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Abstract  

 The South Pacific is a sensitive location for the variability of the global oceanic 

thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, 

and the Pacific basin are exchanged. Here we reconstruct the deep-water circulation of the 

central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) 

based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by 

benthic stable carbon data obtained from two sediment cores located on the flanks of the East 

Pacific Rise. The records show small but consistent glacial/interglacial changes in all three 

isotopic systems with interglacial average values of -5.8 and 18.757 for εNd and 
206

Pb/
204

Pb, 

respectively, whereas glacial averages are -5.3 and 18.744. Comparison of this variability of 

Circumpolar Deep Water (CDW) to previously published records along the pathway of the 

global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep 

Water (NADW) to CDW during cold stages. The absolute values and amplitudes of the 

benthic δ
13

C variations are essentially indistinguishable from other records of the Southern 

Hemisphere and confirm that the low central South Pacific sedimentation rates did not result 

in a significant reduction of the amplitude of any of the measured proxies. In addition, the 

combined detrital Nd and strontium (
87

Sr/
86

Sr) isotope signatures imply that Australian and 

New Zealand dust has remained the principal contributor of lithogenic material to the central 

South Pacific. 

 

Key points: 

Little deep-water circulation changes in the past 240 000 years in the S Pacific 

Reduced North Atlantic Deep Water admixture during glacials to the Southern Ocean 

S Pacific lithogenic material mainly sourced from SE Australia and S New Zealand 

 

Keywords: South Pacific, Nd isotopes, Pb isotopes, Sr isotopes, δ
13

C, past deep-water 

circulation, past dust input 

 

Index Terms:  

1050 Geochemistry: 1040 Radiogenic isotope geochemistry; 4200 Oceanography General: 

4283 Water Masses; Paleoceanography: 4904 Atmospheric transport and circulation, 4924 

Geochemical tracers. 
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1. Introduction 

 The global thermohaline circulation (THC) contributes to regulate Earth’s climate 

through the redistribution of heat from lower to higher latitudes and also through transport 

and storage of nutrients, oxygen and CO2 in the deep ocean [e. g., Broecker, 1982; 

Rahmstorf, 2002; Sigman et al., 2010; Adkins, 2013]. The main deep-water formation areas 

are located in the North Atlantic and in the Southern Ocean. Essentially North Atlantic Deep 

Water (NADW) and Antarctic Bottom Water (AABW) mix with the eastward flowing 

Antarctic Circumpolar Current (ACC) in the Southern Ocean to form Circumpolar Deep 

Water (CDW), in which also deep waters of Pacific origin are entrained. CDW can be 

subdivided into nutrient depleted Upper CDW (UCDW) and more nutrient enriched Lower 

CDW (LCDW) cf. [Carter et al., 2009], which fill the deep Indian and Pacific oceans via 

Deep Western Boundary Currents (DWBC). Given that UCDW and LCDW cannot be 

distinguished based on their Nd isotope compositions we only refer to CDW for the purpose 

of our study. The return flow to the Southern Ocean at mid-depths occurs via nutrient-rich 

and oxygen depleted waters [e. g. Kawabe and Fujio, 2010]. The South Pacific represents the 

entrance and exit of deep-water masses feeding and leaving the Pacific Ocean, which is the 

largest marine nutrient and CO2 reservoir on Earth. 

 The carbon isotope composition (δ
13

C) of benthic foraminifera has been widely used 

to evaluate past changes in deep-water circulation [Boyle and Keigwin, 1986; Duplessy et al., 

1988; Charles and Fairbanks, 1992; Sarnthein et al., 1994; Matsumoto and Lynch-Stieglitz, 

1999; Matsumoto et al., 2002; Ninneman and Charles, 2002; McCave et al., 2008]. Its 

dissolved distribution follows the major nutrients in the present day ocean and is overall 

consistent with the age and mixing of water masses along the thermohaline circulation. 

Young, nutrient-depleted water masses, such as NADW are characterized by positive δ
13

C 

values near +1 ‰ whereas the oldest, least ventilated deep water masses in the North Pacific 
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are significantly lighter and even reach negative δ
13

C signatures [Lynch-Stieglitz, 2003; 

Ravelo and Hillaire-Marcel, 2007]. The dissolved bottom water δ
13

C signal can also be 

affected by processes other than water mass mixing, such as isotopic disequilibria between 

the atmosphere and the surface ocean [e.g. Charles et al, 1993], changes in primary 

production [Mackensen et al., 1993] and the balance between terrestrial and oceanic carbon 

storage on glacial-interglacial time scales [Oliver et al., 2010; Peterson et al., 2014].  

Radiogenic Nd isotope compositions (
143

Nd/
144

Nd) recorded in authigenic Fe-Mn 

coatings of sediment particles have been shown to reliably trace past deep circulation patterns 

unaffected by biological and thermodynamic fractionation effects [e.g., Rutberg et al., 2000; 

Piotrowski et al., 2004; 2005]. Water masses acquire their Nd isotope signal (expressed as 

εNd=[(
143

Nd/
144

Nd(sample)/ (
143

Nd/
144

Nd(CHUR) -1]*10
4
, whereby CHUR stands for the 

Chondritic Uniform Reservoir (
143

Nd/
144

Nd=0.512638, Jacobsen and Wasserburg, 1980)) in 

their formation areas as a consequence of weathering of continental rocks with distinct 

isotopic signatures. Consequently, deep water masses formed in the North Atlantic and 

spreading southward as NADW are characterized by a distinctly negative (unradiogenic) εNd 

signature of approximately -13.5 [Piepgras and Wasserburg, 1987; Rickli et al., 2009; 

Lambelet et al., 2016], which originates from weathering of the old cratonic rocks of Canada 

and Greenland. In contrast, the εNd signature of North Pacific Deep Water (NPDW) ranges 

from -2 to -4 [Piepgras and Jacobsen, 1988; Amakawa et al., 2004, 2009; Horikawa et al., 

2011] due to the more positive (radiogenic) Nd isotope composition of the volcanic rocks that 

surround the Pacific [cf. Jeandel et al., 2007]. End-members from these main source areas 

mix in the Southern Ocean, resulting in εNd signatures near -8.5 for CDW [Piepgras and 

Wasserburg, 1982; Carter et al., 2012; Stichel et al., 2012a; Garcia-Solsona et al., 2013; 

Molina-Kescher et al., 2014a]. Tracing the mixing of water masses along the thermohaline 

circulation pathway in the open ocean is possible due to the intermediate oceanic residence 
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time of Nd of ~400-2000 years [Tachikawa et al., 2003; Arsouze et al., 2009; Rempfer et al., 

2011], which is similar to the global ocean mixing time. In the water column of near coastal 

regions, where Nd is introduced into seawater and in high productivity areas with high 

particulate fluxes, dissolved Nd isotopes show non-conservative behavior that complicates or 

sometimes prevents their use as water mass tracers [Lacan and Jeandel, 2005; Rempfer et al., 

2011; Singh et al., 2012; Stichel et al., 2012b; Grasse et al., 2012; Pearce et al., 2013]. This is 

however, clearly not the case for the South Pacific, where the present day dissolved Nd 

isotope compositions fully match the different deep and mid-depth water masses according to 

their hydrographic parameters, such as oxygen concentrations [Molina-Kescher et al., 2014a]. 

In addition, the reliable extraction of the authigenic, sea-water-derived signature recorded in 

the sediments is sometimes hampered by easily dissolving volcanic particles or preformed 

coatings [Gutjahr et al., 2007; Roberts et al., 2010; 2012; Elmore et al., 2011, Piotrowski et 

al., 2012; Wilson et al., 2013; Kraft et al., 2013; Tachikawa et al., 2014]. For the South 

Pacific, including core top data for the cores of this study, Molina-Kescher et al. [2014b] 

comprehensively evaluated εNd signatures from different sedimentary phases for their 

suitability to infer seawater Nd isotope compositions. Those data clearly documented that 

unclean foraminifera reliably recorded the authigenic signal. In addition, despite that the core 

locations of this study are on the slope of the East Pacific Rise, any hydrothermal influence 

on the Nd isotope signatures can be excluded based on the complete removal of hydrothermal 

Nd within the hydrothermal vents [German et al., 1990; Halliday et al., 1992], which even 

allows hydrothermal sediments to be used as archives for the Nd isotope composition of 

seawater [Chavagnac et al., 2006]. Also the long distance of the study area from any 

continent or volcanic island makes contamination by volcanic ashes very unlikely.   

