919 research outputs found

    Evaluation of warfarin resistance using transcription activator-like effector nucleases-mediated vitamin K epoxide reductase knockout HEK293 cells

    Get PDF
    Single nucleotide polymorphisms in the vitamin K epoxide reductase (VKOR) gene have been successfully used for warfarin dosage prediction. However, warfarin resistance studies of naturally occurring VKOR mutants do not correlate with their clinical phenotype. This discrepancy presumably arises because the in vitro VKOR activity assay is performed under artificial conditions using the non-physiological reductant dithiothreitol

    Géomorphologie et productivité des forages dans le nord du bassin du fleuve Comoé en Côte d’Ivoire

    Get PDF
    L’objectif de cette étude est de caractériser les aquifères et la productivité des forages dans le haut bassin versant de la Comoé, spécifiquement dans la partie nord de la Côte d’Ivoire. La réalisation de ce travail a nécessité des fiches de 952 forages, des cartes géologiques et la base de données  cartographiques de la Côte d’Ivoire. Les épaisseurs d’altération y sont importantes avec 87,92% des forages supérieurs à la classe des épaisseurs moyennes selon le CIEH. Les forages y sont plus profonds et plus productifs sur les schistes que sur les granitoïdes. La profondeur optimale des forages dans cette zone peut être définie entre 40 et 60 m. Les valeurs de transmissivité varient de 5,59.10-6 m2/s à 2,01.10-4 m2/s.Mots clés : Fleuve Comoé, bassin versant, aquifère de socle, transmissivité, épaisseur d’altération, forage

    Higgs Boson Sector of the Next-to-MSSM with CP Violation

    Full text link
    We perform a comprehensive study of the Higgs sector in the framework of the next-to-minimal supersymmetric standard model with CP-violating parameters in the superpotential and in the soft-supersymmetry-breaking sector. Since the CP is no longer a good symmetry, the two CP-odd and the three CP-even Higgs bosons of the next-to-minimal supersymmetric standard model in the CP-conserving limit will mix. We show explicitly how the mass spectrum and couplings to gauge bosons of the various Higgs bosons change when the CP-violating phases take on nonzero values. We include full one-loop and the logarithmically enhanced two-loop effects employing the renormalization-group (RG) improved approach. In addition, the LEP limits, the global minimum condition, and the positivity of the square of the Higgs-boson mass have been imposed. We demonstrate the effects on the Higgs-mass spectrum and the couplings to gauge bosons with and without the RG-improved corrections. Substantial modifications to the allowed parameter space happen because of the changes to the Higgs-boson spectrum and their couplings with the RG-improved corrections. Finally, we calculate the mass spectrum and couplings of the few selected scenarios and compare to the previous results in literature where possible; in particular, we illustrate a scenario motivated by electroweak baryogenesis.Comment: 40 pages, 49 figures; v2: typos corrected and references added; v3: some clarification and new figures added, version published in PR

    IEEE Access Special Section Editorial: Data Mining for Internet of Things

    Get PDF
    It is an irrefutable fact that the Internet of Things (IoT) will eventually change our daily lives because its applications and relevant technologies have been or will be penetrating our daily lives. Also, the IoT is aimed to connect all the things (e.g., devices and systems) together via the Internet, thus making it easy to collect the data of users or environments and to find out useful information from the gathered data by using data mining technologies. As a consequence, how intelligent systems are developed for the IoT has become a critical research topic today. This means that artificial intelligence (AI) technologies (e.g., supervised learning, unsupervised learning, and semi-supervised learning) were used in the development of intelligent systems for analyzing the data captured from IoT devices or making decisions for IoT systems. It can be easily seen that AI can make an IoT system more intelligent and thus more accurate. For example, various sensors can be used for a smart home system to pinpoint the location and analyze the behavior of a human; however, with AI technologies, a more accurate prediction can be provided on the two pieces of information of a human. One of the most important uses for AI technologies is to make IoT systems more intelligent in order to provide a more convenient environment for users; thus, how to use existing AI technologies or develop new AI technologies to construct a better IoT system has attracted the attention of researchers from different disciplines in recent years. That is why, besides using existing supervised, unsupervised, semi-supervised learning algorithms, data mining algorithms, and machine learning algorithms, several recent studies have also attempted to develop new intelligent methods for the devices or systems for the IoT. All these approaches for making an IoT system more intelligent can also be found in the articles of this Special Section

