26 research outputs found

    From the Dinner Pot to Smoking Pot; How a Better Understanding of Cannabidiol in Crayfish could Alleviate Anxiety and Modulate Hunger

    Get PDF
    Anxiety affects approximately 1/3 of the US population and presents in many different forms, ranging from social to panic disorders. It also presents with high comorbidity for other mental disorders. One treatment is Selective Serotonin Reuptake Inhibitors (SSRIs) which allow for increased activation of serotonin (5-HT) receptors. SSRIs come with an extensive list of side effects, which can fail to maintain quality of life. Cannabidiol (CBD) is a cannabis derived compound which has been shown to decrease anxiety by activation of multiple subtype 5-HT amine receptors. CBD has few side effects, is not psychoactive, and exhibits anti-psychotic properties. The current understanding of CBD\u27s mechanisms is limited specifically in invertebrates, where to date limited published research involves behavior and cannabinoids. Decapod crustaceans, such as crayfish, have emerged as a novel approach to studying drugs of abuse. Within the neural structures of the crayfish tails are 5-HT receptors that control tail-flips, a withdraw reflex when placed into a fight. Serotonin has also been linked to aggression and decision making for engaging in fights with other crayfish. Additionally, evidence currently suggests CB1 receptors are present at neuromuscular junctions (NMJ) and may have an impact on motility. For this thesis, crayfish were administered either CBD, 5-HT, or a vehicle control. Analysis of motility by percent of time moving or rest, amount of food consumed, and aggression in paired fights were conducted. No statistical significance was found for CBD influencing motility and hunger. However, the duration of fights significantly increased when injected with CBD and when paired with 5-HT injected crayfish. This evidence supports the main hypothesis that CBD increases serotonin receptor activity in crayfish as seen with SSRIs, thus could be of use in treating anxiety

    Dorsoventral Patterning in Hemichordates: Insights into Early Chordate Evolution

    Get PDF
    We have compared the dorsoventral development of hemichordates and chordates to deduce the organization of their common ancestor, and hence to identify the evolutionary modifications of the chordate body axis after the lineages split. In the hemichordate embryo, genes encoding bone morphogenetic proteins (Bmp) 2/4 and 5/8, as well as several genes for modulators of Bmp activity, are expressed in a thin stripe of ectoderm on one midline, historically called “dorsal.” On the opposite midline, the genes encoding Chordin and Anti-dorsalizing morphogenetic protein (Admp) are expressed. Thus, we find a Bmp-Chordin developmental axis preceding and underlying the anatomical dorsoventral axis of hemichordates, adding to the evidence from Drosophila and chordates that this axis may be at least as ancient as the first bilateral animals. Numerous genes encoding transcription factors and signaling ligands are expressed in the three germ layers of hemichordate embryos in distinct dorsoventral domains, such as pox neuro, pituitary homeobox, distalless, and tbx2/3 on the Bmp side and netrin, mnx, mox, and single-minded on the Chordin-Admp side. When we expose the embryo to excess Bmp protein, or when we deplete endogenous Bmp by small interfering RNA injections, these expression domains expand or contract, reflecting their activation or repression by Bmp, and the embryos develop as dorsalized or ventralized limit forms. Dorsoventral patterning is independent of anterior/posterior patterning, as in Drosophila but not chordates. Unlike both chordates and Drosophila, neural gene expression in hemichordates is not repressed by high Bmp levels, consistent with their development of a diffuse rather than centralized nervous system. We suggest that the common ancestor of hemichordates and chordates did not use its Bmp-Chordin axis to segregate epidermal and neural ectoderm but to pattern many other dorsoventral aspects of the germ layers, including neural cell fates within a diffuse nervous system. Accordingly, centralization was added in the chordate line by neural-epidermal segregation, mediated by the pre-existing Bmp-Chordin axis. Finally, since hemichordates develop the mouth on the non-Bmp side, like arthropods but opposite to chordates, the mouth and Bmp-Chordin axis may have rearranged in the chordate line, one relative to the other

    A Century-Long Perspective on Agricultural Development

    No full text
    This article strategically surveys the past century's literature on agricultural development. We organize the discussion around three "grand themes" that reveal the richness of agricultural development as an intellectual endeavor. First, we explore the role of agriculture in the broader development process from a macroeconomic and political economy perspective. We then examine the role of technological and institutional change in successful agricultural development. Finally, the focus turns to a microeconomic perspective on agricultural household decision making and the problems of imperfect and missing markets, asymmetric information, and transactions costs that lead to widespread apparent inefficiency and disequilibrium. Copyright 2010, Oxford University Press.

    Genetic determinants of ferritin, haemoglobin levels and haemoglobin trajectories: results from Donor InSight

    No full text
    Background and objectives: Blood donors might develop iron deficiency as approximately 250 mg of iron is lost with every donation. Susceptibility to iron deficiency and low haemoglobin levels differs between individuals, which might be due to genetic variation. Therefore, the aim of this study was to investigate associations between single nucleotide polymorphisms (SNPs) and haemoglobin trajectories, haemoglobin levels and ferritin levels in blood donors. Materials and methods: In 2655 donors participating in the observational cohort study Donor InSight-III (2015–2017), haemoglobin and ferritin levels were measured in venous EDTA whole blood and plasma samples, respectively. Haemoglobin trajectories (stable/declining) were determined by fitting growth-mixture models on repeated pre-donation capillary haemoglobin measurements. Genotyping was done using the UK Biobank – version 2 Axiom Array. Single SNP analyses adopting an additive genetic model on imputed genetic variants were performed for haemoglobin trajectories, haemoglobin levels and ferritin levels. Conditional analyses identified independent SNPs. Results: Twelve, twenty and twenty-four independent SNPs were associated with haemoglobin trajectories, haemoglobin levels and ferritin levels respectively (P < 1 x 10 −5). Rs112016443 reached genome-wide significance for ferritin levels, which influences WDSUB1 expression. Conclusion: Rs112016443 was genome-wide significantly associated with ferritin levels in Dutch donors. Further validation studies are needed, as well as studies towards underlying mechanisms and predicting iron deficiency using SNPs