 Lead (Pb) isotopes behave similarly to Nd isotopes in seawater in that water masses 

from different oceanic basins present characteristic isotopic ratios as a consequence of the 
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inputs from weathered continental rocks of different type and ages [c.f. Frank, 2002]. In 

contrast to Nd isotopes, Pb isotopes undergo incongruent weathering resulting in the 

radiogenic Pb isotopes (
206

Pb, 
207

Pb and 
208

Pb) to be preferentially mobilized during 

weathering in comparison to primordial 
204

Pb [Chow and Paterson, 1959, 1962; Frank, 2002]. 

In addition, hydrothermal inputs may play a role for local oceanic Pb budgets and the short 

residence time of Pb in seawater (~50 to 200 years; Schaule and Patterson, 1981; von 

Blanckenburg and Igel, 1999) restricts its applicability to short distance water mass mixing 

and tracing of lithogenic inputs. Nonetheless, differentiation of the admixture of deep-water 

signatures from the Pacific and Atlantic to Circumpolar Deep Water (CDW) along its 

pathway is possible due to the very high current speeds and volume transport of the ACC 

[Abouchami and Goldstein, 1995].  

 The long residence time of Sr in seawater (~2 million years), as a consequence of its 

low particle reactivity, impedes the use of radiogenic Sr isotopes as water mass tracer. 

Nevertheless, the Sr isotope signature of the detrital fraction of the sediment, in particular in 

combination with Nd isotopes is a powerful tool for tracing the climatically driven variability 

of the provenance of lithogenic material supplied to the Southern Ocean [e. g. Franzese et al., 

2006; Noble et al., 2012]  

This study is focused on two sediment cores located on the East Pacific Rise in the 

central South Pacific. The mid-latitude (35°S to 50°S) South Pacific between New Zealand 

and South America is dominated by a complex deep-water circulation pattern, which is 

schematically shown in Fig. 1. The DWBC (εNd ~-9.7; Molina-Kescher et al., 2014a), which 

detaches from the Antarctic Circumpolar Current (ACC) in the western S Pacific, represents 

the entrance of deep waters into the Pacific. The exit and reintroduction of old mid-depth 

waters (mainly modified North Pacific Deep Water, NPDW, εNd ~-5.9; Molina-Kescher et al., 

2014a) flowing from the North Pacific into the ACC occurs in the eastern South Pacific, close 
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to South America [see Molina-Kescher et al., 2014a for a detailed description of the 

hydrography in the study area). CDW dominates the deep central South Pacific [Kawabe and 

Fujio, 2010], although central Pacific waters also exert some influence at the location of our 

cores [Reid, 1986, Molina-Kescher et al., 2014a], which today displays seawater εNd 

signatures of -6.6 [Molina-Kescher et al., 2014a]. The Ross Sea is one of the main formation 

regions of AABW, which occupies the abyssal Southeast Pacific Basin and is characterized 

by εNd signatures near -7 [Rickli et al., 2014; Basak et al., 2015] but it is not able to cross the 

East Pacific Rise and the Pacific Antarctic Ridge towards the Southwest Pacific Basin (e.g., 

the location of our cores) due to its high density [Orsi et al., 1999].  

In this study, we report evidence based on three independent proxies that have been 

widely used to track past deep water advection and mixing processes, namely authigenic, 

seawater-derived Nd and Pb isotopes, and δ
13

C signatures of benthic foraminifera, to 

reconstruct past changes in central South Pacific deep ocean circulation. Additionally, we 

show detrital Nd and Sr isotope signatures to infer climatically driven changes in the inputs 

of detrital material to this region. 

 

2. Samples and Methods 

Two gravity cores, SO213-59-2 and SO213-60-1 (from here on referred to as Core 59 

and Core 60 respectively), from 3161 m and 3471 m water depth respectively, obtained on 

the western flank of the East Pacific Rise in the central South Pacific (44-46°S, 117-119°W) 

(Fig. 1) aboard the German RV SONNE during expedition SO213 (Dec. 2010 – Mar. 2011) 

[Tiedemann et al., 2012] were analysed for stable oxygen (δ
18

O) and carbon (δ
13

C) isotope 

compositions of benthic foraminifera, and for radiogenic neodymium (εNd), strontium, and 

lead isotope compositions of the authigenic and detrital phases of the sediments. The central 
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South Pacific is an area of very low sedimentation rates, which is why we chose not to base 

our interpretations on the records of one core only.   

 

2.1. Stable Oxygen (δ
18

O) and Carbon (δ
13

C) isotope analysis 

 Stable isotope (δ
18

O and δ
13

C) analyses were performed on the benthic foraminiferal 

species Cibicidoides wuellerstorfi for Core 59 (δ
18

O data already published in Tapia et al., 

2015) and Uvigerina peregrina for Core 60 (~10 individuals of the size fraction > 250 μm for 

both cores). The benthic oxygen isotope variations served to establish the stratigraphy, while 


13

C was intended to be used as a tracer for changes in water mass mixing and to estimate the 

potential effects of bioturbation on the low sedimentation rate records. Isotopic analyses were 

performed on a ThermoScientific MAT 253 mass spectrometer coupled with a KIEL IV 

Carbonate device at AWI and GEOMAR for Core 59 and Core 60, respectively. Results were 

referenced to the NBS19 standard and calibrated to VPDB. Analytical errors were ± 0.03 for 

both δ
18

O and δ
13

C.  

 

2.2. Nd, Pb and Sr isotope analysis. 

Seawater Nd and Pb isotope compositions recorded by early diagenetic, authigenic 

Fe-Mn coatings that precipitate on sediment particles were used to track deep water 

circulation changes, whereas Nd and Sr isotopes obtained from the continent-derived silicate 

fraction were used for identifying changes in provenance and inputs of lithogenic material, 

mainly of dust.  

For the extraction of deep-water Nd isotope signatures recorded by Fe-Mn coatings 

we applied the ‘unclean’ planktic foraminifera technique [e. g., Roberts et al., 2010; 

Tachikawa et al., 2014] on 63 samples of Core 59 and 40 samples of Core 60. This method 

has been proven to faithfully reconstruct the Nd isotope composition of deep water in our 
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study area [Molina-Kescher et al., 2014b] and other oceanographic regions [e. g., Roberts et 

al., 2010; Kraft et al., 2013; Tachikawa et al., 2014]. The extraction includes the dissolution 

of clay-free mixed planktic foraminifera without a preceding separation of Fe-Mn coatings. 

We also applied a ‘non-decarbonated’ bulk sediment leaching technique, which has proven to 

be the most reliable leaching method for the isolation of the authigenic Nd from the coatings 

of bulk sediments [Wilson et al., 2013; Molina-Kescher et al., 2014b], on 12 samples of each 

of the two cores to obtain authigenic Pb isotope compositions and to compare the methods for 

the extraction of seawater derived Nd isotope compositions. The latter method consists in the 

leaching of bulk sediment using a 0.05 M hydroxylamine hydrochloride/15% acetic acid 

solution (HH) buffered to pH 3.6 with NaOH without preceding carbonate removal. In 

addition, two fish teeth found in Core 60 and one for Core 59 were analysed to confirm the 

seawater origin of the extracted Nd isotope compositions, given that this archive have been 

demonstrated to faithfully record past seawater Nd signatures [e.g. Martin and Scher, 2004]. 

Detrital Nd and Sr isotope signatures were obtained on the 24 previously leached bulk 

sediment samples of Core 59 and Core 60 (plus 2 more samples for the latter) to track 

changes in the provenance of the detrital silicates supplied to the core locations. These 26 

samples, after a second HH leach of 24 hours, were totally digested using a mixture of 

concentrated HNO3 and HF. After dissolution all samples underwent a two-step ion 

chromatographic separation following previously published methods to isolate and purify Nd 

[Barrat et al., 1996, Le Fevre and Pin, 2005], Sr [Horwitz et al., 1992] and Pb [Galer and 

O’Nions, 1989; Lugmair and Galer, 1992].  

