A Continuous 55 Million Year Record of Transient Mantle Plume Activity Beneath Iceland

Ross Parnell-Turner¹, Nicky White¹, Tim Henstock², Bramley Murton³, John Maclennan¹ & Stephen M. Jones⁴

¹Department of Earth Sciences, University of Cambridge, Cambridge, CB3 0EZ, UK

²National Oceanography Centre Southampton, University of Southampton, Southampton SO17 1BJ, UK

³National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK

⁴School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, UK

In the North Atlantic Ocean, a mid-oceanic ridge bisects the Icelandic mantle plume, providing a window into the temporal evolution of this major convective upwelling¹⁻³. It is gen-2 erally accepted that this plume's transient behavior is indirectly recorded within the fabric 3 of oceanic floor south of Iceland^{4–7}. Despite its significance, the structure of this region is 4 poorly known. Here, we present long seismic reflection profiles that traverse the oceanic 5 basin between northwest Europe and Greenland. A diachronous pattern of V-shaped ridges 6 is imaged beneath a thickening blanket of sediment, revealing a complete record of tran-7 sient periodicity that can be traced continuously back to \sim 55 Myrs— the longest record of 8 its kind. This periodicity increases from \sim 3 to \sim 8 Myr with clear evidence for minor, but 9 systematic, asymmetric crustal accretion. V-shaped ridges grow with time and reflect small 10

(e.g. 5–30°C) fluctuations of mantle temperature, consistent with quasi-periodic generation
of hot solitary waves triggered by growth of thermal boundary layer instabilities within the
mantle⁸. Our continuous record of convective activity predicts a history of regional elevation
change which moderated overflow of the Neogene precursor of North Atlantic Deep Water
and which controlled the growth and decay of multiple Paleogene buried landscapes.

Spatial and temporal patterns of convective circulation beneath lithospheric plates cause re-16 gional elevation changes at the Earth's surface which have important- but poorly understood-17 implications for the development of dynamic topography on geologic timescales. Since the Rayleigh 18 number of convecting mantle is 10^{6} - 10^{8} , this circulation is expected to be transient, varying on 19 timescales of 1–100 Myr and on length scales of 100s–1000s of kilometers^{3,9}. A global network 20 of mid-oceanic ridges provides a useful means of estimating the temperature of underlying as-21 thenospheric mantle^{10,11}. At spreading mid-oceanic ridges, accretion of oceanic crust is sensitive 22 to small temperature fluctuations that change the thickness of newly formed crust by kilometers². 23

In the North Atlantic ocean, the Reykjanes Ridge crosses the Icelandic plume, a hot convective upwelling with a radius of at least 1200 km¹². Within the region influenced by this plume, average thickness of oceanic crust increases from 7 to 14 km and the seabed is anomalously shallow by up to 2 km. Both observations are consistent with an average temperature anomaly of 150° C². Several different timescales of transient behavior are sampled by the mid-oceanic ridge's interaction with this plume. On the shortest timescale, the most obvious and best-known features are diachronous V-shaped ridges (VSRs) that are visible on either side of the ridge axis where sed-

imentary cover is minimal (Figure 1). These VSRs probably reflect minor changes in the thickness 31 and composition of oceanic crust and are generated when hotter than average parcels of plume 32 material travel radially away from the plume's conduit^{13, 14}. On a much longer timescale, there is a 33 transition from smooth crust without fracture zones, accreted over hotter asthenosphere, to rough 34 crust with fracture zones, accreted over colder asthenosphere (Figure 1). This observation suggests 35 that the plume's planform has changed through time. Today, the plume's thermal (as opposed to 36 chemical) influence extends to the intersection between the mid-oceanic ridge and the Bight Frac-37 ture Zone at 57°N and 33°W^{2,5,15}. Despite their importance in providing otherwise inaccessible 38 insights into convective processes, the structure and extent of these VSRs are poorly known and 39 their origin is still debated^{16,17}. It is especially unclear how many VSRs exist and how far back in 40 time their history can be traced. 41

To address these general issues, we acquired two regional (>1200 km) seismic reflection pro-42 files that traverse the oceanic basin south of Iceland (Figure 1). Crucially, these profiles provide 43 conjugate images of the Iceland and Irminger basins, since each one of them is oriented parallel 44 to plate spreading flowlines¹⁸. Acquisition and processing details are provided in the Methods 45 Summary. We have two significant findings. First, we have mapped the sediment-basement inter-46 face, which demonstrates that VSR activity can be continuously traced back to 55 Myr. Secondly, 47 this activity has been used to build a detailed chronology of asthenospheric potential temperature, 48 T_{p} . This continuous record provides a reference frame for analyzing relationships between plume 49 activity and other geologic observations. 50