    Prevalence of transcription promoters within archaeal operons and coding sequences

    Get PDF
    Despite the knowledge of complex prokaryotic-transcription mechanisms, generalized rules, such as the simplified organization of genes into operons with well-defined promoters and terminators, have had a significant role in systems analysis of regulatory logic in both bacteria and archaea. Here, we have investigated the prevalence of alternate regulatory mechanisms through genome-wide characterization of transcript structures of ∼64% of all genes, including putative non-coding RNAs in Halobacterium salinarum NRC-1. Our integrative analysis of transcriptome dynamics and protein–DNA interaction data sets showed widespread environment-dependent modulation of operon architectures, transcription initiation and termination inside coding sequences, and extensive overlap in 3′ ends of transcripts for many convergently transcribed genes. A significant fraction of these alternate transcriptional events correlate to binding locations of 11 transcription factors and regulators (TFs) inside operons and annotated genes—events usually considered spurious or non-functional. Using experimental validation, we illustrate the prevalence of overlapping genomic signals in archaeal transcription, casting doubt on the general perception of rigid boundaries between coding sequences and regulatory elements

    Brown Carbon Aerosol in Urban Xi’an, Northwest China: TheComposition and Light Absorption Properties

    Get PDF
    Light-absorbing organic carbon (i.e., brown carbon or BrC) in the atmospheric aerosol has significant contribution to light absorption and radiative forcing. However, the link between BrC optical properties and chemical composition remains poorly constrained. In this study, we combine spectrophotometric measurements and chemical analyses of BrC samples collected from July 2008 to June 2009 in urban Xi'an, Northwest China. Elevated BrC was observed in winter (5 times higher than in summer), largely due to increased emissions from wintertime domestic biomass burning. The light absorption coefficient of methanol-soluble BrC at 365 nm (on average approximately twice that of water-soluble BrC) was found to correlate strongly with both parent polycyclic aromatic hydrocarbons (parent-PAHs, 27 species) and their carbonyl oxygenated derivatives (carbonyl-OPAHs, 15 species) in all seasons (r(2) > 0.61). These measured parent-PAHs and carbonyl-OPAHs account for on average similar to 1.7% of the overall absorption of methanol-soluble BrC, about 5 times higher than their mass fraction in total organic carbon (OC, similar to 0.35%). The fractional solar absorption by BrC relative to element carbon (EC) in the ultraviolet range (300-400 nm) is significant during winter (42 +/- 18% for water-soluble BrC and 76 +/- 29% for methanol-soluble BrC), which may greatly affect the radiative balance and tropospheric photochemistry and therefore the climate and air quality

    Primary small cell carcinoma of the esophagus: clinicopathological and immunohistochemical features of 21 cases

    Get PDF
    BACKGROUND: Primary small cell carcinoma (SCC) of the esophagus is a rare and aggressive tumor with poor prognosis. In this study, we report the clinicopathological characteristics of 21 cases of small cell carcinoma of the esophagus treated at the Cancer Center of Sun Yat-Sen University, with particular focus on the histologic and immunohistochemical findings. METHODS: Twenty-one patient records were reviewed including presenting symptoms, demographics, disease stage, treatment, and follow-up. Histologic features were observed and immunohistochemical detection of cytokeratin (CK), epithelial membrane antigen (EMA), neuron specific enolase (NSE), synaptophysin (Syn), chromogranin A (CgA), neuronal cell adhesion molecules (CD56), thyroid transcriptional factor-1 (TTF-1) and S100 protein (S100) was performed. RESULTS: The median age of patients in the study was 56 years, with a male-to-female ratio of 3.2:1. Histologically, there were 19 "homogenous" SCC esophageal samples and 2 samples comprised of SCC and well-differentiated squamous cell carcinoma. The percentages of SCC samples with positive immunoreactivity were Syn 95.2%, CD56 76.2%, TTF-1 71.4%, NSE 61.9%, CgA 61.9%, CK 57.1%, EMA 61.9%, and S100 19.0%, respectively. The median patient survival time was 18.3 months after diagnosis. The 2-year survival rate was 28.6%. CONCLUSION: Our study suggests that esophageal SCC has similar histology to SCC that arises in the lung compartment, and Chinese patients have a poor prognosis. Higher proportion of positive labeling of Syn, CD56, CgA, NSE, and TTF-1 in esophageal SCC implicate that they are valuably applied in differential diagnosis of the malignancy
    corecore