To measure the isotopic ratios of Nd, Sr and Pb, we used a Nu Plasma MC-ICPMS at 

GEOMAR using ratios of 0.7219 for 
146

Nd/
144

Nd and 0.1194 for 
88

Sr/
86

Sr to correct for 

instrumental mass bias. Pb isotope compositions were measured using a standard-sample 

bracketing method [Albarède et al., 2004]. Nd and Sr isotope ratios were corrected for 
144

Sm 
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and 
86

Kr,
 87

Rb interferences, respectively. All results were normalized to the accepted values 

of 0.512115 (JNdi-1 standard [Tanaka et al., 2000]) for 
143

Nd/
144

Nd, 0.710245 (NIST 

NBS987) for 
87

Sr/
86

Sr and to the accepted values of NBS981 [Abouchami et al., 1999] for Pb 

isotopes. The external reproducibilities (2) of the Nd, Sr and Pb isotope measurements 

during each session were assessed by repeated measurements of the above standards 

matching sample concentrations and ranged between 0.2 and 0.4 Nd units, between 0.00004 

and 0.00012 for 
87

Sr/
86

Sr, and 0.015 for 
206

Pb/
204

Pb, 0.0001 for 
207

Pb/
206

Pb, and 0.015 for 

208
Pb/

204
Pb (see Tab. 1). 

 

2.3. Stratigraphy 

The age models of Cores SO213-59-2 and SO213-60-1 are based on δ
18

O records of 

the benthic foraminifera species Cibicidoides wuellerstorfi and Uvigerina peregrina 

respectively, tuned to the global benthic δ
18

O stack LR04 [Lisiecki and Raymo, 2005] for the 

past ~240,000 years (Core 59) and ~221,000 years (Core 60) (Fig. 2c). The age model of 

Core 59 [Tapia et al., 2015] is supported by two 
14

C accelerator mass spectrometer (AMS) 

ages at 10.7 ±0.1 and 33.5 ±0.4 kilo years before present, furtheron referred to as ka BP. The 

sediments of this core were deposited at low sedimentation rates between 0.4 cm ka
-1

 BP and 

1.5 cm ka
-1

 BP but nevertheless allow a clear differentiation of the most prominent orbitally 

forced climatic transitions of the last two glacial cycles. The glacial Marine Isotope Stages 

(defined after Lisiecki and Raymo, 2005) MIS 6 (191 - 130 ka BP) and 2 (29 - 14 ka BP), 

yield an average benthic δ
18

O value of 4.2‰, identical to average global and South Pacific 

LGM values for the same species [Matsumoto and Lynch-Stieglitz, 1999]. The δ
18

O 

difference between available Holocene samples (7 -14 ka BP) and the maxima of the glacial 

periods MIS 2 and MIS 6 is 1.1 ‰, close to the expected global ice volume change of 1.2‰ 

[Elderfield et al., 2012]. The last interglacial (29 - 130 ka BP), here represented by MIS 3 to 
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MIS 5 (including short glacial MIS 4, which cannot be clearly distinguished in our record) 

displays a progressive transition from minimum δ
18

O values of ~3‰ at MIS 5e (~126 ka BP) 

to maximum values of ~4.6‰ recorded for the LGM.  

Despite the fact that the age model of second Core 60 lacks 
14

C datings, the 

stratigraphy is well constrained by the benthic δ
18

O curve and fully supported by 

biostratigraphic and paleomagnetic data. Core 60 presents lower sedimentation rates (0.4 cm 

ka BP
-1

 to 1.0 cm ka BP
-1

) than Core 59 but the benthic oxygen isotope data show the 

expected glacial interglacial amplitudes in both cores (Fig. 2c), therefore discarding 

significant bioturbation effects on the records. The offset observed between the two δ
18

O 

records is most probably due to a vital effect between the two species, given that Cibicidoides 

wuellerstorfi lives epifaunally whereas Uvigerina peregrina is a shallow infaunal species 

[Gooday, 2003]. The Holocene is only covered by one sample for this core at 11 ka. 

 

3. Results 

3.1.1. Authigenic Nd isotopes 

Deep water Nd isotope compositions obtained from ‘unclean’ foraminifera of Cores 

59 and 60, which are at present bathed in CDW, yield within error the same average Nd 

signatures of -5.6 and -5.7, respectively. Both cores recorded only relatively small variations 

during the entire investigated period of time (Fig. 2a), which reflects the mixing proportions 

of the different water masses contributing to CDW. In general, less radiogenic Nd signatures 

prevailed during interglacial periods, which average -5.8 in both cores and show minimum 

Nd values of -6.1. In contrast, the most radiogenic Nd signatures occurred during glacials 

with averages of -5.3 for Core 59 and -5.6 for Core 60, with maximum Nd values of up to -

4.2. The consistent difference between the glacial and interglacial Nd averages (Tab. 1) is 

small for both cores but it is systematic and significant, at least in the case of higher resolved 
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Core 59. The data of Core 60 generally follow the same trend as Core 59 including a 

radiogenic peak near the LGM and a clear transition from more radiogenic, ‘Pacific-like’ (-

4.9) to less radiogenic, ‘Southern Ocean-like’ (-6.1) Nd values at the MIS 6 to MIS 5 

transition. Only in the interval between 159 and 181 ka BP in Core 60 two samples clearly 

deviate towards less radiogenic values (-6 and -6.4 Nd units) and thus do not match the 

general trend displayed by Core 59 (Fig. 2a). A fish tooth Nd isotope signature from a section 

with an age of 164 ka BP in Core 59 confirms the overall more positive glacial Nd signatures 

obtained from the unclean foraminifera of MIS 6. The two fish teeth found in Core 59 at 20.6 

ka BP (Nd -5.1) and 63.1 ka BP (Nd -5.6) match the corresponding ‘unclean’ foraminifera 

data within error.. 

 The Nd signatures of the ‘non-decarbonated’ leachates of Core 59 (Fig. 3a) are within 

error identical to those of the unclean foraminifera in the younger part of the core between 

MIS 5 and the present.  For MIS 6 and most of MIS 7 the leachate data are significantly more 

radiogenic and closely match the detrital data, suggesting contamination with the latter 

fraction of the sediment (see Section 4.1). Leachate Nd isotope signatures of Core 60 (Fig. 

3b) are identical within error to the detrital and ‘unclean’ foraminifera data for most samples 

and there are no systematic offsets between the two methods for extraction of the seawater 

signatures. 

3.1.2. Authigenic Pb isotopes 

206
Pb/

204
Pb and 

207
Pb/

206
Pb leachate results of both cores chosen for display in figure 4 

(see also tables 1, S1 and S2) show values similar to Fe-Mn nodules obtained from the central 

South Pacific at similar latitudes [Abouchami and Goldstein, 1995]. The glacial-interglacial 

variations in the Pb isotope ratios in both records are relatively small, but clearly significant. 

They are consistent between the two locations and of essentially the same amplitude of 

glacial to interglacial change (Fig. 4). The variability follows the same pattern as the 
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seawater-derived Nd signatures and the benthic δ
13

C values in that more ‘Pacific-like’ 

signatures prevailed during glacial stages, suggesting a common factor controlling the 

changes of the three different deep water circulation proxies (see Section 4.2). 

3.1.1. Benthic carbon isotopes 

The variations in the benthic δ
13

C signature of Core 59 recorded by Cibicidoides 

wuellerstorfi follow trends very similar to those of benthic δ
18

O of the same record (Fig. 2). 