Profile 2 resolves the detailed structure of the Iceland and Irminger basins (Figure 1a). Away 51 from a prominent mid-oceanic ridge, the top of oceanic crust is clearly imaged beneath layered 52 sediments, which thicken in either direction. A sediment-basement interface can easily be traced, 53 despite being cut by minor faults (Figure 1b). The sedimentary pile is dominated by contourite 54 drift deposits that record the history of deep-water overflow across the Greenland-Scotland Ridge. 55 For example, Eirik Drift records 7 Myr of overflow through the Denmark Strait and is visible at 56 the northwestern end of the profile¹⁴. This overflow caused incision of older contourite deposits 57 northwest of the mid-oceanic ridge. The sediment-basement interface is deformed into a series of 58 prominent ridges and troughs that are imaged out to \sim 500 km on either side of the mid-oceanic 59 ridge. These ridges and troughs are 20-40 km wide with amplitudes of up to 1 km and they 60 correlate with small free-air gravity anomalies (Figure 1c,d). Detailed interpretation shows that 61 these ridges and troughs are broken up, but not controlled, by normal faulting (Figure 1e,f). 62

Average crustal thickness along the Reykjanes Ridge is primarily controlled by astheno-63 spheric temperature within the plume head¹³. Smallwood et al.¹⁸ demonstrated that V-shaped 64 ridges and troughs are maintained by minor changes in oceanic crustal thickness, which in turn are 65 generated by temperature fluctuations within the plume. Changes in the composition of basaltic 66 rocks and in the geometry of active faults along the Reykjanes Ridge suggest that these temperature 67 fluctuations are $\pm 25^{\circ}C^{13,14,19}$. Here, we exploit residual depth anomalies as a proxy for tracking 68 crustal thickness and asthenospheric temperature fluctuations (Figure 1a). Residual depth is the 69 water-loaded depth to oceanic crust that has been corrected for sediment loading, plate age and 70 present-day dynamic support⁶. South of Iceland, residual depth varies by ± 400 m and is con-71

⁷² trolled by changes in crustal thickness. If crust is generated at the mid-oceanic ridge by isentropic ⁷³ decompression of anhydrous mantle^{11,13}, T_p can be estimated from residual depth measurements ⁷⁴ using

$$T_p \approx 16 \left[t_c + \left(\frac{\rho_a - \rho_w}{\rho_a - \rho_c} \right) d_r \right] + 1200 \tag{1}$$

where $t_c = 8.4$ km is a reference crustal thickness¹⁸, d_r is residual depth, $\rho_a = 3.2$ Mg m⁻³ is den-75 sity of asthenospheric mantle, $\rho_c = 2.8 \text{ Mg m}^{-3}$ is density of oceanic crust, and $\rho_w = 1 \text{ Mg m}^{-3}$ is 76 the density of seawater. We have projected our T_p estimates into age-distance space and combined 77 them with satellite gravity observations (Figure 1b). There is excellent agreement between these 78 estimates and free-air gravity anomalies on young, smooth oceanic crust (<20 Myr). On the oldest 79 crust, VSRs are also visible and correlate with weak linear gravity anomalies whose significance 80 was not previously recognized due to variable thicknesses of sedimentary cover (Figure 1). Parkin 81 and White²⁰ demonstrated that some of the oldest VSRs are manifest by resolvable crustal thick-82 ness changes of ± 1 km. At radial distances of >500 km from the plume center, symmetric lobes 83 of rough crust are intersected by profile 1 between 20 and 35 Myr (Figure 3b). Within these highly 84 fractured lobes, coherent VSRs are not clearly observed and legacy seismic refraction data suggest 85 that the crust is only 6.1 km thick ^{5,21}. This observation suggests that the rough-smooth boundary 86 represents the lateral extent of the plume. 87

