833 research outputs found

    First-to-File: Promoting the Goals of the United States Patent System as Demonstrated Through the Biotechnology Industry

    Get PDF
    This Comment illustrates that moving to a first-to-file system of patent priority would greatly benefit the biotechnology industry and the United States patent system. A first-to-file system would promote the innovative goals of the patent system by encouraging early public disclosure and providing greater certainty of protection

    The seawater neodymium and lead isotope record of the final stages of Central American Seaway closure

    Get PDF
    Key Points: Seawater Nd and Pb isotope records for the Pliocene Caribbean and EEP Caribbean Nd isotope composition became more UNADW-like during the Pliocene Short term changes support link between CAS closure and strength of AMOC The shoaling and final closure of the Central American Seaway (CAS) resulted in a major change of the global ocean circulation and has been suggested as an essential driver for strengthening of Atlantic Meridional Overturning Circulation (AMOC). The exact timing of CAS closure is key to interpreting its importance. Here we present a reconstruction of deep and intermediate water Nd and Pb isotope compositions obtained from fossil fish teeth and the authigenic coatings of planktonic foraminifera in the eastern equatorial Pacific (ODP Site 1241) and the Caribbean (ODP Sites 998, 999 and 1000) covering the final stages of CAS closure between 5.6 and 2.2 Ma. The data for the Pacific site indicate no significant Atlantic/Caribbean influence over this entire period. The Caribbean sites show a continuous trend to less radiogenic Nd isotope compositions during the Pliocene, consistent with an enhancement of Upper North Atlantic Deep Water (UNADW) inflow and a strengthening of the AMOC. Superimposed onto this long-term trend, shorter-term changes of intermediate Caribbean Nd isotope signatures approached more UNADW-like values during intervals when published reconstructions of seawater salinity suggested complete closure of the CAS. The data imply that significant deep water exchange with the Pacific essentially stopped by 7 Ma and that shallow exchange, which still occurred at least periodically until approximately 2.5 Ma, may have been linked to the strength of the AMOC but did not have any direct effect on the intermediate and deep Caribbean Nd isotope signatures through mixing with Pacific waters

    The clockfront and wavefront model revisited

    Get PDF
    The currently accepted interpretation of the clock and wavefront model of somitogenesis is that a posteriorly moving molecular gradient sequentially slows the rate of clock oscillations, resulting in a spatial readout of temporal oscillations. However, while molecular components of the clocks and wavefronts have now been identified in the pre-somitic mesoderm (PSM), there is not yet conclusive evidence demonstrating that the observed molecular wavefronts act to slow clock oscillations. Here we present an alternative formulation of the clock and wavefront model in which oscillator coupling, already known to play a key role in oscillator synchronisation, plays a fundamentally important role in the slowing of oscillations along the anterior–posterior (AP) axis. Our model has three parameters which can be determined, in any given species, by the measurement of three quantities: the clock period in the posterior PSM, somite length and the length of the PSM. A travelling wavefront, which slows oscillations along the AP axis, is an emergent feature of the model. Using the model we predict: (a) the distance between moving stripes of gene expression; (b) the number of moving stripes of gene expression and (c) the oscillator period profile along the AP axis. Predictions regarding the stripe data are verified using existing zebrafish data. We simulate a range of experimental perturbations and demonstrate how the model can be used to unambiguously define a reference frame along the AP axis. Comparing data from zebrafish, chick, mouse and snake, we demonstrate that: (a) variation in patterning profiles is accounted for by a single nondimensional parameter; the ratio of coupling strengths; and (b) the period profile along the AP axis is conserved across species. Thus the model is consistent with the idea that, although the genes involved in pattern propagation in the PSM vary, there is a conserved patterning mechanism across species

    Novel high-pressure culture experiments on deep-sea benthic foraminifera — Evidence for methane seepage-related δ13C of Cibicides wuellerstorfi

    Get PDF
    In field studies of active hydrocarbon seeps the carbon isotopic composition of Rose Bengal stained benthic foraminiferal tests (δ13Ctest) and bottom water DIC (δ13CDIC) deviates from their normal marine ratios. This circumstance led to ongoing discussions on whether aerobic foraminifers like Cibicides wuellerstorfi are capable of living at seepage sites and, more importantly, if their tests reflect the low δ13C values of emanating methane. To evaluate the discrepancy between δ13CDIC and δ13Ctest, we conducted methane seepage-emulating culture experiments on undepressurized sediments from the Håkon Mosby Mud Volcano, a modern methane seepage structure that hosts living C. wuellerstorfi with distinct negative δ13C values. The collected sediments were cultured at a site-alike pressure and mean bottom water methane concentration using newly developed high-pressure aquaria. Over an experimental period of 5 months our novel technology enabled a successful reproduction of all calcareous deep-sea benthic foraminiferal species living at that site, notably the first C. wuellerstorfi cultured in the laboratory. To show the influence of methane on δ13Ctest, we ran parallel experiments with > 99% 12C- and 99% 13C-methane in the experimental “bottom water”. During the experimental running time methanotrophs in the water column obviously converted the experimentally added methane source to δ13C-enriched and -depleted DIC, respectively. Since whole sediment cores were cultured, it was impossible to keep δ13CDIC constant over the 5-month duration, which is reflected in a variability of δ13Ctest in foraminiferal shells. Irrespective of that, the methane source is reflected in δ13Ctest of foraminiferal shells, and for the natural seep-conditions simulating 12C-experiment the mean δ13CDIC and δ13Ctest in C. wuellerstorfi were equal. Although for future culturing experiments improvements of the experimental conditions are advisable, our first results are evidence that persistent methane emanation impacts the carbon isotopic composition of deep-sea benthic foraminifera

    Reduced admixture of North Atlantic Deep Water to the deep central South Pacific during the last two glacial periods

    Get PDF
    Key Points: • Little deep water circulation changes in the past 240,000 years in the central South Pacific • Reduced North Atlantic Deep Water admixture during glacials to the Southern Ocean • South Pacific lithogenic material mainly sourced from SE Australia and South New Zealand The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific basin are exchanged. Here we reconstruct the deep-water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of -5.8 and 18.757 for εNd and 206Pb/204Pb, respectively, whereas glacial averages are -5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water (NADW) to CDW during cold stages. The absolute values and amplitudes of the benthic δ13C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific

    Memorials to the victims of Nazism: the impact on tourists in Berlin

    Get PDF
    This qualitative study explores tourist responses to memorials to the victims of Nazism in Berlin and the impact they have on the tourist experience. The findings are located in the field of study known as dark tourism, of which visiting memorials is a part. The analysis shows that tourists increased their knowledge of the crimes committed by the Nazis, thus fulfilling the educational function of memorials. Tourists were also overwhelmed by their experience; they attested to feelings of sadness, shock, anger, despair and incomprehension. These feelings made it hard for them to resume the role of tourist after their exposure to a memorial. There was acknowledgement of the extent of commemoration practised in Germany

    Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage

    Get PDF
    Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine‐tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re‐organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin‐sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells
    • …
    corecore