The LGM (19-23 ka) to Holocene (youngest available data: 7-8 ka) difference in δ
13

C reaches 

0.51‰, which is 0.12‰ larger than recent estimates of terrestrial carbon reservoir changes 

for the South Pacific of 0.39‰ [Peterson et al., 2014]. Glacial stages MIS 2 and MIS 6 

display markedly different average δ
13

C values (-0.05 and -0.36, respectively), which differ 

considerably between each other, with a sharp drop of about 0.7‰ observed for the MIS 7 to 

MIS 6 transition. These values are similar to those of other studies from the southern 

hemisphere [Oliver et al., 2010; Peterson et al., 2014] in general, and from the central South 

Pacific [Matsumoto and Lynch-Stieglitz, 1999; Ninnemann and Charles, 2002] in particular 

(Fig. 5), supporting the absence of significant effects of bioturbation on the record of our 

core. Benthic δ
13

C signatures of Core 60 (Fig. 2b), obtained from infaunal species Uvigerina 

peregrina, display slightly less pronounced changes though with similar amplitude and 

overall lighter carbon isotope compositions than Core 59 as a consequence of growth from 

isotopically light pore waters due to respiration processes [Ravelo and Hillare-Marcel, 2007].  

 

3.2. Detrital provenance proxies (Nd and Sr isotopes) 

Nd and Sr isotopes obtained from the detrital fraction of the sediment serve to trace 

provenance of continental derived silicates arriving in the central South Pacific during the 

studied interval of time. Except for one sample of the last interglacial at 93.5 ka BP (MIS 5c), 

the detrital Nd signatures of Core 59 (black diamonds on Fig. 3a) shows glacial-interglacial 
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variations oscillating between more radiogenic glacial signatures (-3.5 to -4.5) and less 

radiogenic interglacial signatures (-5 to -6) suggesting systematic changes in the provenance 

of the lithogenic material that reached the study area during cold and warm periods (see 

Section 4.3). A higher proportion of mantle-like source rocks prevailed during glacial 

periods.  Except for a radiogenic peak value near -4 at the LGM the glacial/interglacial 

differences in the detrital Nd data of Core 60 are less pronounced than for Core 59, ranging 

between ~-5 and ~-6 (black squares on Fig. 3b). 

 Detrital Sr isotope ratios (
87

Sr/
86

Sr) show a small range between 0.7092 and 0.7095 

for Core 59 and between 0.7092 and 0.7102 for Core 60 (Fig. 4c). While Core 59 does not 

reveal systematic glacial-interglacial detrital 
87

Sr/
86

Sr variations, Core 60 shows peaks of 

radiogenic values during glacials indicating a lower proportion of mantle derived source 

rocks.  

 

4. Discussion 

4.1. Reliability of the Nd and Pb isotope data as recorder of past deep water circulation 

Before we interpret the extracted deep water Nd isotope signatures their reliability 

needs to be evaluated. Fossil fish teeth are known to faithfully record the Nd isotope 

composition of bottom waters of the past [Martin and Scher, 2004]. The three fossil fish teeth 

measured in this study display within error the same Nd signatures as unclean foram fractions 

of the same samples (Fig. 2 and 3, Tab. S1 and S2). Comparison to the Nd isotope 

compositions of the detritus (Fig. 3) supports the absence of any significant contamination of 

the seawater signal extracted from the foraminifera in agreement with the results obtained for 

the surface sediments [Molina-Kescher et al., 2014b]. In particular, the detrital Nd signatures 

of Core 59 (Fig. 3a) in most cases show considerably more radiogenic Nd values than the 

‘unclean’ foram fraction, which is most pronounced during glacial periods, when the detritus 
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reached the most positive values and the difference to the ‘unclean’ foram data amounted to 

up to 1.6 Nd units. In core 60-2 (Fig. 3b), most of the detrital and ‘unclean’ foram Nd isotope 

compositions are similar.  

In addition to the above considerations, both cores recorded consistent LGM (~21ka 

BP) to Early Holocene trends from more radiogenic (5.0±0.3 and -5.3±0.3 for Cores 59 and 

60, respectively) to less radiogenic Nd signatures (-6.1 ±0.3 at 7.1 ka BP for Core 59 and -6.0 

±0.3 at 11.3 ka BP for Core 60) of the unclean foraminifera (Fig. 2a). These youngest 

samples available for our cores agree within error with present day seawater signatures at the 

same location [Molina-Kescher et al., 2014a], which displays a value of -6.5 ±0.2 at 3842 m 

water depth (see Fig. 2a). An essentially identical trend is observed for the transition from 

MIS 6 to MIS 5 on both cores. Although generally low sedimentation rates of 0.5 – 2 cm ka 

BP
-1

 prevail in the study area [Tiedemann et al., 2012] any influence of bioturbation on the 

amplitudes of the changes in Nd isotope signatures are considered negligible given that the 

benthic oxygen and carbon isotope data (see Section 4.2.2.) show the expected glacial-

interglacial amplitudes in both cores.  

 The ‘non-decarbonated’ leachates did apparently not always record the seawater 

signal as reliably as the ‘unclean’ forams. This is most evident in Core 59 (Fig. 3a), where 

leachates faithfully follow the seawater curve of the foraminifera back to 130 ka BP, whereas 

prior to that the similarity between the detrital and leachate signatures suggests a possible 

contamination of the latter by partial dissolution of the lithogenic fraction during the leaching 

process. Certainly, this issue does not affect the unclean foraminifera data as confirmed by 

the fish tooth found at 164 ka BP in Core 59 (Nd -5.4), which matches the foraminifera data. 

Contributions from sedimentary pore waters [Haley et al., 2004; Abbot et al., 2015a and 

2015b] may have affected the ‘non-decarbonated’ leach signal of the older  part of Core 59.  

despite that this core was retrieved on a low sedimentation rate area not prone to develop 
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anoxic conditions in subsurface sediments and to the release of significant sedimentary REE 

fluxes. Further evidence for the absence of a significant pore water influence on the unclean 

foraminfera Nd data on this area comes from the typical seawater pattern of normalized Post 

–Archean Australian Sedimentary Rock (PAAS) REEs observed on core-tops [see discussion 

in Molina-Kescher et al., 2014b].  Leachates of Core 60 (Fig. 3b) show Nd values similar to 

those of the forams and the detritus. Given the differences observed in Core 59, we will only 

use the ‘unclean’ foraminifera data of both cores for the paleoceanographic interpretations of 

this study, which have been documented to reliably record past deep water signatures in the 

South Pacific and other areas [Roberts et al., 2010; Kraft et al., 2013; Tachikawa et al., 2014; 

Molina-Kescher et al., 2014b] 

 The Pb isotope data were obtained using the non-decarbonated leach technique but the 

absence of detrital Pb isotope data does not allow the evaluation of a possible detrital 

contamination from pore waters. However, the very high particle reactivity of Pb makes any 

mobilisation from pore waters highly unlikely and the leaching method has been shown to 

yield reliable seawater Pb isotope data [Gutjahr et al., 2009; Stumpf et al., 2010; Crocket et 

al., 2012; Wilson et al., 2015; Teschner et al., 2016] and the consistent glacial-interglacial 

variations, as well as the close agreement of our Pb isotope results with the ferromanganese 

crust data of Abouchami and Goldstein [1995] for the same region support the validity of our 

results. 

 

4.2. Changes in the deep-water circulation of the last two glacial cycles   

Nd, Pb and C isotopes of Core 59 (Figs. 2 and 4) generally show consistent glacial-

interglacial variations indicating more ‘Pacific-like’ signatures during glacial periods. 

Paleoceanographic changes in the South Pacific Ocean have been poorly studied compared to 

other oceanic regions but there is evidence for a deepening of NPDW during the last glacial 
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period [Keigwin, 1998; Matsumoto and Lynch-Stieglitz, 1999; Matsumoto et al., 2002; 

Huang et al., 2014a]. Although these changes may partly explain the glacial-interglacial 

variations observed in our data, the flow of NPDW from the Pacific into the Southern Ocean 

today principally occurs at mid-depths of the eastern South Pacific [e. g., Kawabe and Fujio, 

2010; Molina-Kescher et al., 2014a], whereas the central South Pacific is not an exit of 

Pacific deep waters to the ACC. Rather this area represents a main entrance area of UCDW 

flowing into the Pacific, although at shallower depths than the location of our cores [see 

Kawabe and Fujio, 2010]. Therefore, it is unlikely that a deepening or stronger production of 

NPDW during glacial stages fully explains the long-term deep-water circulation changes 

observed in the central South Pacific. Instead, these processes would be better recognizable in 

the eastern South Pacific, where a more vigorous glacial advection of NPDW may have 

occupied parts of the SE Pacific basin during the last glacial period that are today dominated 

by Circumpolar Deep Water [Molina-Kescher et al., 2014b].  

