110 research outputs found

    Peak Oil:Die Herausforderung lokaler Erdölabhängigkeit am Beispiel Münster

    Full text link
    Das Erdölzeitalter neigt sich dem Ende zu – daran ändern auch Schieferöle, Agrartreibstoffe oder Verfahren wie das Fracking langfristig nichts. Einer Gruppe von Studierenden an der Uni Münster ging die wissenschaftliche, politische und gesellschaftliche Beschäftigung mit dieser Herausforderung zu langsam. Aus diesem Grund initiierte sie 2012 eigenständig ein interdisziplinäres Peak-Oil-Seminar und begleitete Studierende dabei, in gesellschaftsrelevanten Sektoren der Energieversorgung, des Transports, der lokalen Wirtschaft, der Ernährung, der Gesundheit und der privaten Haushalte eigene Fragestellungen zu entwickeln und diesen nachzugehen. Das Ergebnis ist ein Bericht, der am Beispiel Münster die Brisanz und Aktualität knapper werdender Ressourcen herausstreicht, der die Wichtigkeit der lokalen, vorausschauenden und freiwillig-kreativen Verringerung der Öl-Abhängigkeit hervorhebt und der nicht zuletzt eine Lanze bricht für Formate transformativen und offenen Forschens und Handelns. <br

    Qualitative differences in the spatiotemporal brain states supporting configural face processing emerge in adolescence in autism

    Full text link
    BACKGROUND Studying the neural processing of faces can illuminate the mechanisms of compromised social expertise in autism. To resolve a longstanding debate, we examined whether differences in configural face processing in autism are underpinned by quantitative differences in the activation of typical face processing pathways, or the recruitment of non-typical neural systems. METHODS We investigated spatial and temporal characteristics of event-related EEG responses to upright and inverted faces in a large sample of children, adolescents, and adults with and without autism. We examined topographic analyses of variance and global field power to identify group differences in the spatial and temporal response to face inversion. We then examined how quasi-stable spatiotemporal profiles - microstates - are modulated by face orientation and diagnostic group. RESULTS Upright and inverted faces produced distinct profiles of topography and strength in the topographical analyses. These topographical profiles differed between diagnostic groups in adolescents, but not in children or adults. In the microstate analysis, the autistic group showed differences in the activation strength of normative microstates during early-stage processing at all ages, suggesting consistent quantitative differences in the operation of typical processing pathways; qualitative differences in microstate topographies during late-stage processing became prominent in adults, suggesting the increasing involvement of non-typical neural systems with processing time and over development. CONCLUSIONS These findings suggest that early difficulties with configural face processing may trigger later compensatory processes in autism that emerge in later development

    Chemie im Wandel

    Get PDF
    CHEMIE IM WANDEL Chemie im Wandel / Münnich, Paul (CC BY-NC-SA) ( -

    Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models

    Get PDF
    International audienceBACKGROUNDThe neuroanatomical basis of autism spectrum disorder (ASD) has remained elusive, mostly owing to high biological and clinical heterogeneity among diagnosed individuals. Despite considerable effort toward understanding ASD using neuroimaging biomarkers, heterogeneity remains a barrier, partly because studies mostly employ case-control approaches, which assume that the clinical group is homogeneous.METHODS:Here, we used an innovative normative modeling approach to parse biological heterogeneity in ASD. We aimed to dissect the neuroanatomy of ASD by mapping the deviations from a typical pattern of neuroanatomical development at the level of the individual and to show the necessity to look beyond the case-control paradigm to understand the neurobiology of ASD. We first estimated a vertexwise normative model of cortical thickness development using Gaussian process regression, then mapped the deviation of each participant from the typical pattern. For this, we employed a heterogeneous cross-sectional sample of 206 typically developing individuals (127 males) and 321 individuals with ASD (232 males) (6-31 years of age).RESULTS:We found few case-control differences, but the ASD cohort showed highly individualized patterns of deviations in cortical thickness that were widespread across the brain. These deviations correlated with severity of repetitive behaviors and social communicative symptoms, although only repetitive behaviors survived corrections for multiple testing.CONCLUSIONS:Our results 1) reinforce the notion that individuals with ASD show distinct, highly individualized trajectories of brain development and 2) show that by focusing on common effects (i.e., the "average ASD participant"), the case-control approach disguises considerable interindividual variation crucial for precision medicine

    Gray matter covariations and core symptoms of autism: the EU-AIMS Longitudinal European Autism Project.