    The C-Type Lectin Receptor Dectin-2 Is a Receptor for Aspergillus fumigatus Galactomannan

    No full text
    International audienceAspergillus fumigatus is a ubiquitous environmental mold that causes significant mortality particularly among immunocompromised patients. The detection of the Aspergillus-derived carbohydrate galactomannan in patient serum and bronchoalveolar lavage fluid is the major biomarker used to detect A. fumigatus infection in clinical medicine. Despite the clinical relevance of this carbohydrate, we lack a fundamental understanding of how galactomannan is recognized by the immune system and its consequences. Galactomannan is composed of a linear mannan backbone with galactofuranose sidechains and is found both attached to the cell surface of Aspergillus and as a soluble carbohydrate in the extracellular milieu. In this study, we utilized fungal-like particles composed of highly purified Aspergillus galactomannan to identify a C-type lectin host receptor for this fungal carbohydrate. We identified a novel and specific interaction between Aspergillus galactomannan and the C-type lectin receptor Dectin-2. We demonstrate that galactomannan bound to Dectin-2 and induced Dectin-2-dependent signaling, including activation of spleen tyrosine kinase, gene transcription, and tumor necrosis factor alpha (TNF-α) production. Deficiency of Dectin-2 increased immune cell recruitment to the lungs but was dispensable for survival in a mouse model of pulmonary aspergillosis. Our results identify a novel interaction between galactomannan and Dectin-2 and demonstrate that Dectin-2 is a receptor for galactomannan, which leads to a proinflammatory immune response in the lung. IMPORTANCE Aspergillus fumigatus is a fungal pathogen that causes serious and often fatal disease in humans. The surface of Aspergillus is composed of complex sugar molecules. Recognition of these carbohydrates by immune cells by carbohydrate lectin receptors can lead to clearance of the infection or, in some cases, benefit the fungus by dampening the host response. Galactomannan is a carbohydrate that is part of the cell surface of Aspergillus but is also released during infection and is found in patient lungs as well as their bloodstreams. The significance of our research is that we have identified Dectin-2 as a mammalian immune cell receptor that recognizes, binds, and signals in response to galactomannan. These results enhance our understanding of how this carbohydrate interacts with the immune system at the site of infection and will lead to broader understanding of how release of galactomannan by Aspergillus effects the immune response in infected patients

    Development and validation of a universal blood donor genotyping platform: a multinational prospective study.

    Get PDF
    Each year, blood transfusions save millions of lives. However, under current blood-matching practices, sensitization to non-self-antigens is an unavoidable adverse side effect of transfusion. We describe a universal donor typing platform that could be adopted by blood services worldwide to facilitate a universal extended blood-matching policy and reduce sensitization rates. This DNA-based test is capable of simultaneously typing most clinically relevant red blood cell (RBC), human platelet (HPA), and human leukocyte (HLA) antigens. Validation was performed, using samples from 7927 European, 27 South Asian, 21 East Asian, and 9 African blood donors enrolled in 2 national biobanks. We illustrated the usefulness of the platform by analyzing antibody data from patients sensitized with multiple RBC alloantibodies. Genotyping results demonstrated concordance of 99.91%, 99.97%, and 99.03% with RBC, HPA, and HLA clinically validated typing results in 89 371, 3016, and 9289 comparisons, respectively. Genotyping increased the total number of antigen typing results available from 110 980 to >1 200 000. Dense donor typing allowed identification of 2 to 6 times more compatible donors to serve 3146 patients with multiple RBC alloantibodies, providing at least 1 match for 176 individuals for whom previously no blood could be found among the same donors. This genotyping technology is already being used to type thousands of donors taking part in national genotyping studies. Extraction of dense antigen-typing data from these cohorts provides blood supply organizations with the opportunity to implement a policy of genomics-based precision matching of blood.NHS Blood and Transplant, National Institute for Health Research, Health Data Research UK and Sanquin

    Development and validation of a universal blood donor genotyping platform: a multinational prospective study

    Full text link
    Each year, blood transfusions save millions of lives. However, under current blood-matching practices, sensitization to non–self-antigens is an unavoidable adverse side effect of transfusion. We describe a universal donor typing platform that could be adopted by blood services worldwide to facilitate a universal extended blood-matching policy and reduce sensitization rates. This DNA-based test is capable of simultaneously typing most clinically relevant red blood cell (RBC), human platelet (HPA), and human leukocyte (HLA) antigens. Validation was performed, using samples from 7927 European, 27 South Asian, 21 East Asian, and 9 African blood donors enrolled in 2 national biobanks. We illustrated the usefulness of the platform by analyzing antibody data from patients sensitized with multiple RBC alloantibodies. Genotyping results demonstrated concordance of 99.91%, 99.97%, and 99.03% with RBC, HPA, and HLA clinically validated typing results in 89 371, 3016, and 9289 comparisons, respectively. Genotyping increased the total number of antigen typing results available from 110 980 to >1 200 000. Dense donor typing allowed identification of 2 to 6 times more compatible donors to serve 3146 patients with multiple RBC alloantibodies, providing at least 1 match for 176 individuals for whom previously no blood could be found among the same donors. This genotyping technology is already being used to type thousands of donors taking part in national genotyping studies. Extraction of dense antigen-typing data from these cohorts provides blood supply organizations with the opportunity to implement a policy of genomics-based precision matching of blood
    corecore