreting the scores across
populations and recommended computing them in genetically
similar cohorts.

Associations between genetic variation and molecular traits,
such as gene expression, have advanced our understanding of
the mechanisms underlying trait-variant associations (Nica et al.,
2010; Torres et al., 2014; Albert and Kruglyak, 2015). Prior
studies have shown that a large proportion of GWAS variants
identified for complex traits are expression quantitative trait
loci (eQTLs), i.e., they play a role in regulating gene expression
(Nicolae et al., 2010). Thus, eQTLs can aid in prioritizing likely
causal variants among the ones identified by GWAS, especially if
they are found in non-coding regions, and can help uncover the
mechanisms by which genotypes influence phenotypes (Albert
and Kruglyak, 2015). As a result, having three types of data—
genotype, phenotype and gene expression—on the same set of
subjects can be advantageous for improved understanding of the
relationships between complex traits, the genetic backgrounds of
study subjects, and the underlying biological processes. However,
collecting all of these different types of data on the same
study subjects is often not feasible due to cost and tissue
availability. Additionally, eQTL studies have the same pitfalls
as GWASs—the majority of the detected eQTLs are not causal,
but may be in LD with causal variants. Similar to variants
identified through GWAS, eQTL findings might fail to replicate
in diverse populations due to differential LD patterns across
populations (Kelly et al., 2017).

Recently, there has been increased interest in integrating
eQTL studies and GWASs for improved complex trait mapping.
PrediXcan (Gamazon et al., 2015) is one of the most widely
used integrative methods for testing associations between a
phenotype and gene expression values predicted from SNP
genotyping or sequencing data. PrediXcan can have increased
power over traditional GWAS methods, particularly when
differential changes in gene expression is an intermediary stage
of the causal pathway from genetic variation to the outcome
of interest. A useful feature of PrediXcan (and other similar
methods) is the ability to obtain predicted gene expression values
on study subjects when tissue types relevant to phenotypes
are not available. We now give a very brief overview of the
PrediXcan method. PrediXcan uses machine learning methods
and large reference datasets consisting of both genotype and
trascriptome data for supervised training to construct prediction
models for expression of each gene. With PrediXcan, genetic
training data is restricted to common cis-variants that are within
1 Mb upstream and downstream from the transcription region
(Gamazon et al., 2015). Gene-specific derived SNP weights from
the prediction models are then stored in databases, with separate
sets of weights for different tissue types. Using these weights,
PrediXcan allows for the prediction of gene expression values
for study subjects with available genotype data, where predicted
expression values are computed as a weighted linear combination
of SNP dosages. Finally, the predicted expression values can
then be used to test for associations with a phenotype of
interest. By conducting tests on gene expression obtained from an
aggregation of variants, PrediXcan dramatically reduces multiple
testing burden as compared to single variant association testing.

Previous studies have reported differences in gene expression
levels across diverse populations from the HapMap3 project,
noting that 77% of eQTLs are population specific and only 23%
are shared between two or more populations (The International
HapMap 3 Consortium et al., 2010; Stranger et al., 2012). More
distantly related populations have more differentially expressed
genes than closely related populations, although this can often be
explained by the expression of different gene transcripts across
populations (Lappalainen et al., 2013). One potential limitation
of PrediXcan, however, is that the method may not perform
well in diverse populations, as the supervised learning for
PrediXcan was conducted using data from the Depression Genes
and Networks (DGN) and the Genotype-Tissue Expression
(GTEx) Project—both of which consist primarily of European-
ancestry subjects (Lonsdale et al., 2013; Battle et al., 2014). Many
genetic studies include samples from multi-ethnic populations,
and understanding the accuracy of gene expression prediction
with PrediXcan across populations is of interest to many
genetic researchers.

Recent works have evaluated the performance of PrediXcan
in diverse populations (Gottlieb et al., 2017; Li et al., 2018).
Li et al. evaluated PrediXcan whole-blood prediction models
and investigated the factors that influence prediction accuracy
using the Yoruban (YRI) and European (CEU) samples from the
Genetic European Variation in Health and Disease (GEUVADIS)
(Lappalainen et al., 2013) cohort. In this paper, the PrediXcan
performance was reported to be unsatisfactory for most genes
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due to predicted gene expression values not correlating well with
the observed values (Li et al., 2018). Differences in prediction
accuracy with PrediXcan between the YRI and CEU, however,
were not directly compared. Gottlieb et al. investigated the
performance of PrediXcan for a small subset of 116 genes
that are in the warfarin-response pathway in European and
African American samples where they concluded that PrediXcan
performed poorly in African Americans (Gottlieb et al., 2017).