    Get PDF
    BACKGROUND: Voxel-based morphometry (VBM) studies in autism spectrum disorder (autism) have yielded diverging results. This might partly be attributed to structural alterations being associating with the combined influence of several regions rather than with a single region. Further, these structural covariation differences may relate to continuous measures of autism rather than with categorical case-control contrasts. The current study aimed to identify structural covariation alterations in autism, and assessed canonical correlations between brain covariation patterns and core autism symptoms. METHODS: We studied 347 individuals with autism and 252 typically developing individuals, aged between 6 and 30 years, who have been deeply phenotyped in the Longitudinal European Autism Project. All participants' VBM maps were decomposed into spatially independent components using independent component analysis. A generalized linear model (GLM) was used to examine case-control differences. Next, canonical correlation analysis (CCA) was performed to separately explore the integrated effects between all the brain sources of gray matter variation and two sets of core autism symptoms. RESULTS: GLM analyses showed significant case-control differences for two independent components. The first component was primarily associated with decreased density of bilateral insula, inferior frontal gyrus, orbitofrontal cortex, and increased density of caudate nucleus in the autism group relative to typically developing individuals. The second component was related to decreased densities of the bilateral amygdala, hippocampus, and parahippocampal gyrus in the autism group relative to typically developing individuals. The CCA results showed significant correlations between components that involved variation of thalamus, putamen, precentral gyrus, frontal, parietal, and occipital lobes, and the cerebellum, and repetitive, rigid and stereotyped behaviors and abnormal sensory behaviors in autism individuals. LIMITATIONS: Only 55.9% of the participants with autism had complete questionnaire data on continuous parent-reported symptom measures. CONCLUSIONS: Covaried areas associated with autism diagnosis and/or symptoms are scattered across the whole brain and include the limbic system, basal ganglia, thalamus, cerebellum, precentral gyrus, and parts of the frontal, parietal, and occipital lobes. Some of these areas potentially subserve social-communicative behavior, whereas others may underpin sensory processing and integration, and motor behavior

    Fractionating autism based on neuroanatomical normative modeling.

    Get PDF
    Autism is a complex neurodevelopmental condition with substantial phenotypic, biological, and etiologic heterogeneity. It remains a challenge to identify biomarkers to stratify autism into replicable cognitive or biological subtypes. Here, we aim to introduce a novel methodological framework for parsing neuroanatomical subtypes within a large cohort of individuals with autism. We used cortical thickness (CT) in a large and well-characterized sample of 316 participants with autism (88 female, age mean: 17.2 ± 5.7) and 206 with neurotypical development (79 female, age mean: 17.5 ± 6.1) aged 6-31 years across six sites from the EU-AIMS multi-center Longitudinal European Autism Project. Five biologically based putative subtypes were derived using normative modeling of CT and spectral clustering. Three of these clusters showed relatively widespread decreased CT and two showed relatively increased CT. These subtypes showed morphometric differences from one another, providing a potential explanation for inconsistent case-control findings in autism, and loaded differentially and more strongly onto symptoms and polygenic risk, indicating a dilution of clinical effects across heterogeneous cohorts. Our results provide an important step towards parsing the heterogeneous neurobiology of autism

    Towards robust and replicable sex differences in the intrinsic brain function of autism.

    Get PDF
    BACKGROUND: Marked sex differences in autism prevalence accentuate the need to understand the role of biological sex-related factors in autism. Efforts to unravel sex differences in the brain organization of autism have, however, been challenged by the limited availability of female data. METHODS: We addressed this gap by using a large sample of males and females with autism and neurotypical (NT) control individuals (ABIDE; Autism: 362 males, 82 females; NT: 409 males, 166 females; 7-18 years). Discovery analyses examined main effects of diagnosis, sex and their interaction across five resting-state fMRI (R-fMRI) metrics (voxel-level Z > 3.1, cluster-level P < 0.01, gaussian random field corrected). Secondary analyses assessed the robustness of the results to different pre-processing approaches and their replicability in two independent samples: the EU-AIMS Longitudinal European Autism Project (LEAP) and the Gender Explorations of Neurogenetics and Development to Advance Autism Research. RESULTS: Discovery analyses in ABIDE revealed significant main effects of diagnosis and sex across the intrinsic functional connectivity of the posterior cingulate cortex, regional homogeneity and voxel-mirrored homotopic connectivity (VMHC) in several cortical regions, largely converging in the default network midline. Sex-by-diagnosis interactions were confined to the dorsolateral occipital cortex, with reduced VMHC in females with autism. All findings were robust to different pre-processing steps. Replicability in independent samples varied by R-fMRI measures and effects with the targeted sex-by-diagnosis interaction being replicated in the larger of the two replication samples-EU-AIMS LEAP. LIMITATIONS: Given the lack of a priori harmonization among the discovery and replication datasets available to date, sample-related variation remained and may have affected replicability. CONCLUSIONS: Atypical cross-hemispheric interactions are neurobiologically relevant to autism. They likely result from the combination of sex-dependent and sex-independent factors with a differential effect across functional cortical networks. Systematic assessments of the factors contributing to replicability are needed and necessitate coordinated large-scale data collection across studies
    • …
    corecore