88

VSRs are not exactly symmetric about the Reykjanes Ridge. For example, an old and promi-

nent VSR occurs at a distance of 350 km from the ridge axis on the eastern side of profile 2 (Figure 89 2b). On the western side of the same profile, this VSR occurs at 370 km, which corresponds to 90 a cumulative offset of 20 km. Over the last 30 Myrs, a systematic pattern of increasing offset 91 is consistent with a history of asymmetric crustal accretion documented using magnetic anomaly 92 profiles located closer to Iceland^{16,17}. At distances of <250 km from the ridge axis, estimates of 93 asymmetry made from magnetic anomalies and VSRs agree within error (Figure 3c). Increasing 94 asymmetry corresponds to a series of well-known eastward ridge jumps on Iceland which reflect 95 the fact that the mid-oceanic ridge gradually drifts westward with respect to the plume center, pe-96 riodically relocating itself at the center of the plume²². VSR asymmetry between 300 and 500 km 97 corresponds to a much older westward switching in seafloor spreading from the now-extinct Aegir 98 Ridge to the active Kolbeinsey Ridge located north of Iceland^{15,23}. 99

Growth and decay of asymmetry enables us to synchronize VSR chronology on either side 100 of the Reykjanes Ridge (Figures 3a,d). The optimal result is obtained by adjusting a sub-set of 101 poorly constrained magnetic anomaly picks (i.e. magnetic chrons 8-17 corresponding to 20-40 102 Myrs) along profile 2 by ± 1 Myrs, which is within the range of uncertainty¹⁵. The resultant match 103 between eastern and western portions of this profile implies that VSRs were generated by radially 104 expanding temperature fluctuations that were generated deep within plume's conduit^{7,14,16}. Growth 105 and decay of asymmetric spreading correlate with plume activity which suggests a causal relation-106 ship. In the North Atlantic Ocean, it is known that the mid-oceanic ridge drifts northwestward 107 with respect to the center of the plume¹⁵. Our results indicate that the cumulative amount of drift 108 increases when the plume is quiescent (compare Figures 3c and d). Greater plume activity sub-109

stantially increases the distal radial force that probably acts to inhibit plate spreading, encouraging the mid-oceanic ridge to switch back to the plume center. If elevation at the plume center goes up by 200 m, the distal radial force increases by a minimum of 2×10^8 N m⁻¹.

We have combined analysis of both profiles with the results of Parkin and White²⁰ to calculate 113 an average history of plume temperature fluctuations (Figure 3d). Between 55 and 35 Myrs, small 114 (\sim 5–10°C) fluctuations of plume temperature have a periodicity of \sim 3 Myrs. These fluctuations 115 are superimposed upon a rapidly cooling temperature structure that is also manifest by a northward 116 shift in the transition from smooth to rough crust. Both observations are consistent with wholesale 117 shrinkage of the plume²⁰. After 35 Myrs, the radius of the convective planform rapidly expanded 118 from 400 to at least 1200 km. This growth was accompanied by larger ($\sim 25-30^{\circ}$ C) fluctuations of 119 plume temperature that have a periodicity of up to 8 Myrs (Figure 3d). This changing periodicity 120 is probably caused by boundary layer perturbations within the convecting mantle^{4,5,20,24}. Scaling 121 analysis suggests that VSR activity is compatible with perturbations which form either at the 670 122 km mantle discontinuity or at the core-mantle boundary (Supplementary Information). 123

Using values from Supplementary Table 1, the geometry of the youngest VSR confirms that the present-day buoyancy flux of the plume is $B = 18 \pm 7$ Mg s⁻¹ if plume material flows radially away from the plume center within an asthenospheric layer that is 125 ± 25 km thick with an excess temperature of $\Delta T = 150 \pm 50^{\circ}$ C^{6,7}. Independent values of *B* can be obtained by exploiting two separate observations. First, the changing boundary between smooth and rough crust, *d*, is controlled by a combination of plate spreading rate, *u*, and *B* where

$$B = \pi u d^2 \rho_m \alpha \Delta T \tag{2}$$

which yields $B = 26 \pm 9$ Mg s⁻¹ for the last 2 Myrs. Secondly, the present-day planform of the plume swell constrains its excess volume ²⁵. If a plume radius of 1200 ± 100 km grew over the last 25–35 Myrs, $B = 17 \pm 5$ Mg s⁻¹. All three estimates of buoyancy flux are consistently large, indicating that the Iceland plume is probably the biggest convective upwelling on Earth. In contrast, the Hawaiian plume has a buoyancy flux of only 8.7 Mg s⁻¹ (ref. 26).

¹³⁵ Our seismic reflection interpretations suggest that buoyancy flux has changed through time. ¹³⁶ For example, the oldest VSRs within the Irminger and Iceland basins have weak linear gravity ¹³⁷ anomalies that yield $B = 73 \pm 15$ Mg s⁻¹ and 66 ± 14 Mg s⁻¹, respectively. Such high values are ¹³⁸ consistent with the oldest smooth lobes of crust that extend at least 1400 km away from the center ¹³⁹ of the plume, implying that $B \ge 70$ Mg s⁻¹ (Figure 3b).

