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Genome-wide Characterization of Shared and Distinct
Genetic Components that Influence Blood Lipid Levels
in Ethnically Diverse Human Populations

Marc A. Coram,1 Qing Duan,2 Thomas J. Hoffmann,3,4 Timothy Thornton,5 Joshua W. Knowles,6

Nicholas A. Johnson,7,21 Heather M. Ochs-Balcom,8 Timothy A. Donlon,9,10 Lisa W. Martin,11

Charles B. Eaton,12,13 Jennifer G. Robinson,14 Neil J. Risch,3,4,15 Xiaofeng Zhu,16 Charles Kooperberg,17

Yun Li,2,18 Alex P. Reiner,19,* and Hua Tang20,*

Blood lipid concentrations are heritable risk factors associated with atherosclerosis and cardiovascular diseases. Lipid traits exhibit

considerable variation among populations of distinct ancestral origin as well as between individuals within a population. We performed

association analyses to identify genetic loci influencing lipid concentrations in African American and Hispanic American women in the

Women’s Health Initiative SNP Health Association Resource. We validated one African-specific high-density lipoprotein cholesterol

locus at CD36 as well as 14 known lipid loci that have been previously implicated in studies of European populations. Moreover, we

demonstrate striking similarities in genetic architecture (loci influencing the trait, direction and magnitude of genetic effects, and

proportions of phenotypic variation explained) of lipid traits across populations. In particular, we found that a disproportionate fraction

of lipid variation in African Americans and Hispanic Americans can be attributed to genomic loci exhibiting statistical evidence of

association in Europeans, even though the precise genes and variants remain unknown. At the same time, we found substantial allelic

heterogeneity within shared loci, characterized both by population-specific rare variants and variants shared among multiple

populations that occur at disparate frequencies. The allelic heterogeneity emphasizes the importance of including diverse populations

in future genetic association studies of complex traits such as lipids; furthermore, the overlap in lipid loci across populations of diverse

ancestral origin argues that additional knowledge can be gleaned from multiple populations.
Introduction

Plasma concentrations of lipoproteins (low-density lipopro-

tein [LDL] cholesterol, high-density lipoprotein [HDL]

cholesterol, and triglycerides [TG] are heritable risk factors

for atherosclerosis and cardiovascular diseases (CVDs).1,2

These lipid concentrations vary substantially between

individuals as well as between populations.3 For example,

mean TG levels are highest among Hispanic American

populations; despite their higher CVD mortality, African

Americans tend to have higher HDL levels and lower TG

levels compared to whites.4–7 The heritability estimates of

blood lipids vary across studies and by population but are

consistently high: 40%–80% for both LDL and HDL and

30%–50% for TG.8–10 A recent meta-analysis of more than

100,000 individuals of European ancestry identified 95 loci

significantly associated with blood lipids.11 Follow-up
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studies indicated that amajority of these loci are ‘‘ethnically

transferrable,’’ in the sense that they show statistical associ-

ation and consistent direction of genetic effects in non-

European populations.3,11,12 Specifically, of the 36 LDL

loci, 44 HDL loci, and 30 TG loci examined in African

American participants, 33, 37, and 24 loci, respectively,

showed the same direction of association as in the European

cohorts; even higher ‘‘replication’’ rates were observed in

EastAsians, SouthAsians, andHispanics, suggestinga shared

genetic contribution to lipid variability among human pop-

ulations. However, our understanding of the ethnically

shared and distinct components of the genetic architecture

that underlie blood lipid concentrations is incomplete.Non-

replication could arise as a result of ethnic-specific causal

variants, different linkage disequilibrium (LD) patterns sur-

rounding the same causal variants, interaction effects with

a distinct genetic background, or simply lack of statistical
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power. Furthermore, the genetic architecture underlying a

trait depends not only on the direction and magnitude of

genetic effects, but also on factors such as frequencies of

the risk variants. In other words, replication of variants

across populations does not automatically imply that these

variants constitute a substantial genetic component that

explains phenotype variation in all populations.

Characterizing the shared and distinct genetic compo-

nents that underlie complex traits among human popula-

tions has significant public health impact. Such an under-

standing regarding lipids levels can provide valuable

insights on the genetic contribution to ethnic health dis-

parities related to atherosclerosis and CVD across different

ethnicities. However, a genome-wide assessment of the

relative contribution of panethnic and population-specific

genetic components to any complex trait is analytically

challenging because our knowledge of the genetic architec-

ture within each population is limited. Here we present a

series of genome-wide analyses that consider various as-

pects of the genetic architecture of blood lipid levels, using

genotype and phenotype data from the Women’s Health

Initiative SNP Health Association Resource (WHI-SHARe),

which includes 8,153 African American (AA) and 3,587

Hispanic American (HA) participants. By applying a mixed

effects model that makes use of the full reference GWAS

(instead of just the top SNPs), we demonstrate that a large

overlapping genetic component influences individual vari-

ation of lipid levels across these populations, including

many loci that do not reach genome-wide significance level

in any population to date. At the same time, genotype asso-

ciation and admixture mapping analyses reveal important

population-specific lipid loci and variants. Our findings

argue that an effective approach for elucidating the genetic

architecture of complex traits is to combine evidence across

multiple populations. The analytic approach we use is

applicable to studies of other heritable complex traits.
Material and Methods

Our analytic approach consists of three components. (1) A discov-

ery GWAS in a cohort of 8,153 WHI-SHARe AA samples and 3,587

HA samples. Validation analysis of variants not previously impli-

cated in a large EuropeanGWASwas performed in an independent

cohort of 7,138 AAs in the Candidate Gene Association Resource

(CARe). (2) Genome-wide assessment of transethnic overlap in

the genetic architecture underlying lipid variation was performed

with the WHI-SHARe AA and HA cohorts by examining statistical

significance, allelic effect, and proportion of variance explained by

subsets of the genome. (3) Characterization of genetic variation

that could account for population-level lipid differences by admix-

ture mapping in WHI-SHARe AAs and conditional analyses in

regions showing admixture signal (i.e., association between local

ancestry and trait).

