27 research outputs found

    Seafloor sediment thickness beneath the VoiLA broad-band ocean-bottom seismometer deployment in the Lesser Antilles from P-to-S delay times

    Get PDF
    Broad-band ocean-bottom seismometer (OBS) deployments present an opportunity to investigate the seafloor sediment thickness, which is important for constraining sediment deposition, and is also useful for subsequent seismological analyses. The Volatile Recycling in the Lesser Antilles (VoiLA) project deployed 34 OBSs over the island arc, fore- and backarc of the Lesser Antilles subduction zone for 15 months from 2016 to 2017. Using the amplitudes and delay times of P-to-S (Ps) scattered waves from the conversion of teleseismic earthquake Pwaves at the crust–sediment boundary and pre-existing relationships developed for Cascadia, we estimate sediment thickness beneath each OBS. The delay times of the Ps phases vary from 0.20 ± 0.06 to 3.55 ± 0.70 s, generally increasing from north to south. Using a single-sediment and single-crystalline crust earth model in each case, we satisfactorily model the observations of eight OBSs. At these stations we find sediment thicknesses range from 0.43 ± 0.45 to 5.49 ± 3.23 km. To match the observations of nine other OBSs, layered sediment and variable thickness crust is required in the earth model to account for wave interference effects on the observed arrivals. We perform an inversion with a two-layer sediment and a single-layer crystalline crust in these locations finding overall sediment thicknesses of 1.75 km (confidence region: 1.45–2.02 km) to 7.93 km (confidence region: 6.32–11.05 km), generally thinner than the initial estimates based on the pre-existing relationships. We find agreement between our modelled velocity structure and the velocity structure determined from the VoiLA active-source seismic refraction experiment at the three common locations. Using the Ps values and estimates from the VoiLA refraction experiment, we provide an adjusted relationship between delay time and sediment equations for the Lesser Antilles. Our new relationship is H=1.42dt1.44^{1.44} , where H is sediment thickness in kilometres and dt is mean observed Ps delay time in seconds, which may be of use in other subduction zone settings with thick seafloor sediments

    Seafloor sediment thickness beneath the VoiLA broad-band ocean-bottom seismometer deployment in the Lesser Antilles from P-to-S delay times

    Get PDF
    Broad-band ocean-bottom seismometer (OBS) deployments present an opportunity to investigate the seafloor sediment thickness, which is important for constraining sediment deposition, and is also useful for subsequent seismological analyses. The Volatile Recycling in the Lesser Antilles (VoiLA) project deployed 34 OBSs over the island arc, fore- and backarc of the Lesser Antilles subduction zone for 15 months from 2016 to 2017. Using the amplitudes and delay times of P-to-S (Ps) scattered waves from the conversion of teleseismic earthquake Pwaves at the crust–sediment boundary and pre-existing relationships developed for Cascadia, we estimate sediment thickness beneath each OBS. The delay times of the Ps phases vary from 0.20 ± 0.06 to 3.55 ± 0.70 s, generally increasing from north to south. Using a single-sediment and single-crystalline crust earth model in each case, we satisfactorily model the observations of eight OBSs. At these stations we find sediment thicknesses range from 0.43 ± 0.45 to 5.49 ± 3.23 km. To match the observations of nine other OBSs, layered sediment and variable thickness crust is required in the earth model to account for wave interference effects on the observed arrivals. We perform an inversion with a two-layer sediment and a single-layer crystalline crust in these locations finding overall sediment thicknesses of 1.75 km (confidence region: 1.45–2.02 km) to 7.93 km (confidence region: 6.32–11.05 km), generally thinner than the initial estimates based on the pre-existing relationships. We find agreement between our modelled velocity structure and the velocity structure determined from the VoiLA active-source seismic refraction experiment at the three common locations. Using the Ps values and estimates from the VoiLA refraction experiment, we provide an adjusted relationship between delay time and sediment equations for the Lesser Antilles. Our new relationship is H=1.42dt1.44^{1.44} , where H is sediment thickness in kilometres and dt is mean observed Ps delay time in seconds, which may be of use in other subduction zone settings with thick seafloor sediments