Given the position of our cores (44°-46°S), the bathymetry of the South Pacific, and 

the eastward flow of the ACC (see circulation scheme on Fig. 1), it is also very unlikely that 

dense AABW formed in the Ross Sea (Ross Sea Deep Water) and characterized by Nd = ~-

7.0 [Rickli et al., 2014; Basak et al., 2015], reached the western flank of the E Pacific Rise at 

the water depth of our cores in the past. Our data do also not support a hypothetical admixture 

of AABW formed in the Weddell Sea during glacials as this water mass is characterized by 

significantly less radiogenic Nd signatures (-9.5) [van der Flierdt, 2007; Stichel et al 2012a]. 

In contrast, there is compelling paleoceanographic evidence deduced from both 

carbon [e. g. Boyle and Keigwin, 1986; Duplessy et al., 1988; Charles and Fairbanks, 1992; 

Ninneman and Charles, 2002; Curry and Oppo, 2005; Gebbie 2014] and Nd isotopes 

[Rutberg et al., 2000; Piotrowski et al., 2004, 2005, 2008, 2009, 2012; Noble et al., 2013] 

indicating reduced NADW export to the Southern Ocean during cold climate stages of the 
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past. Combination with Pa/Th ratios [e. g. McManus et al., 2004; Roberts et al., 2010; Böhm 

et al., 2015] showed a shoaling of NADW [Curry and Oppo, 2005; Adkins et al., 2013; 

Ferrari et al., 2014; Böhm et al., 2015; Wilson et al., 2015] and a reduced NADW production 

[Piotrowski et al., 2005; Robinson and van de Flierdt, 2009; Pena and Goldstein, 2014]. 

Hence, the diminished contribution of NADW to CDW during cold stages is the most 

probable explanation for the variations observed in our Nd and the Pb isotope data. 

 

4.2.1. Nd and Pb isotope evidence of decreased admixture of NADW to CDW. 

At the present day, the western flank of the E Pacific Rise at the depth of our core 

locations between 3000 and 3500 m is mainly bathed in CDW (see Fig. 1). Nevertheless, the 

present-day hydrographic properties also indicate a significant influence of Pacific-derived 

waters at this location and depth as reflected by relatively radiogenic Nd isotope 

compositions (-6.5) as well as decreased oxygen levels (~3.8 ml/l) and elevated phosphate 

concentrations (2.16 mmol/l) [Molina-Kescher et al., 2014a]. For comparison, pure Lower 

CDW (LCDW) in the Southwest Pacific Basin is characterized by Nd=-8.3, [O2]=4.4 ml/l, 

and [Phosphate]=2.07 mmol/l [Molina-Kescher et al., 2014a]. Therefore, the admixture of 

Pacific central waters to the deep waters of the study area further dilutes the fraction of 

NADW present in CDW, which contributes to the relatively small glacial-interglacial Nd 

isotope variations. This dilution effect with Pacific central waters is also evident when 

comparing our Nd record of Core 59 to Holocene and LGM Nd isotope compositions 

obtained at CHAT 5K and CHAT 1K (Fig. 6) on Chatham Rise in the western South Pacific 

from a water depth of 3290 m [Elderfield et al., 2012; Noble et al., 2013], which is located in 

the main entrance area of CDW into the Pacific basin and consequently still contains a higher 

proportion of NADW compared to the central South Pacific [Reid and Lynn, 1971; Warren, 

1973; Gordon, 1975; McCave et al., 2008]. The LGM to Holocene amplitude of the change 
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of Cores CHAT 1K and CHAT 5K (~2 Nd units) is significantly larger than that observed for 

Core 59 (1 to 1.5 Nd units) consistently reflecting the higher proportion of unradiogenic 

NADW within CDW for Sites CHAT 1K and CHAT 5K.  

The presence of NADW on deep waters of the Southern Hemisphere decreases along 

the flow path of the deep THC towards the east, reflecting the progressive dilution of NADW 

as it mixes with other water masses. This is reflected by the overall progressively more 

radiogenic Nd signatures and the decrease of the glacial/interglacial Nd isotope differences 

(Fig. 6) from the South Atlantic (Red squares: Core RC11-83/TNO57-21; Piotrowski et al., 

2008) and the Indian Ocean (Yellow diamonds: Core SK129-CR2; Piotrowski et al., 2009; 

Wilson et al., 2015) via the western South Pacific (Green triangles: Cores CHAT 1K and 

CHAT 5K; Elderfield et al, 2012; Noble et al., 2013) to the central South Pacific (Blue 

circles: Core 59, this study). Although a change in the pre-formed Nd isotope composition of 

NADW through time cannot be completely excluded [Gutjahr et al., 2008; Wilson et al., 

2014], we here assume no change on glacial-interglacial time scales based on evidence 

inferred from Fe-Mn crust and deep water coral data from the western N Atlantic [Foster and 

Vance, 2006; van de Flierdt et al., 2006]. Therefore, either a reduction in the production rate 

and admixture of NADW [e. g., Piotrowski et al., 2005; Robinson and van de Flierdt, 2009; 

Pena and Goldstein, 2014], a shoaling of the latter [e. g. Wilson et al., 2015; Adkins et al., 

2013] or a combination of both processes during cold stages are the most probable 

explanations for the Nd variations observed in the Southern Ocean locations presented in Fig. 

6. 

The small but significant variations found in the 
206

Pb/
204

Pb and 
207

Pb/
206

Pb records 

(Fig. 3a, 3b) also confirm the lowered portion of N Atlantic sourced deep waters within CDW 

of the S Pacific. Abouchami and Goldstein [1995] presented a detailed study of the evolution 

of Pb isotope signatures along the pathway of Circumpolar Deep Water in the ACC (see Fig. 
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7). Despite the short residence time of Pb in seawater, a continuous decrease of the 

206
Pb/

204
Pb ratio towards the East (E Atlantic/Indian > Pacific > W Atlantic) within CDW 

reflects the dilution of NADW along the pathway of CDW, with maximum values of 19.10 in 

the southern Indian Ocean and minimum values of 18.70 in the eastern South Pacific and 

western South Atlantic. The cores systematically show minimum values of ~18.73 for MIS 2 

and the beginning of MIS 6 and maxima of ~18.78 during the Holocene, MIS 5, and MIS 7 

(Fig. 7), in agreement with the changes in NADW admixture to CDW deduced from the Nd 

isotope signatures above.  

4.2.2. Influence of terrestrial carbon reservoir changes in the 13
C record 

As recently demonstrated by the compilation of Peterson et al. [2014], the LGM-

Holocene variation in 
13

C signatures due to changes in the proportion of the global carbon 

reservoirs between land and the ocean reaches 0.39‰ for deep waters of the South Pacific 

region. In the case of Core 59, this difference amounts to 0.51‰, which includes the latter 

0.39‰ variation and leaves a 0.12‰ change that is attributable to deep ocean circulation 

changes during this time interval, indicating a higher proportion of old, nutrient-rich waters 

(‘Pacific-like’) during the LGM in this area, although productivity and air-sea gas exchange 

may also have contributed to this 
13

C variation. There are a number of 
13

C compilations for 

longer periods of time, including the most recent one by Oliver et al. [2010] for the last 150 

ka BP. The latter study documents similarly heavier values for interglacial MIS 1 and 5, 

lighter values for glacial MIS 2 and the lightest ones for MIS 6, reaching 
13

C signatures of 

Cibicidoides as low as -0.6. The authors assigned most of the glacial-interglacial variation to 

changes in carbon storage in the biosphere on land but also inferred modulations by changes 

in ocean circulation, productivity, and air-sea gas exchange. Figure 8 compares the benthic 


13

C data from our study (Core 59) to records from the central and western South Pacific 

[Ninnemann and Charles 2002 and Elderfield et al., 2012 respectively], the central equatorial 
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Pacific [Mix et al., 1995], and the equatorial Indian Ocean [Piotrowski et al., 2009]. The 

variations in benthic carbon isotopes of Core 59 are very similar to those observed in other 

locations of the Pacific and even the interior of the Indian Ocean, further supporting a 

dominant role of terrestrial-oceanic carbon transfer in modulating the 
13

C variations. Only 

E11-2 differs from the other records in terms of absolute values, although the amplitude of 

glacial-interglacial change is very similar. Importantly, these data also confirm the absence of 

any significant effects of bioturbation on the amplitude and timing of any of the proxies 

measured in this study. The offset during sub-MIS 7d (~230 ka BP and ~220 ka BP) between 

Core 59 and the other records may originate from local productivity changes but additional 

data would be needed to unambiguosly confirm this. 