Study Subjects
TheWHI is a U.S.-wide study focusing on commonhealth issues in

postmenopausal women. A total of 161,808 postmenopausal

women aged 50–79 years old were recruited, including 12,151
The Am
self-identified AAs and 5,469 self-identified HAs. Fasting blood

samples were collected at the baseline clinic visit by venipuncture.

Clinical information was collected by self-report and physical ex-

amination. All participants provided written informed consent as

approved by local Human Subjects Committees. Details of the

study design and cohort characteristics have been previously

described.13 An independent cohort of 7,138 AA participants

from the NHLBI Candidate-gene Association Resource (CARe)

Study was used to validate those SNP-trait associations identified

in WHI, which have not been reported in previous GWASs.11

Genotyping QC and Biomarker Measurement
Genotyping and QC

A cohort of 8,515 self-identified AA and 3,642 self-identified HA

participants from WHI, who had consented to genetic research,

were selected for WHI SHARe (n ¼ 12,157) and genotyped on

the Affymetrix 6.0 array. Genotype quality control criteria

included call rate, concordance rates for blinded and unblinded

duplicates, and sex discrepancy. Furthermore, individuals whose

genetic ancestries differ from self-reported ethnicities and one

individual from each close relative pair were excluded. In total,

11,740 individuals passed all genotype and sample QC criteria

(8,153 AA, 3,587 HA).14,15 Details of the QC procedures have

been described in previous WHI-SHARe studies.16,17 Sample sizes

for each stage of the study are displayed in Figure S1 available

online; demographic and lipid trait variables are summarized in

Table S1.

Lipid Measurements

HDL, LDL, and TG measurements were performed at the Univer-

sity of Minnesota by standard biochemical methods on the Roche

Modular P Chemistry analyzer (Roche Diagnostics): HDL was

measured in serum by the HDL-C plus third generation direct

method; TG was measured in serum by Triglyceride GB reagent,

and total cholesterol (TC) was measured in serum by a cholesterol

oxidase method. The accuracy and precision of the lipid assays

were regularly monitored with the CDC/NHLBI Lipid Standardiza-

tion Program to control for any potential drift over time. LDL was

calculated in serum specimens having a TG value < 400 mg/dl

according to the formula of Friedewald et al.18 Based on the

LDL-lowering effects of statins, we estimated the pretreatment

LDL value for individuals on lipid-lowering medication by

dividing treated LDL values by 0.75. All analyses described here

are based on analyzing the pretreatment LDL, although the results

are largely consistent when treated LDL values were analyzed. For

all association analyses, LDL values greater than 300mg/dl and TG

values greater than 650 md/dl were excluded. TG values were

log-transformed. HDL values were also log-transformed to better

satisfy the normality assumption for the linear and linear mixed

effect models, although post hoc analyses indicated that the trans-

formed and untransformed trait values yielded qualitatively

similar results, and in particular the identical set of genome-wide

significant loci.

Genotype Imputation

Imputed genotypes were examined in regions where at least one

genotyped SNP achieved a p < 10�6 and in regions showing

ancestry association in WHI AAs (p < 7 3 10�6). GWAS data in

the WHI AAs were prephased via MaCH, with options ‘‘–states

200’’ and ‘‘–rounds 50.’’19 The imputation reference panel was

derived from the 2012-02-14 release of the 1000 Genomes Project,

which included 246 Africans/African Americans, 379 Europeans,

181 Americans, and 286 Asians, using minimac with default para-

meter settings.20 We note that genome-wide imputation to 1000
erican Journal of Human Genetics 92, 904–916, June 6, 2013 905



Genomes Project data is in fact available for WHI-SHARe. How-

ever, we chose not to test all imputed markers at the beginning

of the study based on a power consideration. The rationale is

that, for untyped risk variants with common frequencies, with

high probability, there would be a typed variant in moderate LD

in the vicinity reaching the relaxed threshold of p < 10�6. Addi-

tionally, this relaxed threshold can identify regions harboring

untyped rare variants, which are well tagged by a SNP on the array.

On the other hand, for regions harboring very rare variants that

are not tagged by any markers on the array, our sample size is

probably underpowered even if we tested the imputed genotype.

For this reason, we did not expect an exhaustive scan of all

imputed SNPs to be fruitful.
Population Structure and Ancestry Estimation
Population Structure and Genome-level Ancestry

Principal component analysis (PCA) was performed for AAs and

HAs combined, using Eigenstrat21 at 178,101 markers that were

in common between our samples and the reference panels. We

also determined individual ancestral proportions by using Frappe

from 656,852 autosomal markers.22 For both of these calculations

we included 475 publicly available samples from ancestral popula-

tions (YRI and CEU from HapMap and East Asian and Native

Americans from the Human Genome Diversity Project).23

Local Ancestry Estimation

For each AA individual in the sample, locus-specific ancestry

(probabilities of whether an individual has 0, 1, or 2 alleles of

African ancestry at each locus) was estimated with program

SABERþ, an extension of the SABER algorithm.24 In brief, SABERþ
uses a graphical model approach to adaptively capture local haplo-

type structure within each ancestral population, and therebymore

accurately accounts for background linkage disequilibrium (LD). In

the current analysis, phased haplotype data from the HapMap3

CEU and YRI individuals were augmented as the reference

panels. In simulation studies, SABERþ has an error rate of less

than 2%, similar in accuracy to another commonly used method,

HapMix.25 Based on analysis of simulated and real AA genotypes,

the correlation between local-ancestry estimates produced by the

two methods is greater than 0.98 (N.A.J., unpublished data).
GWAS Analysis
The overall GWAS strategy was as follows: we initially tested gen-

otyped SNPs inWHI AAs and HAs separately, with a ¼ 53 10�8 as

the threshold for genome-wide significance. In regions showing

suggestive evidence (at least one SNP with p < 10�6), imputed

genotypes were tested. To validate SNPs not previously associated

with lipid traits, we combined results from WHI AAs and CARe

AAs by using the programMETAL to perform sample-size weighted

meta-analysis.26 Association analysis in CARe used individual-

level genotype data and corrected for both PC1 and subcohort

membership. Genome-wide association (GWA) analysis was per-

formed under an additive genetic model using linear regression

adjusted for covariates and implemented in PLINK v.1.05.14

Analyses were conducted separately for AAs and HAs. To correct

for population stratification, the genome-wide European ancestry

proportions, which have a correlation of 0.99 with PC1, were

adjusted as covariates for AAs (PC2–PC10 showed no evidence of

association with any of the lipid traits). For HAs, the first four prin-

cipal components were adjusted as covariates (PC5–PC10 showed

no evidence of association with any of the lipid traits). Age, age2,

BMI, and smoking history were included as covariates for all lipid
906 The American Journal of Human Genetics 92, 904–916, June 6, 2
traits; additionally, fasting status was adjusted for LDL. The same

