12 research outputs found

    Every student counts: promoting numeracy and enhancing employability

    Get PDF
    This three-year project investigated factors that influence the development of undergraduates’ numeracy skills, with a view to identifying ways to improve them and thereby enhance student employability. Its aims and objectives were to ascertain: the generic numeracy skills in which employers expect their graduate recruits to be competent and the extent to which employers are using numeracy tests as part of graduate recruitment processes; the numeracy skills developed within a diversity of academic disciplines; the prevalence of factors that influence undergraduates’ development of their numeracy skills; how the development of numeracy skills might be better supported within undergraduate curricula; and the extra-curricular support necessary to enhance undergraduates’ numeracy skills

    The status of the world's land and marine mammals: diversity, threat, and knowledge

    Get PDF
    Knowledge of mammalian diversity is still surprisingly disparate, both regionally and taxonomically. Here, we present a comprehensive assessment of the conservation status and distribution of the world's mammals. Data, compiled by 1700+ experts, cover all 5487 species, including marine mammals. Global macroecological patterns are very different for land and marine species but suggest common mechanisms driving diversity and endemism across systems. Compared with land species, threat levels are higher among marine mammals, driven by different processes (accidental mortality and pollution, rather than habitat loss), and are spatially distinct (peaking in northern oceans, rather than in Southeast Asia). Marine mammals are also disproportionately poorly known. These data are made freely available to support further scientific developments and conservation action

    Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe

    Get PDF
    Eukaryotic genomes are folded into three-dimensional structures, such as self-associating topological domains, the borders of which are enriched in cohesin and CCCTC-binding factor (CTCF) required for long-range interactions1-7. How local chromatin interactions govern higher-order folding of chromatin fibers and the function of cohesin in this process remain poorly understood. Here we perform genome-wide chromatin conformation capture (Hi-C) analysis8 to explore the high-resolution organization of the Schizosaccharomyces pombe genome, which despite its small size exhibits fundamental features found in other eukaryotes9. Our analyses of wild type and mutant strains reveal key elements of chromosome architecture and genome organization. On chromosome arms, small regions of chromatin locally interact to form “globules”. This feature requires a function of cohesin distinct from its role in sister chromatid cohesion. Cohesin is enriched at globule boundaries and its loss causes disruption of local globule structures and global chromosome territories. By contrast, heterochromatin, which loads cohesin at specific sites including pericentromeric and subtelomeric domains9-11, is dispensable for globule formation but nevertheless affects genome organization. We show that heterochromatin mediates chromatin fiber compaction at centromeres and promotes prominent interarm interactions within centromere-proximal regions, providing structural constraints crucial for proper genome organization. Loss of heterochromatin relaxes constraints on chromosomes, causing an increase in intra- and inter-chromosomal interactions. Together, our analyses uncover fundamental genome folding principles that drive higher-order chromosome organization crucial for coordinating nuclear functions

    Municipal Corporations, Homeowners, and the Benefit View of the Property Tax

    Full text link

    Every student counts: promoting numeracy and enhancing employability

    Get PDF
    This three-year project investigated factors that influence the development of undergraduates’ numeracy skills, with a view to identifying ways to improve them and thereby enhance student employability. Its aims and objectives were to ascertain: the generic numeracy skills in which employers expect their graduate recruits to be competent and the extent to which employers are using numeracy tests as part of graduate recruitment processes; the numeracy skills developed within a diversity of academic disciplines; the prevalence of factors that influence undergraduates’ development of their numeracy skills; how the development of numeracy skills might be better supported within undergraduate curricula; and the extra-curricular support necessary to enhance undergraduates’ numeracy skills

    Effect of concentric and eccentric hamstring training on sprint recovery, strength and muscle architecture in inexperienced athletes

    Get PDF
    Objectives: To investigate whether five-weeks of concentric (CON) or eccentric (ECC) hamstring strength training have different effects on recovery from sprint running, eccentric strength and architecture of the biceps femoris long head (BFLH). Design: Cohort study. Methods: Thirty males (age, 22.8 ± 4.1 y; height, 180.1 ± 6.4 cm; weight, 85.2 ± 14.6 kg) were allocated into either a CON or ECC group, both performing nine sessions of resistance training. Prior to and immediately after the five-week intervention, each participant's BFLH fascicle length (FL), pennation angle (PA), muscle thickness (MT), peak isometric KF torque and Nordic eccentric strength were assessed. Post-intervention, participants performed two timed sprint sessions (10 × 80 m) 48 h apart. Blood samples and passive KF torques were collected before, immediately after, 24 h and 48 h after the first sprint session. Results: After five-weeks of strength-training, fascicles lengthened in the ECC (p LH muscle architecture, there were no significant between group differences in sprint performance decrements across two sprint sessions.</p

    The impact of conservation on the status of the world's vertebrates

    No full text
    Using data for 25,780 species categorized on the International Union for Conservation of Nature Red List, we present an assessment of the status of the world's vertebrates. One-fifth of species are classified as Threatened, and we show that this figure is increasing: On average, 52 species of mammals, birds, and amphibians move one category closer to extinction each year. However, this overall pattern conceals the impact of conservation successes, and we show that the rate of deterioration would have been at least one-fifth again as much in the absence of these. Nonetheless, current conservation efforts remain insufficient to offset the main drivers of biodiversity loss in these groups: agricultural expansion, logging, overexploitation, and invasive alien species

    The status of the world's land and marine mammals: Diversity, threat, and knowledge

    Get PDF
    Knowledge of mammalian diversity is still surprisingly disparate, both regionally and taxonomically. Here, we present a comprehensive assessment of the conservation status and distribution of the world's mammals. Data, compiled by 1700+ experts, cover all 5487 species, including marine mammals. Global macroecological patterns are very different for land and marine species but suggest common mechanisms driving diversity and endemism across systems. Compared with land species, threat levels are higher among marine mammals, driven by different processes (accidental mortality and pollution, rather than habitat loss), and are spatially distinct (peaking in northern oceans, rather than in Southeast Asia). Marine mammals are also disproportionately poorly known. These data are made freely available to support further scientific developments and conservation action
    corecore