 

4.3. Changes in the detrital provenance  

 Using combined Nd-Sr isotope compositions of the lithogenic fraction of the surface 

sediments Molina-Kescher et al. [2014b] provided evidence on the provenance of the detrital, 

mainly eolian transported material, arriving at present in the South Pacific along ~40°S. On 

that study, the Nd-Sr isotope signatures of the surface sediments from the Holocene and 

LGM (
14

C ages ranging 5 to 24 ka BP) fall onto a trend line between the volcanic Andean 

rocks of South America, which dominate the Chile Basin, and the diverse lithologies of 

Australia and South New Zealand (see inset in Fig. 9), which dominate west of ~110°W and 

reflect dust contributions transported by the dominant westerly winds (Fig. 9)[see details in 

Molina-Kescher et al., 2014b]. Grain size sorting can cause fractionation of Sr isotopes 

[Innocent et al., 2000; Tütken et al., 2002] and the long distance of the closest continents to 

the two cores presented in this study only allows fine-grain detrital silicates to reach the study 

area. However, Nd isotopes are not significantly affected by grain size effects and, as Molina-

Kescher et al. [2014b] demonstrated, the close correlation between Nd and Sr isotope 
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compositions of the core top detrital silicates along  a transect with increasing distance from 

the continental sources essentially excludes grain size sorting as main controlling factor of 

the detrital Sr isotope variations of this region. We cannot exclude though that two small 

detrital radiogenic Sr isotope peaks of Core 60 were caused by short-term supply of finer 

grained material. Therefore, the Nd-Sr isotope variability of the detrital material in Cores 59 

and 60 provide information on past changes in the supply and provenance of the dust during 

the last ~240 ka BP although some Nd-Sr isotope fields of the source regions partly overlap. 

The interglacial data (red in Fig. 9) closely match the Nd-Sr isotope signatures of the early 

Holocene core-top samples (8 – 11 ka BP) obtained on the E Pacific Rise [Molina-Kescher et 

al., 2014b], indicating the dominance of the Westerly Winds carrying dust mainly from 

Australia and South New Zealand to the central South Pacific during warm periods [e. g., 

Albani et al., 2012; Lamy et al., 2014]. On the other hand, the glacial signatures are shifted 

towards more positive Nd values, and in the case of Core 60 also show more positive Sr 

isotope ratios, which are shifted towards the arrays of S New Zealand and Australian fine 

sediments of fluvioglacial origin and loess (blue and purple fields on Fig. 9), which partially 

overlap with Nd-Sr isotope signatures from W Antarctica and detritus from the Ross Sea 

(green field on Fig. 9). Due to the predominantly eastward directed water flow and wind 

pathways in these latitudes these results clearly exclude any increase in glacial supply of 

material from S America to the open South Pacific. Ice Rafted Debris (IRD) was not found in 

either of the two investigated cores, essentially excluding icebergs as a significant means of 

transport. Chase et al. [2003] observed enhanced glacial supply of detrital material north of 

66°S in the South Pacific, which they attributed to increased amounts of suspended load 

transported by the CDW to the central South Pacific, similar to observations in the South 

Atlantic, for which Franzese et al. [2006] and Noble et al. [2012] proposed that the ACC was 

more sediment laden during the LGM. This was likely originating from the stronger winds 
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and larger sediment source areasduring the LGM due to expanded deserts (consequence of a 

reduced hydrological cycle), lower sea level and enhanced exposure of shelf sediments, 

formation of mobile outwash plains from glaciers, and increased supply of glaciogenic debris 

by expanded ice sheets [Noble et al., 2012 and references therein], which led to the release of 

fine-grained weathered material to the Southern Ocean. Therefore, changes in the proportions 

of source regions of eolian inputs can explain the observed variations. A recent 

comprehensive study by Lamy et al. [2014], covering an extensive area of the Southern 

Ocean to the south of our location, supported the predominant eolian origin of lithogenic 

material accumulated in the sediments of the Pacific sector of the Southern Ocean and 

demonstrated a threefold increase in deposition of dust in the Pacific sector of the Southern 

Ocean during glacial periods of the past one million years, consistently with enhanced 

westerly winds [e. g. Albani et al., 2012]. Although Lamy et al. [2014] inferred the dust to be 

derived from Australia and New Zealand they did not provide any data on provenance of the 

detrital material. Our data support their suggestions on the origin of the dust and one possible 

explanation for the shift towards more positive Nd and Sr isotope signatures during glacial 

periods observed in this study may have been a stronger dust input from the region of the 

Lake Eyre Basin, central Australia. This potential source area (see inset in Fig. 9) is 

characterized by a narrowly defined Nd-Sr isotopic field of ~-3 and ~0.7095, respectively 

[Ravel-Rolland et al., 2006] and is less dependant on changes in rainfall than other 

contributing regions of Australia, such as the Murray-Darling River Basins (SE Australia) 

[Ravel-Rolland et al., 2006]. This either reflects drier conditions in continental Australia or 

enhanced atmospheric transport due to higher wind speeds or a combination of both during 

glacials [e. g. Hesse et al., 1994] 
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5. Conclusions 

The results of our study based on two sediment cores from the central South Pacific 

indicate a reduction of NADW admixture to the Southern Ocean during glacial stages 

supporting previous results from the southern Atlantic, Indian and westernmost South Pacific. 

The deep-water circulation proxies used in this study (Nd and Pb isotopes) show small but 

consistent variations: More radiogenic Nd and Pb isotopic signatures of deep waters prevailed 

during glacials, which is consistent with a similar reduction in the contribution of the least 

radiogenic endmember (NADW) to CDW during the LGM and MIS 6. Accordingly, CDW 

has prevailed in the mid-latitude (~45°S) central South Pacific at 3000/3500 m water depth 

during glacials . The small amplitude of the observed Nd and Pb isotope variability is 

consistent with the expected dilution of NADW along the flowpath of CDW in the central 

South Pacific via mixing with Southern Ocean and Pacific waters.  

Combined detrital Nd-Sr isotope compositions indicate that the provenance of 

lithogenic material arriving in the central South Pacific during the past ~240 ka BP remained 

stable in that Australian and New Zealand dust has remained the main source of continent-

derived material brought to our study region by the dominant Westerlies. However, the 

glacial signatures were shifted towards more radiogenic isotope compositions suggesting 

markedly increased contributions from regions with higher proportions of mantle-derived 

rock, such as the Lake Eyre region (central Australia). Detritus from Antarctica might have 

also reached the locations of our cores as suspended load of oceanic currents during glacials 

as a consequence of enhanced erosion and weathering inputs from the larger ice sheets. 
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Figure 1. Bathymetric map of the central South Pacific schematically showing flow-

paths and flow directions of the main water masses between 3000 and 4000 m water 

depth (circulation patterns after Reid, 1986; Kawabe and Fujio, 2005). Arrows 

represent water mass flow coded by colours: Circumpolar Deep Water (CDW) in 

purple (here comprising both Upper and Lower CDW), Antarctic Bottom Water 

(AABW) in green and Pacific derived waters in yellow, highlighting North Pacific 

Deep Water (NPDW) to the east of the study area. DBWC = Deep Western Boundary 

Current. The locations of sediment cores of this study are indicated by red dots: 

SO213-59-2 (Lat. 45° 49.736' S, Long. 116° 52.761' W, 3161 m water depth), SO213-

60-1 (Lat. 44° 57.831' S, Long. 119° 33.071' W, 3471 m water depth). The locations 

of cores CHAT 1K and CHAT 5K (3556 m and 4240 m water depth, respectively; 

