19 research outputs found

    Enhanced Motor Function by Training in Spinal Cord Contused Rats Following Radiation Therapy

    Get PDF
    Weight-bearing stepping, without supraspinal re-connectivity, can be attained by treadmill training in an animal whose spinal cord has been completely transected at the lower thoracic level. Repair of damaged tissue and of supraspinal connectivity/circuitry following spinal cord injury in rat can be achieved by specific cell elimination with radiation therapy of the lesion site delivered within a critical time window, 2-3 weeks postinjury. Here we examined the effects of training in the repaired spinal cord following clinical radiation therapy. Studies were performed in a severe rat spinal cord contusion injury model, one similar to fracture/crush injuries in humans; the injury was at the lower thoracic level and the training was a combined hindlimb standing and stepping protocol. Radiotherapy, in a similar manner to that reported previously, resulted in a significant level of tissue repair/preservation at the lesion site. Training in the irradiated group, as determined by limb kinematics tests, resulted in functional improvements that were significant for standing and stepping capacity, and yielded a significant direct correlation between standing and stepping performance. In contrast, the training in the unirradiated group resulted in no apparent beneficial effects, and yielded an inverse correlation between standing and stepping performance, e.g., subject with good standing showed poor stepping capacity. Further, without any training, a differential functional change was observed in the irradiated group; standing capacity was significantly inhibited while stepping showed a slight trend of improvement compared with the unirradiated group. These data suggest that following repair by radiation therapy the spinal circuitries which control posture and locomotor were modified, and that the beneficial functional modulation of these circuitries is use dependent. Further, for restoring beneficial motor function following radiotherapy, training seems to be crucial

    Translocation of polysialic acid across model membranes: kinetic analysis and dynamic studies.

    Full text link
    Transmembrane translocation of polyion homopolymers takes place in the case of polyanionic polysialic acid (polySia), polyanionic polynucleotides and polycationic polypeptides. The purpose of this work was to determine the role of membrane electrical parameters on the kinetics of polyion translocation, the influence of polysialic acid on ion adsorption on positively charged membrane surface and the dynamics of the phospholipid hydrocarbon chains and choline group by using 1H-NMR. The analysis of polyion translocation was performed by using the electrical equivalent circuit of the membrane for the initial membrane potential equal to zero. The changes in polysialic acid flux was up to 75% after 1 ms in comparison with the zero-time flux. Both a decrease of membrane conductance and an increase of polyion chain length resulted in the diminution of this effect. An increase of praseodymium ions adsorption to positively charged liposomes and an increase of the rate of segmental movement of the -CH2 and -CH3 groups, and the choline headgrup of lipid molecules, was observed in the presence of polySia. The results show that the direction of the vectorial polyion translocation depends both on the membrane electrical properties and the degree of polymerization of the polymer, and that polysialic acid can modulate the degree of ion adsorption and the dynamics of membrane lipids.</jats:p

    A robotic device for studying rodent locomotion after spinal cord injury

    No full text
    We have developed a robotic device (the "rat stepper") for evaluating and training locomotor function of spinal cord injured rodents. This paper provides a detailed description of the device design and a characterization of its robotic performance capabilities

    Retraining the injured spinal cord

    No full text
    The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training

    Characterization and validation of a split belt treadmill for measuring hindlimb ground-reaction forces in able-bodied and spinalized felines

    No full text
    BACKGROUND: The measurement of ground reaction forces (GRFs) in animals trained to locomote on a treadmill after spinal cord injury (SCI) could prove valuable for evaluating training outcomes; however, quantitative measures of the GRFs in spinal felines are limited. NEW METHOD: A split belt treadmill was designed and constructed to measure the GRFs of feline hindlimbs during stepping. The treadmill consists of two independent treadmill assemblies, each mounted on a force plate. The design allows measurements of the vertical (F(z)), fore-aft (F(y)) and mediolateral (F(x)) ground-reaction forces for both hindlimbs while the forelimbs are resting on a platform. RESULTS: Static and dynamic noise tests revealed little to no noise at frequencies below 6 Hz. Validation of the force plate measurements with a hand-held force sensor force showed good agreement between the two force readings. Peak normalized (to body mass) vertical GRFs for intact cats were 4.89±0.85N/Kg for the left hindlimb and 4.79±0.97N/Kg for the right. In comparison, trained spinalized cats peak normalized vertical GRFs were 2.20±0.94N/Kg for the left hindlimb and 2.85±0.99N/Kg for the right. COMPARISON WITH OTHER EXISTING METHODS: Previous methods of measuring GRFs used stationary single force plates or treadmill mounted to single force plate. Using independent treadmills for each hindlimb allows measurement of the individual hindlimb’s GRFs in spinalized cats following body-weight supported treadmill training. CONCLUSIONS: The split belt force treadmill enables the simultaneous recording of ground-reaction forces for both hindlimbs in cats prior to spinalization, and following spinalization and body-weight-supported treadmill training (BWST)
    corecore