Here, we evaluate the predictive performance of PrediXcan
both across and within continental populations using thousands
of genes across the genome. Using the GEUVADIS transcriptome
data and whole genome sequencing data from the 1000 Genomes
Project (Lappalainen et al., 2013; Auton et al., 2015), we consider
four closely related European ancestry populations and one
African population. In our analysis, we test the null hypotheses
of (1) no difference in prediction accuracy with PrediXcan
across European and African continental populations; and (2) no
difference in predictive performance among the four European
derived populations. We obtain predicted gene expression
levels using seven PrediXcan weight databases derived from
whole blood and lymphoblastoid cell lines (LCL) transcriptome
data for each individual. To evaluate differences in prediction
accuracy among the populations, we use a linear mixed effects
model framework where Pearson’s correlation coefficients for
observed and predicted gene expression levels are included as
the outcome and the populations are included as categorical
predictors. In addition, we evaluate the utility of whole-blood-
based models when making predictions for LCL expression data.
We find from our analyses that accuracy of PrediXcan for gene
expression prediction not only differs between European and
African continental populations, but also among closely related
populations of European ancestry. Furthermore, prediction
accuracy with PrediXcan is the lowest in Africans across all seven
weight databases considered, which further illustrates the need
to develop new predictive models using training data composed
of individuals who have similar ancestry to the target sample for
which gene expression is to be predicted (Mogil et al., 2018).

2. MATERIALS AND METHODS

2.1. Datasets
We obtained gene expression data from the GEUVADIS
Consortium and whole genome sequencing data from the 1000
Genomes Project. The gene expression data consisted of RNA
sequencing on lymphoblastoid cell line (LCL) samples for 464
individuals from five populations. Of these, 445 subjects were
in the 1000 Genomes Phase 3 dataset, including 358 subjects of
European descent, and 87 subjects of African descent. European
samples included: Utah residents with Northern and Western
European ancestry (CEU, n = 89), British individuals in England
and Scotland (GBR, n = 86), Finnish in Finland (FIN, n = 92),
and Toscani in Italy (TSI, n = 91). African samples included
individuals of African descent from Yoruba in Ibadan, Nigeria
(YRI, n = 87). Gene expression measurements were available for
23,722 genes.

We used seven PrediXcan weight databases: DGN whole-
blood (further referred to as DGN), GTEx v6 1KG whole blood,

GTEx v6 1KG LCL, GTEx v6 HapMap whole blood, GTEx v6
HapMap LCL, GTEx v7 HapMap whole blood (GTEx WB),
and GTEx v7 HapMap LCL (GTEx LCL). The databases were
downloaded from http://predictdb.org/.

2.2. Filtering Procedure for Poorly
Predicted Genes
Linear regression models were used to identify genes whose
predicted values were not associated with the observed values
at significance level of 0.05 in order to filter out genes that
have poor prediction accuracy across all subjects. For each
gene, we fit a linear regression model with observed gene
expression as the outcome and predicted gene expression as
the predictor of interest. A Wald test was used to assess
significance of the coefficient for each gene in the linear model.
Genes with corresponding p-values that were higher than a
nominal significance level of 0.05 were identified and labeled as
“poorly predicted.”

We then calculated Pearson’s correlation coefficient, r,
between observed and predicted expression values for every
gene, in each population separately. A few genes had the
same predicted gene expression levels across all subjects. Since
we could not calculate the correlation if one of the variables
was constant, we excluded those genes. Thus, for every gene
considered there were five Pearson’s correlation coefficients, one
for each population. Note that we used r instead of the square
of Pearson correlation, r2, in order to take directionality of
correlation into account when assessing predictive performance.
We found that using r2 as a measure of predictive accuracy can be
misleading as there were genes for which predicted and observed
expression values had a significant negative correlation.