    Architecture of North Atlantic Contourite Drifts Modified by Transient Circulation of the Icelandic Mantle Plume

    Get PDF
    Overflow of Northern Component Water, the precursor of North Atlantic Deep Water, appears to have varied during Neogene times. It has been suggested that this variation is moderated by transient behavior of the Icelandic mantle plume, which has influenced North Atlantic bathymetry through time. Thus pathways and intensities of bottom currents that control deposition of contourite drifts could be affected by mantle processes. Here, we present regional seismic reflection profiles that cross sedimentary accumulations (Björn, Gardar, Eirik and Hatton Drifts). Prominent reflections were mapped and calibrated using a combination of boreholes and legacy seismic profiles. Interpreted seismic profiles were used to reconstruct solid sedimentation rates. Björn Drift began to accumulate in late Miocene times. Its average sedimentation rate decreased at ∼2.5 Ma and increased again at ∼0.75 Ma. In contrast, Eirik Drift started to accumulate in early Miocene times. Its average sedimentation rate increased at ∼5.5 Ma and decreased at ∼2.2 Ma. In both cases, there is a good correlation between sedimentation rates, inferred Northern Component Water overflow, and the variation of Icelandic plume temperature independently obtained from the geometry of diachronous V-shaped ridges. Between 5.5 and 2.5 Ma, the plume cooled, which probably caused subsidence of the Greenland-Iceland-Scotland Ridge, allowing drift accumulation to increase. When the plume became hotter at 2.5 Ma, drift accumulation rate fell. We infer that deep-water current strength is modulated by fluctuating dynamic support of the Greenland-Scotland Ridge. Our results highlight the potential link between mantle convective processes and ocean circulation

    Structure of the central Sumatran subduction zone revealed by local earthquake travel-time tomography using an amphibious network

    Get PDF
    The Sumatran subduction zone exhibits strong seismic and tsunamogenic potential with the prominent examples of the 2004, 2005 and 2007 earthquakes. Here, we invert travel time data of local earthquakes for vp and vp/vs velocity models of the central Sumatran forearc. Data were acquired by an amphibious seismometer network consisting of 52 land stations and 10 ocean bottom seismometers located on a segment of the Sumatran subduction zone that had not ruptured in a great earthquake since 1797 but witnessed recent ruptures to the north in 2005 (Nias earthquake, Mw = 8.7) and to the south in 2007 (Bengkulu earthquake, Mw = 8.5). 2D and 3D vp velocity anomalies reveal the downgoing slab and the sedimentary basins. Although the seismicity pattern in the study area appears to be strongly influenced by the obliquely subducting Investigator Fracture Zone to at least 200 km depth, the 3D velocity model shows prevailing trench parallel structures at depths of the plate interface. The tomographic model suggests a thinned crust below the basin east of the forearc islands (Nias, Pulau Batu, Siberut) at ~ 180 km distance to the trench. Vp velocities beneath the magmatic arc and the Sumatran fault zone SFZ are around 5 km/s at 10 km depth and the vp/vs ratios in the uppermost 10 km are low, indicating the presence of felsic lithologies typical for continental crust. We find moderately elevated vp/vs values of 1.85 at ~ 150 km distance to the trench in the region of the Mentawai fault. Vp/vs ratios suggest absence of large scale alteration of the mantle wedge and might explain why the seismogenic plate interface (observed as a locked zone from geodetic data) extends below the continental forearc Moho in Sumatra. Reduced vp velocities beneath the forearc basin covering the region between Mentawai Islands and the Sumatra mainland possibly reflect a reduced thickness of the overriding crust