regression model was used to test the imputed allelic dosage at

each SNP, via MACH2QTL.19 The same threshold of 5 3 10�8

was used to declare genome-wide statistical significance for the

imputed genotypes, although we note that the significant regions

identified remained the same when a more stringent threshold of

2.5 3 10�8 was adopted.27
Comparison of p Values and Genetic Effects between

Populations
We characterized the shared genetic architecture between

Europeans, AAs, and HAs by enrichment in statistical significance

(p values), correlation in estimated genetic effects, and the propor-

tions of variance explained by subsets of genomes. To delineate

the enrichment in statistical significance, we asked whether

SNPs showing suggestive evidence in Europeans (defined by

p< 10�5) tend to have small p values in AAs and HAs. The p values

in Europeans were taken from one of the largest lipid meta-

analysis to date.11 The p values for WHI AAs and HAs were

obtained from GWAS based on the single-marker additive model.

To compare genetic effects across populations, we again defined

candidate lipid-associated SNPs based on the p values in the

European GWAS (p < 10�5) and computed correlation coefficients

between the estimates in WHI AAs and HAs. Because all WHI

participants were genotyped with the same platform and all lipid

biomarkers were measured in a consistent manner, this analysis

avoids potential artifacts resulting from nonoverlapping SNPs,

allele flipping, and assay batch effects. Furthermore, because the

SNPs were chosen based on the p values in a GWAS whose partic-

ipants do not overlap with WHI, the estimated genetic effects in

AAs and HAs do not suffer from the typical bias due to selecting

the most significant SNPs (i.e., winner’s curse).28
Estimation of Phenotypic Variance Explained by

Subsets of Genomes
We developed a method, termed population overlap in genetic

architecture (POGA), which tests the hypothesis that loci identi-

fied in one population explain a large proportion of the pheno-

typic variance in other populations. POGA is an extension of the

mixed effects model of a polygenic trait, introduced by Yang and

Visscher.29 Under this approach, we prioritized the genomes into

regions based on association evidence in Europeans and estimated

the phenotypic variance explained in AAs and HAs, using a mixed

effects model. We reasoned that if the genetic architecture over-

laps between populations, loci showing the strongest evidence

of association in one population would account for a dispropor-

tionate amount of phenotypic variation in another population.

POGA Algorithm

For each SNP genotyped in WHI, we assigned a priority score

(denoted by um) as the smallest p values within a 20 kb neighbor-

hood based on the European GWAS.11 We then grouped the

genome into 22 nested subsets, such that the first subset included

regions around SNPs that reached genome-wide significance in the

European GWAS (p < 5 3 10�8); the second subset included SNPs

with the top 1% priority scores; the third and subsequent subsets

incrementally included the 5%, 10%, . 100% of the markers

according to um. For each subset s¼ 1,.,22, we computed the pro-

portions of phenotypic variance explained with program GCTA

(v.1.02) and the AI-REML algorithm.30 The model is:

Yi ¼ aþ bQi þGs
i þHs

i þ εi;
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where Q are the fixed effect covariates (age and PCs) andGs
i andHs

i

are the random effects representing the genetic effects resulting

from markers included and excluded by set s respectively. The

inclusion of Hs in the model is necessary because markers in set

s can be in LD with flanking regions not in the set, and thus a

model that includes Gs alone tends to overestimate the variance

explained just by the genomic regions.

Genetic Relationship Matrix

In a standard application of GCTA, a genetic relationship matrix

(GRM) is computed as the covariance matrix of the standardized

genotype matrix, wim ¼ ðgim � 2pmÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmð1� pmÞ

p
, where

gim˛ð0;1;2Þ represents the original genotype and pm represents

the allele frequencies.We have previously shown that relationship

coefficients estimated this way can be biased in an admixed pop-

ulation, and we have developed a reap estimator, which does not

suffer from such bias.31 In brief, the reap estimator standardizes

the genotype by an ‘‘admixture-adjusted’’ allele frequency:

wim ¼ ðgim � 2pimÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pimð1� pimÞ

p
where pim is the expected allele

frequencies given the individual’s genome-wide ancestry propor-

tions. For a given subset of markers, s, we computed the GRM by

using the reap estimator, for markers included in the subset (Gs)

and not included in the subset (Hs), and supplied these two

GRM into GCTA. For each subset, denote the proportions of vari-

ance attributed to Gs
i as h

2
s . As an informal test of significance, we

compared the estimated h2
s with a simple null model, under which

we expect that the phenotypic variance explained by a randomly

selected region is proportional to its coverage of the genome. Thus,

a set of regions that includes x% of the genome would explain

h2x% of the phenotypic variance, where h2 is the variance ex-

plained by the entire genome.

A Scenario with No Overlap in Genetic Architecture

To verify that the expected h2
s , for a set of randomly selected re-

gions, is proportional to the proportion of the genome included,

we performed the following permutation experiment. First, the

European p value list was permuted in a way that largely preserves

the correlation structure between neighboring SNPs. The p values

were sorted by chromosome and base pair location. The 22 auto-

somes were concatenated, circularized, and then cut at a random

location. The resulting list of p values was then mapped to the

original SNP positions, starting with the p-term of chromosome

1 and ending with the last SNP position on chromosome 22.

This permuted list of p values were then used as if they were

p values from a European GWAS study, and the genomes were

regrouped based on these permuted p values. GCTA analyses

were repeated and h2
s estimated for these randomly partitioned

genomes. This permutation procedure was performed for each

HDL, LDL, and TG p value list and used to estimate the proportion

of LDL variance explained.

Admixture Mapping
With the estimated local ancestry, we performed an admixture

mapping analysis in AAs to detect variants present at different fre-

quencies among the European and African ancestral populations.