It should be noted that we also performed an evaluation of the
performance of PrediXcan without doing any filtering of genes in
order to assess the impact on the analysis when poorly predicted
genes are excluded, as discussed below.

2.3. Assessing Prediction Accuracy
Differences Across Populations and
Across Tissues
In the analyses described below to assess differences in prediction
accuracy with PrediXcan across populations, two sets of genes
were considered—all genes without any filtering and a subset of
genes using the filtering process previously described.

We first compared prediction performance between the two
continental groups—European and African. For each gene,
we calculated two Pearson’s correlation coefficients between
observed and predicted gene expression levels—one based on
all European samples and the other one based on the African
samples. We then used a paired t-test to assess differences in
mean prediction accuracy between the correlation coefficients for
European samples vs correlation coefficients for African samples.

To assess differences in prediction accuracy across the five
populations, we used a linear mixed effects model approach
where we fit the following model:

rij = β0+γi+β1IFIN,i+β2IGBR,i+β3ITSI,i+β4IYRI,i+ ǫij, (1)
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where rij is the correlation coefficient for gene i in population
j; and IFIN,i, IGBR,i, ITSI,i, and IYRI,i are indicator variables that
are equal to 1 if the gene correlation was calculated on the
population indicated in the subscript, and otherwise are equal
to 0. Thus, we modeled population as a categorical predictor,
with the CEU population as a reference. To account for variation
between genes, we included a random intercept γi for each gene
and we assumed that γi ∼ N (0, σ 2

γ
). We also included an

error term ǫij, such that ǫij ∼ N (0, σ 2). We used repeated
measures ANOVA to test the null hypothesis of β1 = β2 =

β3 = β4 = 0 for no difference in mean Pearson’s correlation
coefficients among the populations. A Wald test was used to
assess significance of differences in mean Pearson’s correlation
coefficients between CEU, the reference population, and each of
the other four populations.

We also ran a similar analysis where we excluded the CEU
population due to potentially lower quality of the CEU cell lines,
as reported in the literature (Çaliskan et al., 2014; Yuan et al.,
2015). We fit a model identical to (1), excluding the CEU and
using the FIN population as a reference:

rij = β0 + γi + β1IGBR,i + β2ITSI,i + β3IYRI,i + ǫij, (2)

where the notation is the same as above.
Additionally, we tested for differences in prediction accuracy

across the four European populations. For this analysis, we
included only individuals of European ancestry and fit the
following linear mixed effects model:

rij = β0 + γi + β1IFIN,i + β2IGBR,i + β3ITSI,i + ǫij, (3)

where CEU is included as the reference population in the model.
As in the previously described analyses, a repeated measures
ANOVA was used to test for differences in prediction accuracy
across the four European populations.

To evaluate how the PrediXcan performance with whole-
blood (WB) databases differed from LCL databases, we
restricted the set of genes to only those that were present
in both the WB and LCL databases. First, we presented
scatter plots of correlation coefficients comparing WB and
LCL databases in the five populations separately. Then we
recalculated Pearson’s correlation coefficients between observed
and predicted expression values with all the five populations
combined but separately for every database, i.e., as a result, we
had two correlation coefficients per gene, one that corresponded
to a GTEx WB database and one to a GTEx LCL database. We
compared each pair of GTEx WB and GTEx LCL databases
using a paired t-test between LCL-based correlation coefficients
and WB-based correlation coefficients. All the statistical analyses
described above were performed in R version 3.3.3 (R Core Team,
2014). All plots were generated with ggplot2 (Wickham, 2016).

3. RESULTS

3.1. Overview of PrediXcan Weight
Databases
In Table 1, we summarize the main features of the PrediXcan
weight databases that we used in the analyses. Compared to DGN

TABLE 1 | Summary of PrediXcan databases used in analyses.

PrediXcan database Training set

size

Number of

models

Number of

SNPs used

DGN whole blood 922 13,171 249,696

GTEx v6 1KG whole blood 338 6,759 185,786

GTEx v6 1KG LCL 114 3,759 125,045

GTEx v6 HapMap whole blood 338 6,588 136,941

GTEx v6 HapMap LCL 114 3,441 91,237

GTEx v7 HapMap whole blood 315 6,297 140,931

GTEx v7 HapMap LCL 96 3,045 88,143

TABLE 2 | Number of genes for which Pearson correlation coefficients are

available by population and by PrediXcan weight database.

