179 research outputs found

    Comparison of two ancient DNA extraction protocols for skeletal remains from tropical environments

    Get PDF
    Objectives The tropics harbor a large part of the world\u27s biodiversity and have a long history of human habitation. However, paleogenomics research in these climates has been constrained so far by poor ancient DNA yields. Here we compare the performance of two DNA extraction methods on ancient samples of teeth and petrous portions excavated from tropical and semi‐tropical sites in Tanzania, Mexico, and Puerto Rico (N = 12). Materials and Methods All samples were extracted twice, built into double‐stranded sequencing libraries, and shotgun sequenced on the Illumina HiSeq 2500. The first extraction protocol, Method D, was previously designed for recovery of ultrashort DNA fragments from skeletal remains. The second, Method H, modifies the first by adding an initial EDTA wash and an extended digestion and decalcification step. Results No significant difference was found in overall ancient DNA yields or post‐mortem damage patterns recovered from samples extracted with either method, irrespective of tissue type. However, Method H samples had higher endogenous content and more mapped reads after quality‐filtering, but also higher clonality. In contrast, samples extracted with Method D had shorter average DNA fragments. Discussion Both methods successfully recovered endogenous ancient DNA. But, since surviving DNA in ancient or historic remains from tropical contexts is extremely fragmented, our results suggest that Method D is the optimal choice for working with samples from warm and humid environments. Additional optimization of extraction conditions and further testing of Method H with different types of samples may allow for improvement of this protocol in the future

    Genome-Wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up

    Get PDF
    Rationale: The evidence supporting an association between traffic-related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. Objectives: To identify gene–environment interaction effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. Methods: We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO2 levels) at the birth address and performed a genome-wide interaction study for doctors’ diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for interaction in two separate North American cohorts, CHS (Children’s Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. Measurements and Main Results: In the European cohorts, 186 SNPs had an interaction P < 1 × 10−4 and a look-up evaluation of these disclosed 8 SNPs in 4 loci, with an interaction P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the interaction effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10−4). One other SNP with P < 0.05 for interaction in CHS, rs686237, strongly influenced UDP-Gal:betaGlcNAc β-1,4-galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10−17). Air pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. Conclusions: Our results indicated that gene–environment interactions are important for asthma development and provided supportive evidence for interaction with air pollution for ADCY2, B4GALT5, and DLG2

    A genome-wide association study of total child psychiatric problems scores.

    Get PDF
    Substantial genetic correlations have been reported across psychiatric disorders and numerous cross-disorder genetic variants have been detected. To identify the genetic variants underlying general psychopathology in childhood, we performed a genome-wide association study using a total psychiatric problem score. We analyzed 6,844,199 common SNPs in 38,418 school-aged children from 20 population-based cohorts participating in the EAGLE consortium. The SNP heritability of total psychiatric problems was 5.4% (SE = 0.01) and two loci reached genome-wide significance: rs10767094 and rs202005905. We also observed an association of SBF2, a gene associated with neuroticism in previous GWAS, with total psychiatric problems. The genetic effects underlying the total score were shared with common psychiatric disorders only (attention-deficit/hyperactivity disorder, anxiety, depression, insomnia) (rG > 0.49), but not with autism or the less common adult disorders (schizophrenia, bipolar disorder, or eating disorders) (rG 0.29). The results suggest that many common genetic variants are associated with childhood psychiatric symptoms and related phenotypes in general instead of with specific symptoms. Further research is needed to establish causality and pleiotropic mechanisms between related traits
    corecore