In this analysis, we regressed lipid levels on locus-specific ancestry,

adjusting for the same covariates as in the GWAS. The critical value

for genome-wide significance level of admixture mapping is sub-

stantially lower than for the genotype test, because the recent

admixing history gives rise to extensive correlation in local

ancestry. Based on previous theoretical analysis and simulation

results, a nominal p value of 7 3 10�6 yielded a genome-wide

type I error of 0.05.32We chose not to perform admixturemapping

in the HA sample because we expect such an analysis is severely
The Am
underpowered as a result of the lack of availability of an appro-

priate Native American reference panel (which impacts estimation

accuracy) and the smaller HA sample size (compared to the AA

sample).
Conditional Analysis under Admixture Mapping

Peaks
Genetic regions showing significant association with local

ancestry tend to be broad because of the recent admixing history

in AAs. To refine these admixture mapping regions and in an effort

to reveal genes or variants that contribute to population-level trait

differences, we performed conditional analyses with all typed and

imputed SNPs in each region. We reason that variants that

‘‘explain’’ an admixture mapping peak should meet two criteria.

First, these variants should show suggestive association with the

trait conditioning on the genome-wide ancestry; and second,

these variants should substantially reduce the local ancestry-trait

association. To test the first criterion, we required the variants to

have GWAS p < 10�5. In genes where multiple rare variants

(defined by an allele frequency of less than 1% in AAs) show asso-

ciation with blood lipids, we also evaluated gene-based association

by using either dosage (sum of rare alleles) or an indicator defined

as dosage> 0. To assess the second criterion, we used a joint regres-

sion model that includes both local ancestry and SNP genotype in

addition to all covariates adjusted in the GWAS and required that

the p value for local ancestry to be attenuated (i.e., less significant)

by at least 100-fold compared to that in the model without the

SNP genotype. In regions where multiple SNPs or genes meet

both criteria, we performed a step-wise regression to nominate a

set of SNPs that may jointly explain the local-ancestry association.
Results

Genome-wide Association Analysis

Genotype association analyses in AAs identified seven,

five, and four loci significantly associated with HDL,

LDL, and TG, respectively (Table 1 and Figure S1). For

HDL, these included CD36 (MIM 173510), PPP1R3B

(MIM 610541), LPL (MIM 609708), CETP (MIM 118470),

LOC55908, the APOA/APOC gene cluster (APOA1,

APOC3, APOA4, APOA5 [MIM 107680, MIM 107720,

MIM 107690, MIM 606368]), and an intergenic locus on

21q22; for LDL, PCSK9 (MIM 607786), APOB (MIM

107730), ABCG8 (MIM 605460), APOE (MIM 107741),

and LDLR (MIM 606945); and for TG, LPL, APOA/APOC,

APOC1 (MIM 107710), and GCKR (MIM 600842). The

inflation factor for genomic control in AAs was 1.061,

1.057, and 1.046 for HDL, LDL, and TG, respectively, indi-

cating adequate adjustment of population stratification.

With the exception of CD36 and the locus on 21q22, all

other loci are in proximity to previously implicated regions

in GWASs in Europeans.11 CD36 is a scavenger receptor

that binds long-chain fatty acids and lipoproteins; genetic

variants in CD36 have been associated with protection

from various components of the metabolic syndrome

(MetS) in AAs,33,34 and CD36-deficient individuals have

been observed to have higher HDL compared to con-

trols.35 Recently, association between a nonsynonymous
erican Journal of Human Genetics 92, 904–916, June 6, 2013 907



Table 1. Loci Associated with Lipids Traits in WHI AAs

Chr
Index SNP
in the Regiona Pos (hg18)

Minor/Major
Allele

Minor Allele
Frequency

Candidate
Gene MIM Betab p Value Trait

Genotype Association

1 rs17111684 55398136 A/G 0.120 PCSK9 607786 �9.01 2.40 3 10�17 LDL

2 rs12713956 21095010 G/A 0.183 APOB 107730 �4.86 3.74 3 10�08 LDL

2 rs4665972c 27451601 T/C 0.123 GCKR 600842 0.065 1.05 3 10�08 TG

2 rs4245791 43927935 G/A 0.143 ABCG8 605460 5.97 1.24 3 10�09 LDL

7 rs2366858 80178558 C/A 0.173 CD36 173510 0.0325 5.59 3 10�10 HDL

8 rs1461729 9224652 T/C 0.116 PPP1R3B 610541 �0.0355 7.39 3 10�09 HDL

8 rs326 19863719 T/C 0.469 LPL 609708 0.0221 1.23 3 10�08 HDL

8 rs326 19863719 T/C 0.469 LPL 609708 �0.0410 1.02 3 10�08 TG

11 rs6589566 116157633 C/T 0.0176 APOA/APOC 107680, 107720,
107690, 606368

0.2066 4.99 3 10�14 TG

11 chr11: 116,799,496c 116304706 C/A 0.0016 APOA/APOC 107680, 107720,
107690, 606368

0.409 1.08 3 10�12 HDL

16 rs247617 55548217 A/C 0.262 CETP 118470 0.0619 1.48 3 10�44 HDL

19 rs17249141c 11061008 T/C 0.0126 LDLR 606945 �32.93 2.43 3 10�17 LDL

19 rs12979813 11203703 T/C 0.495 LOC55908 NA �0.0235 1.99 3 10�09 HDL

19 rs1160985 50095252 C/T 0.365 APOE 107741 6.772 1.87 3 10�21 LDL

19 rs12721054 50114427 G/A 0.1137 APOC1 107710 �0.101 2.86 3 10�19 TG

21 rs13046373 30982361 C/T 0.391 �0.0226 2.26 3 10�08 HDL

Admixture Mapping

9 rs10818782 98.5–101.3 Mb 0.0508 5.57 3 10�07 HDL

11 rs11217785 118.6–122.1 Mb UBASH3B 609201 0.0526 2.82 3 10�07 HDL

1 rs1889209 54.8–55.5 Mb PCSK9 607786 �8.50 2.11 3 10�06 LDL

n ¼ 7,917; 7,861; and 7,918 for HDL, LDL, and TG, respectively.
aSNPs with the lowest p value at a locus.
bFor genotype association, the direction of the regression coefficient represents the effect of each extra minor allele. For admixture mapping, the direction of the
regression coefficient represents the effect of an additional African-derived allele.
cLoci where no genotyped SNP reaches genome-wide significance (5 3 10�8) but at least one genotyped SNP reaches a p < 10�6 and at least one imputed SNP
reaches p < 5 3 10�8 (see Methods).
SNP in CD36 (rs3211938, p.Tyr325Ter) and HDL was re-