PrediXcan database DGN GTEx v7 WB GTEx v7 LCL

Genes with observed and 10,387 5,432 2,777

predicted expression values

By population:

CEU 10,385 5,432 2,777

FIN 10,385 5,432 2,777

GBR 10,385 5,432 2,777

TSI 10,385 5,432 2,776

YRI 10,354 5,419 2,767

Genes before filtering 10,354 5,419 2,767

Genes after filtering 3,493 2,288 1,699

database, GTEx databases have fewer gene models and smaller
training sample sizes. HapMap and 1KG-based models differ in
the number of variants used for training: GTEx Hapmap models
were trained on the HapMap genotyping data while GTEx 1KG
were trained on the 1000 Genomes sequencing data, so the latter
utilize more variants when predicting expression. While GTEx
LCL databases are based on relatively small training sets, they are
derived from the same tissue as the GEUVADIS RNA-seq data we
analyzed. Lastly, DGN and GTEx v7 sets of weights were trained
only on Europeans samples, while GTEx v6 databases had a small
fraction of non-Europeans.

To avoid repetition, results using the DGN, GTEx v7 WB,
and GTEx v7 LCL databases are included in the main text,
while the results for the other four databases are provided in the
Supplementary Material.

3.2. PrediXcan Prediction Accuracy Differs
Across Diverse Populations
Using DGN, GTEx WB, and GTEx LCL models and sequence
data, gene expression was predicted for 10,387, 5,432, and
2,777 genes, respectively (see Table 2). The number of genes
with available predictions varied by population, where the four
European populations had a similar number of gene predictions
while the counts for YRI were slightly lower. We excluded 33
genes, 13 genes, and 10 genes from DGN, GTEx WB, and GTEx
LCL, respectively, due to there being no variation in predicted
gene expression values for at least one of the populations. For
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the remaining genes, we identified those that had poor prediction
accuracy based on associations between observed and predicted
values, as described in section Materials andMethods on filtering
poorly predicted genes. From the genes predicted with the DGN
database, two-thirds were labeled by this criterion as “poorly
predicted,” while slightly less than a half were labeled as such
from gene sets predicted using the GTEx databases. As previously
mentioned, we also considered the performance of PrediXcan
without doing any filtering of the genes. For every weight
database, we had two sets of genes—before and after filtering—
where the latter set is a much smaller subset of the former. Both
versions were used and evaluated in downstream analyses.

We first evaluated performance of PrediXcan for the two
continental populations, European and African. We compared
Pearson’s correlation of predicted and observed gene expression
values for the combined sample consisting of all individuals from
the four European-ancestry populations to Pearson’s correlation
calculated for the YRI African population sample. As only two
groups were being compared in this analysis, a paired t-test
was used to assess differences in prediction accuracy, where the
pairing was based on the gene. With or without the filtering
of genes, we find the mean difference in gene correlation
coefficients between the European and African samples to
be highly significantly different from zero, regardless of the
weight database used (all p-values < 2.2 × 10−16), with the
African population having lower prediction accuracy than the
European samples.

Next, we computed gene correlation coefficients, separately in
each of the five populations. Violin plots display the correlation
coefficients by population across genes before and after filtering
(see Figures 1A,B, respectively). Figure 1A shows correlation
coefficients for the genes before any filtering was done and
we observe that LCL-derived models perform better than WB-
derived: i.e., DGN and GTEx v7 WB correlation distributions
are centered at values close to 0, whereas GTEx LCL correlation
distributions are centered at higher values, especially for the four
European populations. We also note that prediction accuracy is
slightly lower for the African populations than for any of the
European populations across the three weight databases. This
trend is even more obvious after the filtering process. As we can
see in Figure 1B, the overall performance accuracy improved
after filtering in all the populations, as expected. However,
the difference in prediction performance in Europeans vs.
Africans is even more apparent. The four European populations
have similar prediction accuracy, whereas it is lower for the
African population. Similarly to panel A, LCL-derived prediction
models perform better than WB-derived in filtered genes
in Figure 1B.

