6 research outputs found

    Ornithine Decarboxylase Encoded by Chlorella Virus PBCV-1

    Get PDF
    Sequence analysis of the 330-kb genome of chlorella virus PBCV-1 revealed an open reading frame, A207R, which encodes a protein with 37–41% amino acid identity to ornithine decarboxylase (ODC) from many eukaryotic organisms. The a207r gene was cloned and the protein was expressed as a His-A207R fusion protein in Escherichia coli. The recombinant protein catalyzes pyridoxal 5’-phosphate-dependent decarboxylation of ornithine to putrescine, the first step in the polyamine biosynthetic pathway The enzyme has a pH optimum of 9.0 and a temperature optimum of 42°C, and it requires dithiothreitol for maximal activity. The enzyme has a Km, for ornithine of 0.78 mM and a specific activity of 100 μmol/min/mg protein. PBCV-1 ODC is quite sensitive to the competitive inhibitor L-arginine and the irreversible inhibitor difluoromethylarginine but it is less sensitive to the irreversible inhibitor difluoromethylornithine. The a207r gene is expressed both early and late in PBCV-1 infection and is highly conserved among the chlorella viruses. The 42-kDa PBCV-1 ODC (372 amino acids) is the smallest ODC in the databases and, to our knowledge, is the first virus-encoded ODC

    Antiviral chemotherapy facilitates control of poxvirus infections through inhibition of cellular signal transduction

    Get PDF
    The EGF-like domain of smallpox growth factor (SPGF) targets human ErbB-1, inducing tyrosine phosphorylation of certain host cellular substrates via activation of the receptor's kinase domain and thereby facilitating viral replication. Given these findings, low molecular weight organic inhibitors of ErbB-1 kinases might function as antiviral agents against smallpox. Here we show that CI-1033 and related 4-anilinoquinazolines inhibit SPGF-induced human cellular DNA synthesis, protein tyrosine kinase activation, and c-Cbl association with ErbB-1 and resultant internalization. Infection of monkey kidney BSC-40 and VERO-E6 cells in vitro by variola strain Solaimen is blocked by CI-1033, primarily at the level of secondary viral spreading. In an in vivo lethal vaccinia virus pneumonia model, CI-1033 alone promotes survival of animals, augments systemic T cell immunity and, in conjunction with a single dose of anti-L1R intracellular mature virus particle-specific mAb, fosters virtually complete viral clearance of the lungs of infected mice by the eighth day after infection. Collectively, these findings show that chemical inhibitors of host-signaling pathways exploited by viral pathogens may represent potent antiviral therapies

    Biochemical and functional analysis of smallpox growth factor (SPGF) and anti-SPGF monoclonal antibodies

    Get PDF
    Variola, the causative agent of smallpox, is a highly infectious double-stranded DNA virus of the orthopox genus that replicates within the cytoplasm of infected cells. For unknown reasons prominent skin manifestations, including "pox," mark the course of this systemic human disease. Here we characterized smallpox growth factor (SPGF), a protein containing an epidermal growth factor (EGF)-like domain that is conserved among orthopox viral genomes, and investigated its possible mechanistic link. We show that after recombinant expression, refolding, and purification, the EGF domain of SPGF binds exclusively to the broadly expressed cellular receptor, erb-B1 (EGF receptor), with subnanomolar affinity, stimulating the growth of primary human keratinocytes and fibroblasts. High affinity monoclonal antibodies specific for SPGF reveal in vivo immunoprotection in a murine vaccinia pneumonia model by a mechanism distinct from viral neutralization. These findings suggest that blockade of pathogenic factor actions, in general, may be advantageous to the infected host
    corecore