Elderfield et al., 2012; Noble et al., 2013); E20-18, E25-10 and RC12-225 (2869 m, 

2891 m and 2964 m water depth, respectively; Matsumoto and Lynch-Stieglitz, 

1999); and E11-2 (3094 m water depth ;Ninnemann and Charles, 2002) referred to in 

the text are also included as blue dots. The red triangle marks the water sampling 

station 54 (Lat. 43°S, Long. 120°W, 3842 m water depth) closest to the sediment core 

locations, where seawater Nd isotope data are available [Molina-Kescher et al., 

2014a]. On the bottom–right corner of the figure, an oxygen section of the area at 

~43°S is provided, which represents the structure of the water column and the 

different water masses, together with the location of some of the studied cores.  
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Figure 2. (a) Nd isotope data (εNd with 2σ error bars) of Core SO213-59-2 (red 

circles) and SO213-60-1 (blue diamonds) for the past ~240 ka BP. The εNd data 

reflects the isotopic composition of seawater during the studied period of time 

obtained from Fe-Mn coatings of ‘unclean’ planktic foraminifera and fish teeth (pink 

dots). Present day seawater εNd from St.54 (see Fig. 1) is represented by a yellow 

square at 0 ka BP [Molina-Kescher et al., 2014a]. In comparison, carbon (
13

C) (b) 

and oxygen (
18

O) isotopes (c) obtained from the benthic foraminifera Cibicidoides 

wuellerstorfi (SO213-59-2, red) and Uvigerina peregrina (SO213-60-1, blue) are 

shown. The age models of cores SO213-59-2 [Tapia et al., 2015] and SO213-60-1 are 

based on the visual correlation of the benthic 
18

O record to the global 
18

O reference 

stack LR04 (grey line, Lisiecki and Raymo, 2005), in the case of SO213-59-2 

supported by AMS
14

C-datings (black triangles). Shaded areas define full glacial 

Marine Isotope Stages (MIS). 
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Figure 3. Comparison of Nd isotope compositions (εNd) obtained from different 

fractions of the sediment (authigenic and detrital) and using different techniques 

(‘unclean’ forams, leachates and fish teeth) in order to elucidate the reliability of the 

seawater derived signal (see section 4.1) for cores SO213-59-2 in diamonds (a) and 

SO213-60-1 in squares (b) for the last 240 and 220 ka BP, respectively. εNd signatures 

are given in black for the detrital fraction of the sediment, the ‘non-decarbonated‘ 

leachates in yellow, the ‘unclean’ forams in red and the fish teeth in green. Shaded 

areas define full glacial Marine Isotope Stages (MIS)  
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Figure 4. Authigenic Pb isotope compositions of non-decarbonated bulk sediment 

leachates and detrital Sr isotope compositions for cores SO213-59-2 (red circles) and 

SO213-60-1 (blue diamonds) for the last ~240 and ~220 ka BP., respectively. a) 
206

Pb/
204

Pb ratios, b) 
207

Pb/
206

Pb ratios, c)
 87

Sr/
86

Sr. 2σ error bars are indicated. 

Shaded areas define full glacial Marine Isotope Stages (MIS). 
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Figure 5.  Comparison of average stable oxygen (δ

18
O) versus carbon (δ

13
C) isotope 

compositions of benthic foraminifera (Cibicidoides) for all available central S Pacific 

cores (see locations of Fig. 1) for the Last Glacial Maximum and the Holocene. Red 

Squares: Core SO213-59-2 (this study). Yellow diamonds: E11-2 [Ninnemann and 

Charles, 2002]; green triangles: E20-18; Blue crosses: E25-10; and purple circles: 

RC12-225 [Matsumoto and Lynch-Stieglitz, 1999].  
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Figure 6. Comparison of Southern Hemisphere Nd isotope (εNd) records from 

comparable water depths but different oceanic settings (see inset map) covering 

similar time scales. Increasing εNd (note reverse scale) implies gradually diminishing 

influence of NADW towards East. Red squares: cores RC11-83 / TNO57-21 from 

4718/4981 m water depth [Piotrowski et al., 2005; 2008]; yellow diamonds: core 

SK129-CR2 from 3800 m water depth [Piotrowski et al., 2009; Wilson et al., 2015]); 

green triangles and crosses: cores CHAT 1K [Elderfield et al., 2012] and CHAT 5K 

[Noble et al., 2013] from 3556 m and 4240 m water depth, respectively; blue circles: 

core SO213-59-2 from 3161 m water depth (this study). Shaded areas define full 

glacial Marine Isotope Stages (MIS).  
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Figure 7. 

206
Pb/

204
Pb evolution of CDW along the ACC pathway as a consequence of 

decreased NADW contribution and comparison with glacial/interglacial signatures of 

the central South Pacific of this study. 
206

Pb/
204

Pb vs. longitude along the ACC 

showing Pb isotope compositions of Fe-Mn nodules of the South Pacific (open 

circles) and the South West Atlantic (black circles) (data from Abouchami and 

Goldstein, 1995) in comparison with Fe-Mn leachates of cores SO213-59-2 and 

SO213-60-1 (this study). The latter are separated into interglacial (red diamonds) and 

glacial (blue triangles) isotope ratios. Dashed lines indicate the change in the range of 

Pb isotope compositions of CDW with longitude. Figure modified from Abouchami 

and Goldstein [1995].  
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Figure 8. Comparison of benthic 

13
C records from comparable water depths in the 

Indian Ocean and the Pacific covering similar time scales. Yellow: core SK129-CR2 

from 3800 m water depth [Piotrowski et al., 2009]; green: ODP Site 1123 from 3290 

m water depth [Elderfield et al., 2012]; blue: core SO213-59-2 from 3161 m water 

depth (this study)); purple: E11-2 from 3094 m water depth [Ninnemann and Charles, 

2002]; orange: ODP Site 849 from 3851 m water depth [Mix, 1995]. Shaded areas 

define full glacial Marine Isotope Stages (MIS).  
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Figure 9. The role of different lithogenic sources contributing to the radiogenic Nd-Sr 

signal of detrital silicates of the South Pacific. Combined Nd and Sr isotope signatures 

of South Pacific core-top and downcore detrital analyses are presented. The 

radiogenic isotope signatures of cores SO213-59-2 (triangles) and SO213-60-1 

(circles) are separated into glacial (yellow) and interglacial (red) periods. The core-top 

data from the open South Pacific (diamonds) [Molina-Kescher et al., 2014b] are given 

in black to light grey as a function of the distance to S America (see legend on figure). 

The most probable detrital sources that surround the South Pacific are indicated as 

coloured Sr-Nd isotope arrays: Red: South Andean [Hickey et al., 1986; Futa and 

Stern, 1988] and Austral Andean rocks [Futa and Stern, 1988; Stern and Kilian, 

1996]. Fine-grained particles (<5 m) susceptible to eolian transport: Yellow: North 

Island of New Zealand [Delmonte et al., 2004]; Purple: South Island of New Zealand 

[Taylor et al., 1983; Delmonte et al., 2004]; Blue: Eastern Australia, whereby the 

Lake Eyre Basin is indicated by a circle [Revel-Rolland et al., 2006]. Green: West 

Antarctic and Ross Sea detritus (combined from Roy et al., 2007 and Hemming et al., 

2007]; Orange: Circum-Antarctic detritus from Wilkes Land (see inset) (combined 

from Roy et al., 2007 and Hemming et al., 2007). MORB stands for Mid-Ocean Ridge 

Basalts. Note that the inset shows a larger range of potential source areas for Nd-Sr 

isotopes. The grey square marks the range of the large diagram. 
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Table 1. Results of this study averaged for isotopic stages 
 

S0213-
59-2 

δ180 
benthi
c 

2σ n std. 
dev. 

δ13C 
benthi
c 

2σ n std. 
dev. 

εNd 
forams 

2σ n  st
d. 
de
v. 

εNd 
leach
ates 

2σ n std. 
dev. 

εNd 
detri
tus 

2σ n st
d. 
de
v. 