Afterwards, we binned the genes into six categories based on
the gene correlation coefficients (see Table 3). The majority of
genes have very poor prediction accuracy—of the genes predicted
with whole-blood databases, a third have negative correlations
and a half have correlations between 0 and 0.2. Of the genes
predicted with LCL, a fifth have negative correlations and over
a third have correlations between 0 and 0.2. The distribution
of gene correlation coefficients is fairly similar across the four

European populations, although predictive accuracy seems worse
in CEU compared to FIN, GBR, and TSI. The predictive accuracy
is the lowest in the African sample. Across all populations, only a
small number of genes were predicted with high accuracy (with
r > 0.6). Furthermore, all European populations have a greater
number of well-predicted genes than the African population,
regardless of the weight database used.

Next, we assessed the association between the prediction
accuracy (as gene correlation coefficients) and population
category via repeatedmeasures ANOVA and linear mixedmodels
using both sets of genes, all and filtered. The results for unfiltered
and filtered genes were comparable and led to equivalent
conclusions. Based on the repeated measures ANOVA, we find
that prediction accuracy differs across populations for filtered
and unfiltered sets of genes, regardless of the weight database
used (p-values for all databases were < 2.2 × 10−16). Below, we
focus our attention on filtered genes and present the parameter
estimates and their 95% confidence intervals calculated using
model-based standard errors for the model 1 in Table 4. From
the linear mixed model 1, we find that the prediction accuracy
is significantly higher in FIN, GBR, and TSI and significantly
lower in YRI, compared to CEU. This suggests that predictive
performance varies not only among distant populations, but
also among closely related populations. When we performed the
analysis on a full set of genes, without any filtering, regression
coefficients were slightly attenuated toward zero; however, the
conclusions from hypothesis testing remained the same.

We repeated the analysis described above, this time excluding
the CEU population. We present the parameter estimates and
the corresponding 95% confidence intervals in Table 5. From
the repeated measures ANOVA, we find that prediction accuracy
differs across the four populations (p-values for all databases
were < 2.2 × 10−16). Moreover, based on the coefficients and
the corresponding p-values from the linear mixed model 2, we
estimate the prediction accuracy to be significantly higher in
GBR and significantly lower in TSI and YRI, compared to the
FIN population (see corresponding p-values in Table 5). This
difference in prediction accuracy is the greatest between YRI
and FIN when GTEx v7 LCL weight database was used. Like in
the analysis above, we notice that predictive performance differs
across populations, including European populations.

Finally, we evaluated PrediXcan prediction accuracy on a
subset of subjects with European ancestry. Based on the repeated
measures ANOVA test, prediction performance differs across the
four European populations in genes before and after filtering,
regardless of the weight database used (p-values for all databases
were < 2.2 × 10−16). Because of potentially biased expression
patterns of the CEU due to the previously mentioned age of
these cell lines, we conducted an analysis where we omitted the
CEU population and compared prediction accuracy among the
other three European populations. The results were comparable
to the analysis of the European populations that included CEU.
With a repeated measures ANOVA, we find highly significant
differences in prediction accuracy among the FIN, GBR, and
TSI populations, with p-values less than 10−6 across all weight
databases with or without filtering of poorly predicted genes.
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FIGURE 1 | Violin plots of gene expression correlation coefficients by five populations using DGN, GTEx v7 WB, and GTEx v7 LCL weight databases; (A) before and

(B) after filtering out poorly predicted genes.

TABLE 3 | Gene counts per population, per database, per correlation category for the five populations using DGN, GTEx WB, and GTEx LCL weight databases.