    Variable water input controls evolution of the Lesser Antilles volcanic arc

    Get PDF
    Oceanic lithosphere carries volatiles, notably water, into the mantle through subduction at convergent plate boundaries. This subducted water exercises control on the production of magma, earthquakes, formation of continental crust and mineral resources. Identifying different potential fluid sources (sediments, crust and mantle lithosphere) and tracing fluids from their release to the surface has proved challenging1. Atlantic subduction zones are a valuable endmember when studying this deep water cycle because hydration in Atlantic lithosphere, produced by slow spreading, is expected to be highly non-uniform2. Here, as part of a multi-disciplinary project in the Lesser Antilles volcanic arc3, we studied boron trace element and isotopic fingerprints of melt inclusions. These reveal that serpentine—that is, hydrated mantle rather than crust or sediments—is a dominant supplier of subducted water to the central arc. This serpentine is most likely to reside in a set of major fracture zones subducted beneath the central arc over approximately the past ten million years. The current dehydration of these fracture zones coincides with the current locations of the highest rates of earthquakes and prominent low shear velocities, whereas the preceding history of dehydration is consistent with the locations of higher volcanic productivity and thicker arc crust. These combined geochemical and geophysical data indicate that the structure and hydration of the subducted plate are directly connected to the evolution of the arc and its associated seismic and volcanic hazards

    The eastern Indian ocean earthquake and tsunami : first seafloor survey by Royal Navy's HMS Scott

    Get PDF
    The earthquake offshore Sumatra, Indonesia and the Nicobar-Andaman Islands, India on 26th December 2004 (Figure 1) was the second largest earthquake ever recorded (in 50-60 years recording history) with a moment magnitude of 9.3. The resulting tsunami wave propagated across the Indian Ocean causing devastation in coastal south-east Asia, Sri Lanka, India and East Africa and the loss of an estimated 300,000 lives. First post-disaster seafloor survey of the area was recently completed

    Transition Zone Mapping for Marine-Terrestrial Archaeological Continuity (Contiguous Palaeo-Landscape Reconstruction)

    No full text
    The primary objective of this project was to produce a contiguous palaeo-landscape reconstruction across the marine to terrestrial boundary therefore enhancing the archaeological continuity across space and through time within an area of landscape previously examined through a series a stand-alone investigations. It is suggested that only by completing this successfully will marine sites that are of present and future concern to aggregate dredging, be fully interpreted with their correct archaeological context. Furthermore, this will importantly reduce the regional uncertainty associated with the interpretation of marine sites thus allowing marine sites to fully contribute to not only the local palaeo-landscape reconstructions but also the regional and National understanding of their archaeological significance. The project investigated this methodology on an area in the West Sussex coastal corridor between Havant and the Arun Valley

    A Continuous 55 Million Year Record of Transient Mantle Plume Activity Beneath Iceland

    Get PDF
    In the North Atlantic Ocean, a mid-oceanic ridge bisects the Icelandic mantle plume, providing a window into the temporal evolution of this major convective upwelling 1–3 . It is generally accepted that this plume’s transient behavior is indirectly recorded within the fabric of oceanic floor south of Iceland 4–7 . Despite its significance, the structure of this region is poorly known. Here, we present long seismic reflection profiles that traverse the oceanic basin between northwest Europe and Greenland. A diachronous pattern of V-shaped ridges is imaged beneath a thickening blanket of sediment, revealing a complete record of transient periodicity that can be traced continuously back to ∼ 55 Myrs— the longest record of its kind. This periodicity increases from ∼ 3 to ∼ 8 Myr with clear evidence for minor, but systematic, asymmetric crustal accretion. V-shaped ridges grow with time and reflect small (e.g. 5–30◦ C) fluctuations of mantle temperature, consistent with quasi-periodic generation of hot solitary waves triggered by growth of thermal boundary layer instabilities within the mantle . Our continuous record of convective activity predicts a history of regional elevation change which moderated overflow of the Neogene precursor of North Atlantic Deep Water and which controlled the growth and decay of multiple Paleogene buried landscapes
    corecore