ported in a meta-analysis in CARe.12 The same SNP

achieved a p < 7 3 10�9 in WHI and p < 1.45 3 10�19 in

the meta-analysis that included AA participants in WHI

and CARe. The HDL-increasing allele (G) occurs at a fre-

quency of 0.28 in YRI and is essentially absent in Euro-

peans and East Asians. At 21q22, two SNPs reached

genome-wide significance in WHI AAs for HDL. This

region has not been previously implicated in lipid genetics

and was not replicated in CARe (meta p ¼ 4.10 3 10�6);

therefore, we did not pursue this locus further in this study.

In the WHI HA cohort, APOA/APOC and CETP reached

genome-wide significant association with HDL and

GCKR, LPL, and APOA/APOCwere found significantly asso-

ciated with TG. The number of HA participants is much

lower compared to AA participants in WHI; therefore, we

expect, a priori, that the power of GWAS is much lower

in HAs (Table 2 and Figure S2).
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Genetic Variants Associated with Lipid Traits Overlap

across Ethnicities and Have Correlated Allelic Effects

Previous studies of traits such as lipids, height, BMI, and

coronary heart disease have found that genetic risk factors

identified in populations of European descent often show

consistent direction of effect in non-European popula-

tions.3 In WHI, a majority of lipid loci reaching the

genome-wide significance level in AAs and all loci found

in HAs overlapped with loci discovered in European popu-

lations.11 Furthermore, we observed a strong enrichment

of small p values in the WHI cohorts among those SNPs

showing significance or suggestive evidence of association

in the European GWAS (p < 10�5) (Figure 1); as a com-

parison, the p value distribution for all SNPs appears

roughly uniform (Figure S3). This suggests that, with a

sufficient sample size, a large fraction of loci influencing

lipid traits in Europeans would probably reach statistical

significance in AAs and HAs.
013



Table 2. Genome-wide Significant Regions in WHI HAs

Chr
Index SNP in
the Regiona Pos (hg 18)

Minor/Major
Allele

Minor Allele
Frequency

Candidate
Gene MIM Betab p Value Trait

2 rs780094 27594741 C/T 0.358 GCKR 600842 0.0688 7.35 3 10�09 TG

8 rs17410962 19892360 G/A 0.112 LPL 609708 �0.1064 7.35 3 10�09 TG

11 rs964184 116154127 G/C 0.248 APOA/APOC 107680, 107720,
107690, 606368

�0.0459 2.81 3 10�12 HDL

11 rs964184 116154127 G/C 0.248 APOA/APOC 107680, 107720,
107690, 606368

0.1567 3.66 3 10�33 TG

16 rs247617 55548217 C/A 0.298 CETP 118470 0.0509 3.48 3 10�16 HDL

n ¼ 3,506; 3,425; and 3,506 for HDL, LDL, and TG, respectively.
aSNPs with the lowest p value at a locus.
bThe direction of the regression coefficient represents the effect of each extra minor allele.
Although previous studies have focused on consistency

of the direction of genetic effects between populations, it

is desirable to assess whether the risk variants have genetic

effects of similar magnitude because this quantity plays an

important role in individual disease risk prediction.

Furthermore, the correlation in allelic effects is a more

informative test because it also considers the strength of

correlation. A caveat in this analysis is that, in order to

avoid bias resulting from regression to the mean (or

winner’s curse), the effects should be estimated from a

sample that is independent of the sample used to select

the risk variants. Therefore, we defined lipid-associated

SNPs based on the results from the largest European

GWAS to date11 and compared the estimated genetic

effects per allele, or allelic effect, in WHI AAs and HAs.

We examined SNPs with p % 10�5 in Europeans for

HDL, LDL, and TG, respectively. For HDL, 992 SNPs

were considered and the correlation of the estimated

allelic effects in AAs and HAs was 0.498; for LDL, 786

SNPs were considered and the correlation was 0.429; for

TG, 810 SNPs were considered and the correlation was

0.602 (Figures 2A–2C). As a negative control, we repeated

this analysis on SNPs with p values greater than 0.01 in

Europeans. As expected, estimated allelic effects in AAs

and HAs were essentially uncorrelated (0.0113, 0.00241,

and 0.00519 for HDL, LDL, and TG, respectively). Because

some SNPs included in this analysis may be in LD, the

observed correlation between AAs and HAs may be overes-

timated. To eliminate this possibility, Figure 2D displays

the estimated genetic effects in HAs versus AAs for 92

index SNPs from distinct loci implicated in the European

GWAS for HDL, LDL, and TG. The Pearson correlation

between the estimated effects was 0.69 (p ¼ 1.11 3

10�14), despite the fact that only 34 and 40 of the 92

SNPs had nominal p values less than 0.05 in AAs and

HAs, respectively. These results suggest that the degree of

overlap in risk loci between populations exceeds the set

of SNPs that replicate on the basis of a predefined p value

or significance threshold; therefore, combining associa-

tion evidence across populations is likely to increase the

overall efficiency of the ability to identify new trait loci.
The Am
Quantifying ‘‘Overlapping Heritability’’

Wenext asked whether loci associated in European popula-

tions contribute substantially to the genetic architecture of

lipid traits in AAs, in the sense of phenotypic variance

explained. The approachwe developed, termed population

overlap in genetic architecture (POGA), is based on an

extension of the mixed effects model of a polygenic trait,

introduced by Yang and Visscher.29 The rationale of

POGA is intuitive: if the ‘‘important’’ risk loci overlap

between populations, thenwe expect that the loci showing

the strongest evidence of association in one populationwill

account for a substantial proportion of the phenotypic

variation in another population. This approachhas two fea-

tures. First it makes use of the complete list of p values from

a reference GWAS instead of just the top SNPs; and second,

this method defines ‘‘overlap’’ more broadly to accommo-

date allelic heterogeneity and unknown LD patterns.