Unfiltered Filtered

CEU FIN GBR TSI YRI CEU FIN GBR TSI YRI

DGN DATABASE

r < 0 3,583 3,491 3,480 3,587 4,156 561 547 554 585 911

0 < r < 0.2 5,107 4,976 4,812 4,954 5,001 1,533 1,379 1,258 1,409 1,674

0.2 < r < 0.4 1,359 1,480 1,589 1,434 1,016 1,097 1,162 1,209 1,121 728

0.4 < r < 0.6 239 302 354 290 147 236 300 353 289 146

0.6 < r < 0.8 56 93 105 75 31 56 93 105 75 31

0.8 < r < 1 10 12 14 14 3 10 12 14 14 3

GTEx v7 WB DATABASE

r < 0 1,756 1,621 1,622 1,684 2,101 336 309 314 335 590

0 < r < 0.2 2,471 2,450 2,366 2,456 2,491 877 786 732 820 993

0.2 < r < 0.4 902 958 981 901 668 788 804 793 758 546

0.4 < r < 0.6 210 282 329 278 117 207 281 328 275 117

0.6 < r < 0.8 69 93 100 85 38 69 93 100 85 38

0.8 < r < 1 11 15 21 15 4 11 15 21 15 4

GTEx v7 LCL DATABASE

r < 0 546 488 484 509 774 80 69 55 69 274

0 < r < 0.2 1,119 1,031 996 1,050 1,296 560 443 426 477 777

0.2 < r < 0.4 718 742 761 736 510 675 681 692 681 461

0.4 < r < 0.6 293 361 369 360 145 293 361 369 360 145

0.6 < r < 0.8 80 126 137 96 38 80 126 137 96 38

0.8 < r < 1 11 19 20 16 4 11 19 20 16 4
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TABLE 4 | Results from linear mixed models for population category (with CEU as a reference) and change in gene correlation coefficient among filtered genes.

DGN GTEx v7 WB GTEx v7 LCL

Estimate 95% CI p-value Estimate 95% CI p-value Estimate 95% CI p-value

FIN 0.019 (0.014, 0.025) 1.3× 10−11 0.021 (0.015, 0.028) 1.3× 10−9 0.038 (0.030, 0.046) < 10−16

GBR 0.029 (0.023, 0.034) < 10−16 0.032 (0.025, 0.039) < 10−16 0.051 (0.043, 0.059) < 10−16

TSI 0.010 (0.004, 0.016) 3.9× 10−4 0.013 (0.007, 0.020) 4.6× 10−5 0.027 (0.019, 0.035) 2.9× 10−11

YRI −0.054 (−0.059, −0.048) < 10−16
−0.070 (−0.077, −0.063) < 10−16

−0.097 (−0.105 −0.089) < 10−16

TABLE 5 | Results from linear mixed models for population category (excluding CEU, with FIN as a reference) and change in gene correlation coefficient among filtered

genes.

DGN GTEx v7 WB GTEx v7 LCL

Estimate 95% CI p-value Estimate 95% CI p-value Estimate 95% CI p-value

GBR 0.010 (0.004, 0.015) 9.2× 10−4 0.011 (0.004, 0.018) 3.1× 10−3 0.013 (0.005, 0.021) 2.0××10−3

TSI −0.009 (−0.015, −0.003) 1.8× 10−3
−0.008 (−0.015, −0.001) 2.8× 10−2

−0.011 (−0.019, −0.003) 8.9× 10−3

YRI −0.073 (−0.079, −0.067) < 10−16
−0.091 (−0.098, −0.084) < 10−16

−0.134 (−0.143, −0.126) < 10−16

3.3. PrediXcan Prediction Accuracy Differs
Between Tissues
As can be seen in the violin plots in Figure 1, both databases
based on whole blood perform similarly, and LCL-based database
displays improved prediction accuracy. In order to compare
pairwise gene correlations, we restricted our analyses to the 1,595
genes common for both GTEx v7 WB and GTEx v7 LCL.

Scatter plots presented in Figure 2 suggest that the majority
of genes have very similar correlation coefficients when using
WB and LCL databases across all populations. However, we
see more genes in the upper left corner, above the dotted line,
indicating that using the LCL database results in more genes with
better prediction accuracy. This result is not surprising since the
expression data we used were derived from LCL. The results of
the paired t-test are consistent with the visual examination of the
data: the mean difference between gene correlations based on the
GTEx v7 LCL models and based on the GTEx v7 WB models is
0.03 (p-value < 2.2× 10−16), with predictions based on the LCL
model having higher performance.

4. DISCUSSION

In this work, we evaluated the performance of PrediXcan
and compared the prediction accuracy of the method across
five geographically diverse populations from two continents
for seven weight databases. Models from all weight databases
considered were trained on subjects primarily of European
ancestry; three of the databases were derived from LCL and the
remaining four from whole blood. As a measure of prediction
accuracy, we computed correlation coefficients for each gene in
all populations and used both paired t-tests and linear mixed
effects models to assess evidence of significant differences in
prediction performance across populations. We also investigated
whether whole blood models are appropriate for predicting gene
expression levels in LCL.

