19 research outputs found

    Modeling the competition between antenna size mutant and wild type microalgae in outdoor mass culture

    Get PDF
    <p>Under high light conditions, microalgae are oversaturated with light which significantly reduces the light use efficiency. Microalgae with a reduced pigment content, antenna size mutants, have been proposed as a potential solution to increase the light use efficiency. The goal of this study was to investigate the competition between antenna size mutants and wild type microalgae in mass cultures. Using a kinetic model and literature-derived experimental data from wild type Chlorella sorokiniana, the productivity and competition of wild type cells and antenna size mutants were simulated. Cultivation was simulated in an outdoor microalgal raceway pond production system which was assumed to be limited by light only. Light conditions were based on a Mediterranean location (Tunisia) and a more temperate location (the Netherlands). Several wild type contamination levels were simulated in each mutant culture separately to predict the effect on the productivity over the cultivation time of a hypothetical summer season of 100 days. The simulations demonstrate a good potential of antenna size reduction to increase the biomass productivity of microalgal cultures. However, it was also found that after a contamination with wild type cells the mutant cultures will be rapidly overgrown resulting in productivity loss.</p

    Effect of photoacclimation on microalgae mass culture productivity

    No full text
    Microalgae are capable of adapting their pigmentation to the light regime to which they are exposed. In high density microalgae cultures exposed to sunlight, the high pigment content leads to oversaturation of the photosystems resulting in increased light energy dissipation at the reactor surface, reducing the light use efficiency. In theory, therefore, pigment reduction would maximize biomass productivity. In this study, we have measured the long-term biomass productivity and short-term oxygen production rate of low-pigmented cells of Chlorella sorokiniana under mass culture conditions. Reduced pigmentation was obtained through the natural process of photoacclimation under high irradiance. During the time that the pigmentation was reduced, mass culture productivity, light absorption, and light use efficiency were investigated. Photoacclimation kinetics were investigated in a light shift experiment in which the increase in absorption cross section was followed in time upon a shift from high to low light intensity. Improved productivity of low-pigmented cells under mass culture conditions was not observed in any of the experiments. There is no solid explanation based on the experimental data. The most likely explanations are that thermal dissipation mechanisms were still activated and that the photoacclimation process itself consumed a substantial amount of energy at cost of growth processes. It is suggested that photoacclimation can only be exploited in the situation that microalgal cells are grown at a fixed position (e.g. in a biofilm, or multicompartment reactor) without being exposed to rapid light fluctuations.</p

    Switzerland: Selected Issues

    No full text

    Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized

    No full text
    de Mooij T, Janssen M, Cerezo-Chinarro O, et al. Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized. Journal of Applied Phycology. 2014;27(3):1063-1077.A major limitation in achieving high photosynthetic efficiency in microalgae mass cultures is the fact that the intensity of direct sunlight greatly exceeds the photosynthetic capacity of the cells. Due to the high pigment content of algal cells, the light absorption rate surpasses the much slower conversion rate to biochemical energy. The excess of light energy is predominantly dissipated as heat, decreasing the light use efficiency of the culture. Algae with a truncated antenna system could substantially increase biomass productivity of mass cultures because oversaturation of the photosystems and concomitant dissipation of light energy, are minimized. In this study, we measured the areal biomass productivity of wild-type strain cultures and four promising antenna size mutant cultures of Chlamydomonas reinhardtii. This was performed under simulated mass culture conditions. The strains were cultivated in turbidostat controlled lab-scale panel photobioreactors at an incident light intensity of 1500 μmol photons m-2s-1. The mutant cultures did not exhibit the expected higher productivity. The greatest mutant culture productivity values were approximate to those of the wild-type productivity of 1.9 g m-2h-1. The high sensitivity to abrupt light shifts indicated that the mutant cultures experienced reduced fitness and higher susceptibility to photodamage. This can possibly be explained by impaired photo protection mechanisms induced by the antenna complex alterations, or by unintended side effects of the genetic modifications. Still, if these effects could be eliminated, the principle of antenna size reduction is a promising strategy to increase productivity. Selection criteria for the future creation of antenna size mutants should, therefore, include tolerance to high light conditions

    Enhancing the BOADICEA cancer risk prediction model to incorporate new data on RAD51C, RAD51D, BARD1 updates to tumour pathology and cancer incidence.

    Get PDF
    BACKGROUND: BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) for breast cancer and the epithelial tubo-ovarian cancer (EOC) models included in the CanRisk tool (www.canrisk.org) provide future cancer risks based on pathogenic variants in cancer-susceptibility genes, polygenic risk scores, breast density, questionnaire-based risk factors and family history. Here, we extend the models to include the effects of pathogenic variants in recently established breast cancer and EOC susceptibility genes, up-to-date age-specific pathology distributions and continuous risk factors. METHODS: BOADICEA was extended to further incorporate the associations of pathogenic variants in BARD1, RAD51C and RAD51D with breast cancer risk. The EOC model was extended to include the association of PALB2 pathogenic variants with EOC risk. Age-specific distributions of oestrogen-receptor-negative and triple-negative breast cancer status for pathogenic variant carriers in these genes and CHEK2 and ATM were also incorporated. A novel method to include continuous risk factors was developed, exemplified by including adult height as continuous. RESULTS: BARD1, RAD51C and RAD51D explain 0.31% of the breast cancer polygenic variance. When incorporated into the multifactorial model, 34%-44% of these carriers would be reclassified to the near-population and 15%-22% to the high-risk categories based on the UK National Institute for Health and Care Excellence guidelines. Under the EOC multifactorial model, 62%, 35% and 3% of PALB2 carriers have lifetime EOC risks of 10%, respectively. Including height as continuous, increased the breast cancer relative risk variance from 0.002 to 0.010. CONCLUSIONS: These extensions will allow for better personalised risks for BARD1, RAD51C, RAD51D and PALB2 pathogenic variant carriers and more informed choices on screening, prevention, risk factor modification or other risk-reducing options

    International Corporate Tax Avoidance: A Review of the Channels, Magnitudes, and Blind Spots

    No full text
    corecore