1,089 research outputs found

    Managing Costs and Variability of Security Services

    Get PDF
    Approved for public release; distribution is unlimited

    C-di-GMP regulates <i>Pseudomonas aeruginosa</i> stress response to tellurite during both planktonic and biofilm modes of growth

    Get PDF
    Stress response plays an important role on microbial adaptation under hostile environmental conditions. It is generally unclear how the signaling transduction pathway mediates a stress response in planktonic and biofilm modes of microbial communities simultaneously. Here, we showed that metalloid tellurite (TeO(3)(2–)) exposure induced the intracellular content of the secondary messenger cyclic di-GMP (c-di-GMP) of Pseudomonas aeruginosa. Two diguanylate cyclases (DGCs), SadC and SiaD, were responsible for the increased intracellular content of c-di-GMP. Enhanced c-di-GMP levels by TeO(3)(2–) further increased P. aeruginosa biofilm formation and resistance to TeO(3)(2–). P. aeruginosa ΔsadCΔsiaD and PAO1/p(lac)-yhjH mutants with low intracellular c-di-GMP content were more sensitive to TeO(3)(2–) exposure and had low relative fitness compared to the wild-type PAO1 planktonic and biofilm cultures exposed to TeO(3)(2–). Our study provided evidence that c-di-GMP level can play an important role in mediating stress response in microbial communities during both planktonic and biofilm modes of growth

    A window on reality: perceiving edited moving images

    Get PDF
    Edited moving images entertain, inform, and coerce us throughout our daily lives, yet until recently, the way people perceive movies has received little psychological attention. We review the history of empirical investigations into movie perception and the recent explosion of new research on the subject using methods such as behavioral experiments, functional magnetic resonance imagery (fMRI) eye tracking, and statistical corpus analysis. The Hollywood style of moviemaking, which permeates a wide range of visual media, has evolved formal conventions that are compatible with the natural dynamics of attention and humans’ assumptions about continuity of space, time, and action. Identifying how people overcome the sensory differences between movies and reality provides an insight into how the same cognitive processes are used to perceive continuity in the real world

    Match-action: the role of motion and audio in creating global change blindness in film

    Get PDF
    An everyday example of change blindness is our difficulty to detect cuts in an edited moving-image. Edit Blindness (Smith & Henderson, 2008) is created by adhering to the continuity editing conventions of Hollywood, e.g. coinciding a cut with a sudden onset of motion (Match-Action). In this study we isolated the roles motion and audio play in limiting awareness of match-action cuts by removing motion before and/or after cuts in existing Hollywood film clips and presenting the clips with or without the original soundtrack whilst participants tried to detect cuts. Removing post-cut motion significantly decreased cut detection time and the probability of missing the cut. By comparison, removing pre-cut motion had no effect suggesting, contrary to the editing literature, that the onset of motion before a cut may not be as critical for creating edit blindness as the motion after a cut. Analysis of eye movements indicated that viewers reoriented less to new content across intact match-action cuts than shots with motion removed. Audio played a surprisingly large part in creating edit blindness with edit blindness mostly disappearing without audio. These results extend film editor intuitions and are discussed in the context of the Attentional Theory of Cinematic Continuity (Smith, 2012a)

    Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species

    Get PDF
    Background Streptococcus pneumoniae is one of the most important causes of microbial diseases in humans. The genomes of 44 diverse strains of S. pneumoniae were analyzed and compared with strains of non-pathogenic streptococci of the Mitis group. Results Despite evidence of extensive recombination, the S. pneumoniae phylogenetic tree revealed six major lineages. With the exception of serotype 1, the tree correlated poorly with capsular serotype, geographical site of isolation and disease outcome. The distribution of dispensable genes, genes present in not all, but more than one strain, was consistent with phylogeny, although horizontal gene transfer events attenuated this correlation in the case of ancient lineages. Homologous recombination, involving short stretches of DNA, was the dominant 13 evolutionary process of the core genome of S. pneumoniae. Genetic exchange occurred both within and across the borders of the species, and S. mitis was the main reservoir of genetic diversity of S. pneumoniae. The pan-genome size of S. pneumoniae increased logarithmically with the number of strains and linearly with the number of polymorphic sites of the sampled genomes, suggesting that acquired genes accumulate proportionately to the age of clones. Most genes associated with pathogenicity were shared by all S. pneumoniae strains, but were also present in S. mitis, S. oralis and S. infantis, indicating that these genes are not sufficient to determine virulence. Conclusion Genetic exchange with related species sharing the same ecological niche is the main mechanism of evolution of S. pneumoniae. The open pan genome guarantees the species a quick and economical response to diverse environments

    Genomic, Proteomic and Physiological Characterization of a T5-like Bacteriophage for Control of Shiga Toxin-Producing Escherichia coli O157:H7

    Get PDF
    Despite multiple control measures, Escherichia coli O157:H7 (STEC O157:H7) continues to be responsible for many food borne outbreaks in North America and elsewhere. Bacteriophage therapy may prove useful for controlling this pathogen in the host, their environment and food. Bacteriophage vB_EcoS_AKFV33 (AKFV33), a T5-like phage of Siphoviridae lysed common phage types of STEC O157:H7 and not non-O157 E. coli. Moreover, STEC O157:H7 isolated from the same feedlot pen from which the phage was obtained, were highly susceptible to AKFV33. Adsorption rate constant and burst size were estimated to be 9.31×10−9 ml/min and 350 PFU/infected cell, respectively. The genome of AKVF33 was 108,853 bp (38.95% G+C), containing 160 open reading frames (ORFs), 22 tRNA genes and 32 strong promoters recognized by host RNA polymerase. Of 12 ORFs without homologues to T5-like phages, 7 predicted novel proteins while others exhibited low identity (<60%) to proteins in the National Centre for Biotechnology Information database. AKVF33 also lacked the L-shaped tail fiber protein typical of T5, but was predicted to have tail fibers comprised of 2 novel proteins with low identity (37–41%) to tail fibers of E. coli phage phiEco32 of Podoviridae, a putative side tail fiber protein of a prophage from E. coli IAI39 and a conserved domain protein of E. coli MS196-1. The receptor-binding tail protein (pb5) shared an overall identify of 29–72% to that of other T5-like phages, with no region coding for more than 6 amino acids in common. Proteomic analysis identified 4 structural proteins corresponding to the capsid, major tail, tail fiber and pore-forming tail tip (pb2). The genome of AKFV33 lacked regions coding for known virulence factors, integration-related proteins or antibiotic resistance determinants. Phage AKFV33 is a unique, highly lytic STEC O157:H7-specific T5-like phage that may have considerable potential as a pre- and post-harvest biocontrol agent

    Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis

    Get PDF
    Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified ten new risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with new secondary signals at four of these loci). Notably, the new loci include candidate genes with roles in the regulation of innate host defenses and T cell function, underscoring the important contribution of (auto)immune mechanisms to atopic dermatitis pathogenesis
    corecore