We find highly significant differences in prediction accuracy
with PrediXcan in the European ancestry populations as
compared to the YRI African population, with the prediction
accuracy being lower in YRI. The lower accuracy with PrediXcan
in the African population is expected since the PrediXcan models
were largely trained using European ancestry samples, and this
result is consistent with recent works showing that prediction
accuracy is expected to be higher when the training and testing
cohorts are of similar ancestry (Gottlieb et al., 2017; Li et al.,
2018; Mogil et al., 2018). Surprisingly, we also find highly
significant differences in prediction accuracy with PrediXcan
among the closely related European ancestry populations, with
the Finnish, British, and Italian populations having significantly
higher prediction accuracy than the CEU. These results are
consistent across all seven PrediXcan weight databases we
considered. Lastly, we also find that LCL-trained models
outperformed whole-blood-trained models across populations,
although the prediction accuracy was similar for many
of the genes.

Among the European populations, we find that prediction
accuracy for the CEU population was the lowest. LCLs
are derived from B cells found in whole blood, and they
provide a continuous supply of genetic material for GWAS
and gene expression studies. However, they do undergo a
transformation to become immortal that can change their
biology and they do not have the same properties as native
tissue (Kelly et al., 2017). Storage conditions, freeze-thaw cycles,
and maturity of cell lines can also affect gene expression
patterns (Çaliskan et al., 2014; Yuan et al., 2015). The CEU
cell lines were collected much earlier than the other cell
lines and LCL age can have a confounding effect and bias
downstream analyses (Yuan et al., 2015). This factor could
have contributed to the differences in prediction accuracy
among European populations. We did, however, perform a
sensitivity analysis that excluded the CEU population, and
there were highly significant differences in prediction accuracy
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FIGURE 2 | Scatter plots comparing gene correlation coefficients by population using GTEx v7 LCL vs. GTEx v7 WB databases.

with PrediXcan among the FIN, GBR, and TSI populations, as
well as between these three combined European populations
and the YRI African population, with the YRI having the
lowest accuracy.

Overall, PrediXcan accurately predicted gene expression for
some genes; however, the majority of genes had very poor
correlation between measured and predicted expression levels.
For almost half the genes, for example, the correlation was
negative. There are some important caveats and limitations to
point out with the PrediXcan method. First, the prediction
models of PrediXcan are based on common cis-variants and
they do not take rare cis- and trans-regulatory elements into
account. Common cis-eQTLs only account for 9–12% of genetic
variance in gene expression, according to a large twin study
(Grundberg et al., 2012). Another recent study demonstrates
that trans-acting variants largely contribute to gene expression
variation, with estimates of genetic variance in expression
due to trans-acting variation ranging from 60 to 90% (Liu
et al., 2018). However, individual effects of each trans-variant
are very weak and difficult to map because they require
well-powered studies.

We conclude this paper by highlighting that the lack of
genomic data from diverse populations limits the ability
to effectively interpret and translate genomic results into
clinical applications for individuals from diverse populations,
and particularly non-European ancestry populations. The
results presented in this paper illustrate that gene expression

prediction models are, in general, not transferable across
diverse populations from different continents, and further
corroborate the importance of including more ancestrally
diverse individuals in medical genomics to ensure that everyone
gets the benefits of precision medicine and to avoid further
exacerbating healthcare inequality (Oh et al., 2015, 2016;
Manrai et al., 2016). We also demonstrate that there can
be differences in prediction accuracy among closely related
European populations, suggesting that prediction models
that take into account fine-scale ancestry differences among
individuals may be important for improved prediction of
gene expression from genetic data. Lastly, our study had
only modest sample sizes and evaluated gene expression
prediction accuracy with PrediXcan in European and African
populations. Future transcriptomic studies with much larger
samples sizes are needed for the development of improved gene
expression prediction models for multi-ethnic populations,
including admixed populations such as African Americans and
Hispanic/Latino populations, who have recent ancestry derived
from multiple continents.
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