Finally, our observations help to bound the dimensions of solitary waves that are generated at putative thermal boundary layers and travel up deformable conduits of plumes (Figure 1)⁸. In the plate spreading direction, the youngest VSRs are 25–30 km wide whereas older ones are 15–20 km wide. The youngest VSR is ~730 km from the plume center and has a width $x = 25 \pm 3$ km. Assuming a present-day plume flux of ~18 ± 4 Mg s⁻¹, the width of the VSR in the direction of the mid-oceanic ridge, ΔR , is expected to be 244 ± 44 km. This value is consistent with a 250 km long segment of increased volcanism and reduced seismicity along the ridge crest near 60°N¹⁹.

In summary, we have presented observations that document a continuous record of transient 147 behaviour of the Icelandic plume between 55 Myrs and the present day. Transient thermal anoma-148 lies occur every 3–8 Myr and are generated by boundary layer instabilities. Present-day buoyancy 149 flux of the Iceland plume suggests that it is the largest convective upwelling on Earth. Fluctuating 150 dynamic support during the Cenozoic Era provides a general mechanism for proposed changes 151 in deep-water oceanic circulation¹⁴, for sedimentary drift accumulation²⁷, and for the carving of 152 ancient ephemeral landscapes²⁸. Establishing these connections between convective chronologies 153 and surface observations has helped to yield novel insights into the coupled nature of Earth's deep 154 and surficial realms. 155

156 Methods

Seismic data acquisition and processing. Seismic profiles were acquired onboard the RRS James 157 *Cook* during July–August 2010 by the Universities of Cambridge, Southampton and Birmingham. 158 This cruise, JC50, was financially supported by the Natural Environmental Research Council. 159 Acoustic energy was generated using a single generator-injector airgun with a total volume of 160 5.82 litres (generator pulse = 4.1 litres, injector pulse = 1.72 litres) and a frequency bandwidth of 161 10–400 Hz. The airgun was towed at a depth of 5.5 m behind the vessel, which steamed at \sim 9.3 km 162 hr^{-1} . This airgun was primed with compressed air (20.7 MPa) and fired every 15 s (~40 m). Re-163 flected acoustic energy was recorded on a 1600 m-long streamer towed at 7 m depth. This streamer 164 consisted of 132 groups of hydrophones located every 12.5 m. Distance from the airgun to the first 165 group (i.e. near-trace offset) was 163 m. The digital sampling interval of recorded signals was 1 166

ms. During the survey, impulses of acoustic energy are transmitted and reflected at discontinuities 167 within the Earth, where changes in acoustic impedance are generated by density and velocity con-168 trasts. The geometry of this survey was designed to repeatedly record signals every 6.25 m along 169 the profile. This redundancy improves signal to noise since reflections from different shotpoint-170 receiver pairs can be stacked together. Before stacking, acoustic velocity is carefully picked as a 171 function of two-way travel time to correct for the travel-time delay (that is, normal move-out) of 172 different raypaths within a single common mid-point (CMP) gather. Here, velocity functions were 173 hand-picked every 100 CMPs (i.e. every 625 m). The resultant 21-fold stacked image has a vertical 174 and horizontal resolution of 10-20 m. Signal processing techniques also included application of a 175 12 Hz high-pass filter with a roll-off of 24 dB per octave, and a post-stack Stolt migration with a 176 constant acoustic velocity of 1500 m s^{-1} . 177

References

- Vogt, P. R. Asthenosphere motion recorded by the ocean floor south of Iceland. *Earth Planet. Sci. Lett.* 13, 153–160 (1971).
- 2. White, R. S. Rift-plume interaction in the North Atlantic. *Philos. Trans. R. Soc. Lond. A* **355**, 319–339 (1997).
- 3. Schubert, G., Turcotte, D. L. & Olson, P. *Mantle Convection in the Earth and Planets* (Cambridge University Press, 2001).
- Ito, G. Reykjanes 'V'-shaped ridges originating from a pulsing and dehydrating mantle plume. *Nature* 411, 681–684 (2001).
- Jones, S. M., White, N. J. & Maclennan, J. V-shaped ridges around Iceland: Implications for spatial and temporal patterns of mantle convection. *Geochem. Geophys. Geosyst.* 3, 1059 (2002).
- Poore, H. R., White, N. J. & Jones, S. M. A Neogene chronology of Iceland plume activity from V-shaped ridges. *Earth Planet. Sci. Lett.* 283, 1–13 (2009).
- Jones, S. M. *et al.* A joint geochemical-geophysical record of time-dependent mantle convection south of Iceland. *Earth Planet. Sci. Lett.* 386, 86–97 (2014).
- Schubert, G., Olson, P., Anderson, C. & Goldman, P. Solitary waves in mantle plumes. J. Geophys. Res. 94, 9523–9532 (1989).