Figure 3 displays the proportion of phenotypic variance

in AAs explained by Gs when the markers in s expand from

regions that met genome-wide significance levels in

Europeans to the entire genome, and will be referred to

as a POGA plot. The entire genome explains 28.5%,

30.5%, and 18.8% of the additive variance for HDL, LDL,

and TG, respectively, of which nearly one-third can be

attributed to the top 1% of the genome showing strongest

evidence of association in Europeans and more than half

can be attributed to the top 10% of the genome. The excess

variance explained by the top regions is statistically signif-

icant in the sense that the 95% confidence intervals (with

the standard error estimated by GCTA) do not include the

expected values under the null model. In HAs, too,

genomic regions showing association in Europeans ac-

count for disproportionate phenotypic variance, although

the uncertainties associated with the estimates are greater

because of the smaller sample size (Figure S5). In contrast,

when we divided the genomic regions according to a

permuted list of p values, the proportion of variance

increased roughly linearly as a proportion of the genome

included; not a single point significantly deviated from

the expectation under the null model in the POGA plot

(Figure S4).
erican Journal of Human Genetics 92, 904–916, June 6, 2013 909
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Figure 1. Enrichment for Small p Values
among SNPs that Are Significantly or Sug-
gestively Associated in European GWASs
(A and B) High-density lipoprotein (HDL)
cholesterol in African Americans (AAs) (A)
and in Hispanic Americans (HAs) (B).
(C and D) Low-density lipoprotein (LDL)
cholesterol in AAs (C) and in HAs (D).
(E and F) Triglycerides (TG) in AAs (E) and
in HAs (F).
Ancestry Association and Admixture Mapping in AAs

We next investigated factors that underlie ethnic differ-

ences in lipid levels. Adjusting for the same set of covari-

ates as used in the AA GWAS, genome-wide African

ancestry was associated with increased HDL (b ¼ 0.10,

p ¼ 4.26 3 10�7) and decreased TG (b ¼ �0.33, p <

10�16) and was not significantly associated with LDL

(p¼ 0.178). This pattern is consistent with a previous anal-

ysis of an independent AA cohort in the Family Blood

Pressure Program.36,37 The phenotypic variance attributed

to genome-wide ancestry is very low: less than 0.3% for

HDL and less than 1% for TG. Comparing HAs and AAs

in WHI, HAs have significantly lower HDL (b ¼ �0.10,

p < 2 3 10�16), lower LDL (b ¼ �3.56, p ¼ 5.08 3 10�5),

and higher TG (b ¼ 0.37, p < 2 3 10�16).

Admixture mapping is an effective approach for identi-

fying loci with strong effects and disparate allele fre-

quencies between ancestral populations. Because the

recent admixing history induces strong correlation in

admixture mapping test statistics, we adopted a genome-
910 The American Journal of Human Genetics 92, 904–916, June 6, 2013
wide significance threshold of 7 3

10�6.32 In the genome-wide admix-

ture scan, local African ancestry at

9q22 (p ¼ 2.82 3 10�7) and at

11q23 (p ¼ 5.57 3 10�7) was associ-

ated with increased HDL (Table 1,

Figure S6). Together, the ancestry at

these two loci explains 0.6% of varia-

tion in HDL, and genome-wide

ancestry was no longer significantly

associated with the trait upon adjust-

ing for local ancestry at the two loci.

At 1p32, local African ancestry was

associated with decreased LDL (p ¼
2.11 3 10�6), explaining <0.3% of

phenotypic variation. Somewhat sur-

prisingly, no locus reached the

genome-wide significance level for

TG, despite the strong correlation

between the genome-wide African

ancestry and TG.

Association between local ancestry

and a trait can arise because the

region harbors population-specific

risk variants or because it harbors

risk variants shared among popula-
tions that occur at disparate allele frequencies. Thus,

regions showing local ancestry association are excellent

candidates for identifying the genetic basis that underlies

trait differences between ethnicities. Below we describe

further fine-scale characterization of each admixture-

mapping peak. These analyses aim to identify genes or

variants that are associated with lipids and explain the

local ancestry-trait association. We note a caveat that,

because admixture generates extensive linkage disequilib-

rium, these markers may simply be in LD with the true

causal variants.

Admixture Association with LDL at 1q32

In the region of the 1q32 admixture signal for LDL (UCSC

Genome Browser hg18: 54.8–55.5 Mb), genotype associa-

tion analyses revealed three low-frequency nonsynony-

mous variants in PCSK9 associated with decreased LDL

(rs28362286 [p.Cys679Ter], rs28362263 [p.Ala443Thr],

and rs28362261 [p.Asn425Ser]); the first two variants

were associated with decreased LDL in another AA
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Figure 2. Genetic Effects of Candidate
Lipid Variants Are Correlated between
AfricanAmericansandHispanicAmericans
(A–C) SNPs are those with p < 10�5 in a
European GWAS. The x axis represents the
estimated allelic effects in African Ameri-
cans (AAs) and the y axis represents the esti-
mated allelic effects of the corresponding
SNPs in Hispanic Americans (HAs).
(A) High-density lipoprotein (HDL)
cholesterol.
(B) Low-density lipoprotein (LDL)
cholesterol.
(C) Triglycerides (TG).
(D) Genetic effects of 92 SNPs represent-
ing independent loci; SNPs are the best
surrogate index SNPs on Affy 6.0 arrays
defined by Telosvich et al.11 The estimated
allelic effects in (D) are in the unit of
standard deviation of the phenotype.
cohort,38 and the third was validated in CARe (meta-

analysis p ¼ 1.43 3 10�10). Conditioning on the dosage

or carrier status of these three variants substantially

reduced the local ancestry association (p ¼ 1.15 3 10�2).

