96 research outputs found
The effects of 10 to >160 GPa shock on the magnetic properties of basalt and diabase
© 2016. American Geophysical Union. All Rights Reserved.Hypervelocity impacts within the solar system affect both the magnetic remanence and bulk magnetic properties of planetary materials. Spherical shock experiments are a novel way to simulate shock events that enable materials to reach high shock pressures with a variable pressure profile across a single sample (ranging between ∼10 and >160 GPa). Here we present spherical shock experiments on basaltic lava flow and diabase dike samples from the Osler Volcanic Group whose ferromagnetic mineralogy is dominated by pseudo-single-domain (titano)magnetite. Our experiments reveal shock-induced changes in rock magnetic properties including a significant increase in remanent coercivity. Electron and magnetic force microscopy support the interpretation that this coercivity increase is the result of grain fracturing and associated domain wall pinning in multidomain grains. We introduce a method to discriminate between mechanical and thermal effects of shock on magnetic properties. Our approach involves conducting vacuum-heating experiments on untreated specimens and comparing the hysteresis properties of heated and shocked specimens. First-order reversal curve (FORC) experiments on untreated, heated, and shocked specimens demonstrate that shock and heating effects are fundamentally different for these samples: shock has a magnetic hardening effect that does not alter the intrinsic shape of FORC distributions, while heating alters the magnetic mineralogy as evident from significant changes in the shape of FORC contours. These experiments contextualize paleomagnetic and rock magnetic data of naturally shocked materials from terrestrial and extraterrestrial impact craters
TRAIP/RNF206 is required for recruitment of RAP80 to sites of DNA damage
RAP80 localizes to sites of DNA insults to enhance the DNA-damage responses. Here we identify TRAIP/RNF206 as a novel RAP80-interacting protein and find that TRAIP is necessary for translocation of RAP80 to DNA lesions. Depletion of TRAIP results in impaired accumulation of RAP80 and functional downstream partners, including BRCA1, at DNA lesions. Conversely, accumulation of TRAIP is normal in RAP80-depleted cells, implying that TRAIP acts upstream of RAP80 recruitment to DNA lesions. TRAIP localizes to sites of DNA damage and cells lacking TRAIP exhibit classical DNA-damage response-defect phenotypes. Biochemical analysis reveals that the N terminus of TRAIP is crucial for RAP80 interaction, while the C terminus of TRAIP is required for TRAIP localization to sites of DNA damage through a direct interaction with RNF20-RNF40. Taken together, our findings demonstrate that the novel RAP80-binding partner TRAIP regulates recruitment of the damage signalling machinery and promotes homologous recombinationopen
Early paleocene paleoceanography and export productivity in the Chicxulub crater
The Chicxulub impact caused a crash in productivity in the world''s oceans which contributed to the extinction of ~75% of marine species. In the immediate aftermath of the extinction, export productivity was locally highly variable, with some sites, including the Chicxulub crater, recording elevated export production. The long-term transition back to more stable export productivity regimes has been poorly documented. Here, we present elemental abundances, foraminifer and calcareous nannoplankton assemblage counts, total organic carbon, and bulk carbonate carbon isotope data from the Chicxulub crater to reconstruct changes in export productivity during the first 3 Myr of the Paleocene. We show that export production was elevated for the first 320 kyr of the Paleocene, declined from 320 kyr to 1.2 Myr, and then remained low thereafter. A key interval in this long decline occurred 900 kyr to 1.2 Myr post impact, as calcareous nannoplankton assemblages began to diversify. This interval is associated with fluctuations in water column stratification and terrigenous flux, but these variables are uncorrelated to export productivity. Instead, we postulate that the turnover in the phytoplankton community from a post-extinction assemblage dominated by picoplankton (which promoted nutrient recycling in the euphotic zone) to a Paleocene pelagic community dominated by relatively larger primary producers like calcareous nannoplankton (which more efficiently removed nutrients from surface waters, leading to oligotrophy) is responsible for the decline in export production in the southern Gulf of Mexico. © 2021. American Geophysical Union. All Rights Reserved
Drilling-induced and logging-related features illustrated from IODP-ICDP Expedition 364 downhole logs and borehole imaging tools