- 9. Loper, D. E. & Stacey, F. D. The dynamical and thermal structure of deep mantle plumes. *Phys. Earth Planet. Inter.* **33**, 304–317 (1983).
- 10. Klein, E. M. & Langmuir, C. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. *J. Geophys. Res.* **92**, 8089–8115 (1987).
- McKenzie, D. P. & Bickle, M. J. The Volume and Composition of Melt Generated by Extension of the Lithosphere. *J. Petrol.* 29, 625–679 (1988).
- Rickers, F., Fichtner, A. & Trampert, J. The Iceland Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: Evidence from full-waveform inversion. *Earth Planet. Sci. Lett.* 367, 39–51 (2013).
- 13. White, R. S., Bown, J. & Smallwood, J. R. The temperature of the Iceland plume and origin of outward-propagating V-shaped ridges. *J. Geol. Soc.* **152**, 1039–1045 (1995).
- 14. Poore, H. R., White, N. J. & Maclennan, J. Ocean circulation and mantle melting controlled by radial flow of hot pulses in the Iceland plume. *Nature Geosci.* **4**, 558–561 (2011).
- 15. Smallwood, J. R. & White, R. S. Ridge-plume interaction in the North Atlantic and its influence on continental breakup and seafloor spreading. *Geol. Soc. Spec. Pub.* **197**, 15–37 (2002).
- Hey, R., Martinez, F., Höskuldsson, Á. & Benediktsdóttir, Á. Propagating rift model for the V-shaped ridges south of Iceland. *Geochem. Geophys. Geosyst.* 11, Q03011 (2010).
- 17. Benediktsdóttir, Á., Hey, R., Martinez, F. & Höskuldsson, Á. Detailed tectonic evolution of the Reykjanes Ridge during the past 15 Ma. *Geochem. Geophys. Geosyst.* **13**, Q02008 (2012).

- Smallwood, J. R. & White, R. S. Crustal accretion at the Reykjanes Ridge. J. Geophys. Res. 103, 5185–5201 (1998).
- Parnell-Turner, R. E. *et al.* Crustal manifestations of a hot transient pulse at 60°N beneath the Mid-Atlantic Ridge. *Earth Planet. Sci. Lett.* 363, 109–120 (2013).
- 20. Parkin, C. J. & White, R. S. Influence of the Iceland mantle plume on oceanic crust generation in the North Atlantic. *Geophys. J. Int.* **173**, 168–188 (2008).
- 21. Whitmarsh, R. B. Seismic anisotropy of the uppermost mantle absent beneath the east flank of the Reykjanes Ridge. *Bull. Seismol. Soc. Am.* **61**, 1351–1368 (1971).
- Hardarson, B., Godfrey Fitton, J., Ellam, R. M. & Pringle, M. S. Rift relocation a geochemical and geochronological investigation of a palaeo-rift in northwest Iceland. *Earth Planet. Sci. Lett.* 153, 181–196 (1997).
- Jung, W.-Y. & Vogt, P. R. A gravity and magnetic anomaly study of the extinct Aegir Ridge, Norwegian Sea. J. Geophys. Res. 102, 5065–5089 (1997).
- Olson, P., Schubert, G. & Anderson, C. Plume formation in the D"-layer and the roughness of the core–mantle boundary. *Nature* 327, 409–413 (1987).
- 25. Crosby, A. G. & McKenzie, D. P. An analysis of young ocean depth, gravity and global residual topography. *Geophys. J. Int.* **178**, 1198–1219 (2009).
- Sleep, N. H. Hotspots and Mantle Plumes: Some Phenomenology. J. Geophys. Res. 95, 6715–6736 (1990).

- 27. Wold, C. N. Cenozoic sediment accumulation on drifts in the northern North Atlantic. *Paleo-ceanography* **9**, 917–941 (1994).
- Hartley, R. A., Roberts, G. G., White, N. J. & Richardson, C. Transient convective uplift of an ancient buried landscape. *Nature Geosci.* 4, 562–565 (2011).
- 29. Sandwell, D. T. & Smith, W. H. F. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate. *J. Geophys. Res.* **114**, B01411 (2009).
- 30. Shorttle, O., Maclennan, J. & Jones, S. M. Control of the symmetry of plume-ridge interaction by spreading ridge geometry. *Geochem. Geophys. Geosyst.* **11**, Q0AC05 (2010).