Curiously, we note that a nonsynonymous variant in

PCSK9, rs505151 (p.Gly670Glu), was associated with

LDL, but the allelic effect was opposite to the local ancestry

effect. The minor allele (G) at this SNP was associated with

higher LDL (p ¼ 1.09 3 10�6 in WHI, 4.31 3 10�09 in

CARe, and 2.42 3 10�12 in Europeans11); this allele occurs

in YRI at a frequency of 0.336 but at a much lower fre-

quency of 0.031 in Europeans. Indeed, a joint analysis

that included local ancestry and rs505151 showed stronger

LDL association with both variables (Table S2).

Admixture Association with HDL at 9q22

Local African ancestry at 9q22 (UCSC Genome Browser

hg18: 98.5–101.4 Mb) was associated with increased

HDL. From a biological standpoint, the nearest gene with

a plausible role in lipid metabolism is CORO2A (MIM

602159), which encodes coronin 2A. Coronin 2A

(CORO2A) is a nuclear receptor corepressor (NCoR) ex-

change factor that interacts with cholesterol-sensing liver

X receptor to derepress inflammatory genes in macro-

phages.39,40 The peak local ancestry association is 5 Mb

away from ABCA1 (MIM 600046), a known HDL locus

identified in Europeans. The ancestry association signal

vanished upon conditioning on three SNPs: rs751800 in
The American Journal of Huma
CORO2A, rs1537960 in GABBR2

(MIM 607340), and rs4149310 in

ABCA1 (Table S3). At rs1537960 and

rs751800, the HDL-decreasing alleles

are essentially absent in YRI, whereas

the HDL-decreasing allele at

rs4149310 occurs in both CEU and

YRI but at a much higher frequency

in CEU. Intriguingly, previous tran-

scriptomic studies have identified
rs751800, a SNP in the 30 UTR of CORO2A, as a cis-eQTL

in monocytes;41 based on data generated from the

ENCODE project, this SNP is categorized as likely to affect

transcription factor binding (category 1b in RegulomeDB

v.1.0).42 On the other hand, rs751800 was only weakly

associated with HDL in the CARe cohort (p ¼ 0.05) and

showed no association in Europeans.11 We note that

rs4149310 also shows suggestive association in European

populations (p ¼ 8.46 3 10�6); in contrast, the ABCA1

SNP with the strongest HDL association in Europeans,

rs1883025, had similar frequencies in YRI and CEU and

was not significantly associated with HDL in AAs (p ¼
0.215). Thus, rs1883025 cannot explain the HDL-ancestry

association. In summary, the ancestry-HDL association on

9q22 can be attributed to variants in CORO2A, GABBR2,

and ABCA1. Although ABCA1 appears to influence HDL

in both Europeans and AAs, the risk variants are either

distinct in the two populations or have very different allele

frequencies.

Admixture Association with HDL at 11q23

Local African ancestry at chromosomal region 11q23

(UCSC Genome Browser hg18: 118.6–122.1 Mb) was also

associated with increased HDL. The region is flanked at

either end by two HDL loci identified in Europeans,

UBASH3B (MIM 609201) and the APOA/APOC gene cluster.

At the APOA/APOC locus, 13 SNPs were associated with

HDL (p < 5 3 10�8) in WHI AAs. The minor alleles were
n Genetics 92, 904–916, June 6, 2013 911
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Figure 3. Overlap in Genetic Architecture in AAs
Genomic regions are ranked by the SNP with the strongest associ-
ation evidence in a European GWAS. Proportions of the pheno-
typic variance explained in AAs (y axis) by the top x% of the
genome (x axis) are estimated with a mixed effect model. Red
points indicates the 95% confidence interval excludes the
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each associated with decreased HDL and are all very rare

(<1% in AAs). Collectively, the number of rare variants car-

ried by WHI AA individuals was positively correlated with

African ancestry (p ¼ 0.02) and strongly correlated with

HDL (p ¼ 6.78 3 10�14). We performed conditional anal-

ysis of the local-ancestry-HDL association, adjusting for

either single markers, combined dosage across all markers,

or a 0/1 variable indicating whether an individual harbors

any of the rare variants, but none of these variables ex-

plained the ancestry peak (Table S4). At UBASH3B, the

most significant SNP in Europeans (rs7115089) and the

SNP showing the strongest association in AAs (rs7107934

[p ¼ 2.49 3 10�7]), both occur at similar frequencies in

YRI and CEU and thus cannot explain the local ancestry as-

sociation. No other variants were found in the 2Mb region

around UBASH3B that could explain the HDL admixture

association signal. Because the local ancestry association

at 11q23 cannot be attributed to variants in APOA/APOC

or UBASH3B, the region probably harbors unrecognized

HDL-influencing loci. A plausible candidate is ABCG4

(MIM 607784), which has been shown to promote choles-

terol efflux to HDL-like particles.43,44 However, single

marker association analysis in ABCG4 did not identify sig-

nificant genotype-HDL association.
Discussion

In this study, we have demonstrated a substantial overlap

in genes that contribute to the variation in plasma lipid

levels among human populations. At the same time, sub-

stantial allelic heterogeneity has been observed within

the shared loci, which contributes to the ethnic variation

in lipid levels.

A Shared Genetic Basis of Lipid Phenotypes among

Human Populations

Previous studies have found that variants associated with

lipid traits in Europeans can be ‘‘replicated’’ in non-Euro-

pean populations by using criteria of relaxed statistical

stringency and consistent direction of genetic effects.3,11

By using several approaches, we demonstrate evidence

for even greater shared genetic components beyond the

known replicated loci. First, we find a strong enrichment

of small p values, in both AAs and HAs, among SNPs that

show suggestive evidence of association in Europeans

(p < 10�5) (Figure 1). With an increased sample size, the

fraction of variants that can be replicated in non-European

populations is likely to increase. Second, despite some
expected value (magenta line) under the null model that x%
randomly selected genome explains h2x% of phenotypic variance,
where h2 is the variance explained by the entire genome. When
the null cannot be excluded, the point estimates are drawn with
gray points.
(A) High-density lipoprotein (HDL) cholesterol.
(B) Low-density lipoprotein (LDL) cholesterol.
(C) Triglycerides (TG).
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well-established examples in which a genetic variant con-