Expedition 364 was a joint IODP and ICDP mission-specific platform (MSP) expedition to explore the Chicxulub impact crater buried below the surface of the Yucatán continental shelf seafloor. In April and May 2016, this expedition drilled a single borehole at Site M0077 into the crater's peak ring. Excellent quality cores were recovered from ~ 505 to ~1335m below seafloor (m b.s.f.), and high-resolution open hole logs were acquired between the surface and total drill depth. Downhole logs are used to image the borehole wall, measure the physical properties of rocks that surround the borehole, and assess borehole quality during drilling and coring operations. When making geological interpretations of downhole logs, it is essential to be able to distinguish between features that are geological and those that are operation-related. During Expedition 364 some drilling-induced and logging-related features were observed and include the following: effects caused by the presence of casing and metal debris in the hole, logging-tool eccentering, drilling-induced corkscrew shape of the hole, possible re-magnetization of low-coercivity grains within sedimentary rocks, markings on the borehole wall, and drilling-induced changes in the borehole diameter and trajectory
Identification of a Novel Calotropis procera Protein That Can Suppress Tumor Growth in Breast Cancer through the Suppression of NF-κB Pathway
10.1371/journal.pone.0048514PLoS ONE712
Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings
Considerable interest has been shown in the ability of caloric restriction (CR) to improve multiple parameters of health and to extend lifespan. CR is the reduction of caloric intake - typically by 20 - 40% of ad libitum consumption - while maintaining adequate nutrient intake. Several alternatives to CR exist. CR combined with exercise (CE) consists of both decreased caloric intake and increased caloric expenditure. Alternate-day fasting (ADF) consists of two interchanging days; one day, subjects may consume food ad libitum (sometimes equaling twice the normal intake); on the other day, food is reduced or withheld altogether. Dietary restriction (DR) - restriction of one or more components of intake (typically macronutrients) with minimal to no reduction in total caloric intake - is another alternative to CR. Many religions incorporate one or more forms of food restriction. The following religious fasting periods are featured in this review: 1) Islamic Ramadan; 2) the three principal fasting periods of Greek Orthodox Christianity (Nativity, Lent, and the Assumption); and 3) the Biblical-based Daniel Fast. This review provides a summary of the current state of knowledge related to CR and DR. A specific section is provided that illustrates related work pertaining to religious forms of food restriction. Where available, studies involving both humans and animals are presented. The review includes suggestions for future research pertaining to the topics of discussion
Curcumin activates the p38MPAK-HSP25 pathway in vitro but fails to attenuate diabetic nephropathy in DBA2J mice despite urinary clearance documented by HPLC
<p>Abstract</p> <p>Background</p> <p>Curcumin has anti-inflammatory, anti-oxidant, and anti-proliferative properties, and depending upon the experimental circumstances, may be pro- or anti-apoptotic. Many of these biological actions could ameliorate diabetic nephropathy.</p> <p>Methods/Design</p> <p>Mouse podocytes, cultured in basal or high glucose conditions, underwent acute exposure to curcumin. Western blots for p38-MAPK, COX-2 and cleaved caspase-3; isoelectric focusing for HSP25 phosphorylation; and DNase I assays for F- to G- actin cleavage were performed for <it>in vitro </it>analyses. <it>In vivo </it>studies examined the effects of dietary curcumin on the development of diabetic nephropathy in streptozotocin (Stz)-induced diabetes in DBA2J mice. Urinary albumin to creatinine ratios were obtained, high performance liquid chromatography was performed for urinary curcuminoid measurements, and Western blots for p38-MAPK and total HSP25 were performed.</p> <p>Results</p> <p>Curcumin enhanced the phosphorylation of both p38MAPK and downstream HSP25; inhibited COX-2; induced a trend towards attenuation of F- to G-actin cleavage; and dramatically inhibited the activation of caspase-3 in <it>vitro</it>. In curcumin-treated DBA2J mice with Stz-diabetes, HPLC measurements confirmed the presence of urinary curcuminoid. Nevertheless, dietary provision of curcumin either before or after the induction of diabetes failed to attenuate albuminuria.</p> <p>Conclusions</p> <p>Apart from species, strain, early differences in glycemic control, and/or dosing effects, the failure to modulate albuminuria may have been due to a decrement in renal HSP25 or stimulation of the 12/15 lipoxygenase pathway in DBA2J mice fed curcumin. In addition, these studies suggest that timed urine collections may be useful for monitoring curcumin dosing and renal pharmacodynamic effects.</p
- …