Holocene 3.15 ±0.0
6 

9 0.24 0.34 ±0.0
7 

9 0.18 -5.78 ±0.2
5 

5 0.
29 

-5.95 ±0.4
0 

1 - -5.24 ±0.
24 

1   

MIS 2 4.21 ±0.0
6 

22 0.17 -0.05 ±0.0
7 

22 0.10 -5.22 ±0.2
5 

6 0.
54 

-5.33 ±0.4
0 

1 - -3.76 ±0.
24 

1 - 

Last 
Interglacia
l (MIS 
3+4+5) 

3.79 ±0.0
6 

78 0.28 0.28 0.28 78 0.19 -5.80 ±0.2
5 

2
6 

0.
20 

-5.52 ±0.4
0 

5 0.18 -4.70 ±0.
24 

5 0.
51 

MIS 6 4.19 ±0.0
6 

16 0.20 -0.36 ±0.0
7 

16 0.18 -5.29 ±0.2
5 

1
1 

0.
18 

-4.06 ±0.4
0 

2 0.09 -4.28 ±0.
24 

2 0.
18 

MIS 7 3.90 ±0.0
6 

21 0.40 -0.20 ±0.0
7 

21 0.32 -5.69 ±0.2
5 

1
5 

0.
32 

-4.96 ±0.4
0 

3 0.57 -5.34 ±0.
24 

3 0.
37 

average 
INTERGLA
CIALS* 

3.75 ±0.0
6 

10
8 

0.35 0.08 ±0.0
7 

108 0.27 -5.76 ±0.2
5 

4
6 

0.
26 

-5.37 ±0.4
0 

8 0.50 -5.08 ±0.
24 

8 0.
44 

average 
GLACIALS 

4.20 ±0.0
6 

38 0.18 -0.18 ±0.0
7 

38 0.21 -5.26 ±0.2
5 

          

±0.25 17 0.33 -
4.7
3 

±0.4
0 

4 0.78 -4.11 ±0.2
4 

4 0.27           

  206Pb/2

04Pb 
leach 

2σ n std. 
dev. 

207Pb/2

06Pb 
leach 

2σ n std. 
dev. 

208Pb/2

04Pb 
leach 

2σ n st
d. 
de
v. 

87Sr/8

8Sr 
detrit
us 

2σ n std. 
dev. 

        

Holocene 18.771 ±0.0 1 - 0.8324 ±0.0 1 - 38.68 ±0.0 1 - 0.709 0.00 1 -         
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15 001 15 25 004 

MIS 2 18.738 ±0.0
15 

1 - 0.8333 ±0.0
001 

1 - 38.60 ±0.0
15 

1 - 0.709
33 

0.00
004 

1 -         

Last 
Interglacia
l (MIS 
3+4+5) 

18.758 ±0.0
15 

5 0.00
9 

0.8327 ±0.0
001 

5 0.00
06 

38.63 ±0.0
15 

5 0.
03 

0.709
35 

0.00
004 

5 0.00
009 

        

MIS 6 18.747 ±0.0
15 

2 0.00
8 

0.8334 ±0.0
001 

2 0.00
04 

38.63 ±0.0
15 

2 0 0.709
35 

0.00
004 

2 0.00
001 

        

MIS 7 18.755 ±0.0
15 

2 0.00
6 

0.8331 ±0.0
001 

2 0.00
02 

38.64 ±0.0
15 

2 0 0.709
37 

0.00
004 

3 0.00
012 

        

average 
INTERGLA
CIALS*  

18.759 ±0.0
15 

8 0.00
9 

0.8327 ±0.0
001 

8 0.00
05 

38.64 ±0.0
15 

8 0.
02 

0.709
35 

0.00
004 

9 0.00
010 

        

  average 
GLACIALS 

18.744 ±0.0
15 

3 0.00
8 

0.8333 ±0.0
001 

3 0.00
03 

38.62 ±0.0
15 

3 0.
02 

0.709
34 

0.00
004 

3 0.00
002 

        

S0213-
60-1 

δ180 
benthi
c 

2σ n std. 
dev. 

δ13C 
benthi
c 

2σ n std. 
dev. 

εNd 
forams 

2σ n st
d. 
de
v. 

εNd 
leach
ates 

2σ n std. 
dev. 

εNd 
detri
tus 

2σ n st
d. 
de
v. 

Holocene 3.07 ±0.0
6 

1 - -0.22 ±0.0
7 

1 - -5.91 ±0.3
2 

2 0.
17 

-6.02 ±0.4
0 

1 - -5.24 ±0.
24 

1 - 

MIS 2 4.27 ±0.0
6 

4 0.17 -0.50 ±0.0
7 

4 0.17 -5.76 ±0.3
2 

4 0.
36 

- ±0.4
0 

- - -4.07 ±0.
24 

1 - 

Last 
Interglacia
l (MIS 
3+4+5) 

4.21 ±0.0
6 

37 0.25 -0.42 ±0.0
7 

37 0.17 -5.80 ±0.3
2 

1
9 

0.
24 

-5.85 ±0.4
0 

7 0.35 -5.53 ±0.
24 

7 0.
25 

MIS 6 4.43 ±0.0
6 

19 0.22 -0.89 ±0.0
7 

19 0.14 -5.53 ±0.3
2 

1
0 

0.
46 

-6.05 ±0.4
0 

2 0.48 -5.38 ±0.
24 

3 0.
51 

MIS 7 4.03 ±0.0 10 0.26 -0.73 ±0.0 10 0.23 -5.86 ±0.3 4 0. -5.85 ±0.4 2 0.20 -5.82 ±0. 2 0.
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6 7 2 31 0 24 22 

average 
INTERGLA
CIALS*  

4.15 ±0.0
6 

48 0.30 -0.48 ±0.0
7 

48 0.23 -5.82 ±0.3
2 

2
5 

0.
24 

-5.87 ±0.4
0 

1
0 

0.30 -5.56 ±0.
24 

1
0 

0.
27 

 average 
GLACIALS 

4.40 ±0.0
6 

23 0.22 -0.83 ±0.0
7 

23 0.19 -5.60 ±0.3
2 

1
4 

0.
43 

-6.05 ±0.4
0 

2 0.48 -5.05 ±0.
24 

4 0.
78 

  206Pb/2

04Pb 
leach 

2σ n std. 
dev. 

207Pb/2

06Pb 
leach 

2σ n std. 
dev. 

208Pb/2

04Pb 
leach 

2σ n st
d. 
de
v. 

87Sr/8

8Sr 
detrit
us 

2σ n std. 
dev. 

        

Holocene 18.751 ±0.0
15 

1 - 0.8331 ±0.0
001 

1 - 38.66 ±0.0
15 

1 - 0.709
34 

0.00
004 

1 -         

MIS 2 - ±0.0
15 

1 - - ±0.0
001 

1 - - ±0.0
15 

1 - 0.710
23 

0.00
012 

1 -         

Last 
Interglacia
l (MIS 
3+4+5) 

18.760 ±0.0
15 

7 0 0.8328 ±0.0
001 

7 0.00
03 

38.66 ±0.0
15 

7 0.
02 

0.709
38 

0.00
004 

7 0.00
014 

        

MIS 6 18.758 ±0.0
15 

3 0.00
5 

0.8333 ±0.0
001 

3 0.00
02 

38.67 ±0.0
15 

3 0.
01 

0.709
55 

0.00
004 

3 0.00
030 

        

MIS 7 18.775 ±0.0
15 

2 0.00
6 

0.8327 ±0.0
001 

2 0.00
01 

38.70 ±0.0
15 

2 0.
01 

0.709
29 

0.00
008 

2 0.00
006 

        

average 
INTERGLA
CIALS* 

18.762 ±0.0
15 

10 0.00
9 

0.8328  
±0.0
001 

              

  10 0.00
03 

38.
67 

±0.0
15 

10 0.02 0.70
936 

0.00
004 

10 0.00
013 

              

 average 
GLACIALS 

18.758 ±0.0
15 

4 0.00
4 

0.8333  
±0.0
001  

4 0.00
02 

38.67 ±0.0
15 

4  0.
04 

0.709
72 

0.00
010 

4 0.00
042 

        

The averages for each stage were calculated using all available data points for each period (n)(see data in tables S1 and S2). 'std.dev.' stands 
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for standard deviation of 'n'. *Including here g acial MIS 4. 
 


