5 research outputs found

    The Reconstitution Dynamics of Cultivated Hematopoietic Stem Cells and Progenitors Is Independent of Age

    No full text
    Hematopoietic stem cell transplantation (HSCT) represents the only curative treatment option for numerous hematologic malignancies. While the influence of donor age and the composition of the graft have already been examined in clinical and preclinical studies, little information is available on the extent to which different hematological subpopulations contribute to the dynamics of the reconstitution process and on whether and how these contributions are altered with age. In a murine model of HSCT, we therefore simultaneously tracked different cultivated and transduced hematopoietic stem and progenitor cell (HSPC) populations using a multicolor-coded barcode system (BC32). We studied a series of age-matched and age-mismatched transplantations and compared the influence of age on the reconstitution dynamics. We show that reconstitution from these cultured and assembled grafts was substantially driven by hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) independent of age. The reconstitution patterns were polyclonal and stable in all age groups independently of the variability between individual animals, with higher output rates from MPPs than from HSCs. Our experiments suggest that the dynamics of reconstitution and the contribution of cultured and individually transduced HSPC subpopulations are largely independent of age. Our findings support ongoing efforts to expand the application of HSCT in older individuals as a promising strategy to combat hematological diseases, including gene therapy applications

    Clonal competition in BcrAbl-driven leukemia: how transplantations can accelerate clonal conversion

    Get PDF
    Background: Clonal competition in cancer describes the process in which the progeny of a cell clone supersedes or succumbs to other competing clones due to differences in their functional characteristics, mostly based on subsequently acquired mutations. Even though the patterns of those mutations are well explored in many tumors, the dynamical process of clonal selection is underexposed. Methods: We studied the dynamics of clonal competition in a BcrAbl-induced leukemia using a γ-retroviral vector library encoding the oncogene in conjunction with genetic barcodes. To this end, we studied the growth dynamics of transduced cells on the clonal level both in vitro and in vivo in transplanted mice. Results: While we detected moderate changes in clonal abundancies in vitro, we observed monoclonal leukemias in 6/30 mice after transplantation, which intriguingly were caused by only two different BcrAbl clones. To analyze the success of these clones, we applied a mathematical model of hematopoietic tissue maintenance, which indicated that a differential engraftment capacity of these two dominant clones provides a possible explanation of our observations. These findings were further supported by additional transplantation experiments and increased BcrAbl transcript levels in both clones. Conclusion: Our findings show that clonal competition is not an absolute process based on mutations, but highly dependent on selection mechanisms in a given environmental context

    Additional file 1: Figure S1. of Clonal competition in BcrAbl-driven leukemia: how transplantations can accelerate clonal conversion

    No full text
    eGFP expression and clonal kinetics in the BcrAbl_bulk culture. Figure S2: Overlap of barcodes from plasmid library and first sample. Figure S3: Clonal kinetics in the eGFP-positive cultures after sorting. Figure S4: Spleens from diseased (and control) animals. Figure S5: Read counts for Klf6 and Sprouty1. Figure S6: Comparison of samples. Figure S7: KEGG enrichment analysis. Table S1: Spleen weights and eGFP expression in the diseased animals. Supplementary Model Description. Table S2: Model Parameters. Table S3: Oligonucleotides. (PDF 7697 kb
    corecore