fers striking population-specific risk,45,46 the estimated

genetic effects in AAs and HAs, at loci chosen based on

the association evidence in Europeans, show strong corre-

lations in both direction and magnitude (Figure 2). This is

even more striking considering the moderate sample sizes

of AAs and HAs; thus the interethnic correlation in SNP

effects will probably be strengthened with larger sample

size and reduced sampling errors. Finally, POGA plots

demonstrate that the portion of the human genome that

contributes importantly to lipid variation in Europeans

also contributes substantially to phenotypic variation in

non-Europeans: for the majority of lipid traits we exam-

ined in AAs and HAs, more than half of the additive

phenotypic variance explained by the entire genome can

be attributed to the 10% of the genome showing the stron-

gest evidence of association in Europeans (Figures 3 and

S5). This last approach is particularly useful because it

defines an overlapping genetic architecture more broadly

by taking into account the possibility that, although a

locus influences the trait in multiple populations, the pre-

cise variants may not be identical. Furthermore, a variant

discovered in a GWAS may simply be a tagging SNP for a

functional variant; hence, even when a causal variant is

shared between populations, association with the tagging

SNP may not replicate across populations because of

different LD patterns. Estimating the proportion of pheno-

typic variation that is explained by a part of the genome

accommodates both true allelic heterogeneity and popula-

tion-specific LD patterns and has an intuitive inter-

pretation as the contribution by a set of candidate loci to

phenotypic variance. Again, the degree of overlap in

genetic basis represents a lower bound because of the

limited sample sizes.

Genetic Factors that Underlie Lipid Trait Differences

between Populations

Although the distribution of plasma-lipid concentration

overlaps considerably between populations, these traits

also vary between populations. Because shared ancestry

can confound genetic and nongenetic risk factors, it is

difficult to quantify the genetic and nongenetic contribu-

tion to population differences in traits such as lipid levels.

However, genetic association and admixture mapping ana-

lyses identified a number of genetic factors that underlie

the ethnic differences. Furthermore, these examples illus-

trate that both common and rare variants can contribute

to population differences. As expected, rare variants that

contribute to population differences tend to be population

specific, exemplified by multiple African-specific variants

in PCSK9 (associated with LDL) and in APOA/APOC

(associated with HDL). However, we also identified com-

mon variants that underlie population differences: the

African-specific CD36 variant, Tyr325Ter, has a frequency

of 0.28 in YRI; the HDL-increasing allele at rs4149310 in

ABCA1 has a frequency of 0.75 and 0.14 in YRI and CEU,

respectively, and explains a large proportion of the
The Am
ancestry association at 9q22 with HDL (Table S2). It is

also interesting to note that PCSK9, APOA/APOC, and

ABCA1 all play a role in lipid genetics in both Europeans

and AAs, yet the precise alleles within each locus differ

between the populations. This supports a view that lipid

loci are largely shared among populations, but the allelic

structure within a locus has been shaped by population

history and thus can exhibit considerable heterogeneity.

The presence of allelic heterogeneity has also been demon-

strated in a recent transethnic study of lipid trait via the

Metabochip.47

Admixture mapping has successfully detected loci that

contribute to phenotypic diversity between populations.

In most admixture mapping examples, where the genetic

factors that give rise to the ancestry association are known,

the ancestry-phenotype association can be largely attrib-

uted to a single variant with disparate allele frequencies

between populations. Examples include SLC24A5 (MIM

609802) for skin pigmentation, DARC (MIM 613665) null

allele for white blood cells, and APOL1 (MIM 603743) for

kidney diseases; the striking genetic differentiation at the

implicated loci signifies selective sweep.48–50 In contrast,

of the three loci showing ancestry-trait association for lipid

levels (1p32, 9q22, and 11q23), none could be attributed to

single common variants. Instead, two or more variants

explain the ancestry association in an additive fashion in

each region. Furthermore, in at least one instance

(PCSK9), we find African-specific coding variants that are

associated with either increased or decreased LDL. Our

interpretation of these observations is that the evolu-

tionary dynamics of lipid traits in humans are influenced

by a combination of forces and are in contrast to the strong

directional adaptation that diversifies, for example, skin

pigmentation. Rather, the many low-frequency coding

variants may have been subjected to weak purifying selec-

tion,51 whereas the more common variants may have been

driven to disparate population allele frequencies by other

mechanisms, including balancing selection and random

drift.52

Implication for Future GWASs

Racial and ethnic minorities constitute a growing propor-

tion of the US population and suffer disproportionately

higher rates of CVD.53 The abundance of population-

specific variants that underlie lipid traits highlights the

importance of including individuals of diverse ethnic back-

ground in future GWASs. At the same time, the identi-

fication of a large fraction of ethnically shared trait loci

suggests that further insights into the genetic mechanisms

that underlie lipid traits can be gained by continued study

of multiple ethnicities simultaneously. Based on published

GWASs that focus on populations of European decent, a

majority of complex traits and diseases are influenced by

a large number of loci, each conferring a modest risk.

Studies with sample size exceeding 100,000 are nonethe-

less underpowered, as indicated by the substantial fraction

of ‘‘missing heritability.’’54 Thus, the scarcity of cohorts
erican Journal of Human Genetics 92, 904–916, June 6, 2013 913



that represent AAs, HAs, and other minority populations

poses a challenge for understanding the genetic basis of

complex traits in these populations. Take coronary heart

disease (CAD) as an example: the CARDIoGRAM GWAS

cohort numbered 82,000 Europeans,55 compared to the

largest published AA cohort of 8,000.56 Moreover, an

increasing proportion of the world’s populations do not

fall into conventional ethnic categories (e.g. individuals

with mixed African and South Asian ancestry). In contrast

to studying each ethnic population separately, a multi-

ethnic approach that integrates evidence across popula-

tions will probably be more efficient, both for gene dis-

covery and for individual risk prediction. One analytic

approach has been proposed and takes the form of a ‘‘trans-

ethnic meta-analysis;’’ it is desirable to extend this

approach to accommodate allelic heterogeneity and differ-

ential LD patterns.57,58 The ability to harness information

across multiple populations will provide a more complete

portrait of the genetic bases that underlie complex traits

in human species, which will in turn allow all people to

benefit from the new paradigm of personalized medicine.
Supplemental Data

Supplemental Data include six figures and four tables and can be

found with this article online at http://www.cell.com/AJHG/.
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