Supplementary Information is linked to the online version of the paper at www.nature.com/nature

Acknowledgments This research was supported by NERC Grant NE/G007632/1 and by the Girdler Fund, University of Cambridge. We thank the Master, crew and technicians of RRS *James Cook* Cruise JC50 for their dedicated professionalism. We are grateful to J. Rudge for assisting with boundary layer scaling analysis and to M. Falder for pointing out an error. Earth Sciences contribution esc.3118.

Author Contributions This project was conceived and managed by N.W. and co-authors. R.P-T. processed and interpreted seismic data with guidance from N.W. and T.H. The paper was written by R.P-T. and N.W. with contributions from co-authors.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare that they have no competing financial interests. Correspondence and requests for material should be addressed to N.W. and R.P-T. (email: njw10@cam.ac.uk, rep52@cam.ac.uk).

1 Figure Captions

Figure 1 Location of seismic experiment. **a**, Bathymetric map showing location of seismic reflection profiles. Emboldened portion of profile 2 is shown in Figure 1. Red line = plate-spreading axis along Reykjanes Ridge. **b**, Map of short (<250 km) wavelength free-air gravity anomalies²⁹. Red/blue circles at A = ridge/trough crustal thicknesses¹⁸; blue circle at B = crustal thickness²¹; blue line at C = crustal thickness profile²⁰; arrows = weak linear anomalies.

Figure 2 Interpreted seismic images. **a**, Profile 2 (Figure 1). Red line = free-air gravity anomaly²⁹. **b**, Geologic interpretation. Solid lines = seabed and sediment-basement interface; yellow shading = sedimentary cover; dashed line = seabed multiple; red circles/lines = sets of VSRs; blue circles = intervening V-shaped troughs; vertical lines = locus of azimuthal changes along flowline. **c**, Young VSR (\sim 12 Myr) and associated gravity anomalies. **d**, Structure of three older VSRs (35–40 Myr) and associated free-air gravity anomalies. **e**, Geologic interpretation. Solid line = normally faulted sediment-basement interface; yellow shading = plastered contourite drifts. **f**, Geologic interpretation. VSRs have steeper flanks facing toward mid-oceanic ridge.

Figure 3 Analysis of VSR chronology and asymmetric crustal accretion. **a**, Line = water-loaded basement depth⁵; gray line = mirror image; dashed lines = best-fitting relationships ($d = 580 + 430a^{1/2}$ and $d = 770 + 360a^{1/2}$ for western/eastern portions; d = depth; a = age); red circles/lines = VSRs (Figure 2); red/blue circles = crustal thicknesses^{18,21}. **b**, Gravity anomaly as function of age and distance from plume center (63.95°N, 17.4°W)³⁰.

Lines and blue band = calculated T_p from this study and from wide-angle data²⁰; red/blue circles = crust-derived T_p^{18} ; dashed/dotted lines = smooth-rough transition from magnetic/gravity picks⁶; blue dots = V-shaped troughs; arrows = weak linear anomalies. **c**, Asymmetry of crustal accretion. Circles = asymmetry from magnetic picks^{5,16}; red circles = VSR-derived asymmetry; line = best-fitting curve; bars = ridge-jump episodes¹⁵. E/W = jump direction; S-NVZ = Snaefellsnes-Húnafloí paleo-rift toward Northern Volcanic Zone. **d**, Line with gray band = mean $\pm 1\sigma$ of T_p as function of time at plume center. Red circles/lines = sets of VSRs; red/blue circles = crust-derived $T_p^{18,21}$.

Figure 4 Cut-away cartoon showing plume geometry. Red body = idealized plume spreading outward beneath lithosphere; darker patches = periodic blobs of hotter than average plume material flowing outward at ~40 cm/yr; gray block = cooling/thickening lithosphere; red ribs = VSRs generated by plate spreading over plume; cut-away yellow prism = melting region beneath which hot annuli pass; red arrows indicate flow; *l* = length of solitary wave. Inset: relationship between thickened crust beneath VSR and underlying temperature structure. Gray block = crust, where *x* is width of VSR parallel to flowline and ΔR is along-axis width of VSR; cut-away yellow prism = melting region; red base = top of asthenosphere.

