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INTRODUCTION

Ornithine decarboxylase (ODC, EC 4.1.1.17) is the 
fi rst enzyme and typically the rate-limiting enzyme in 
the polyamine biosynthetic pathway, catalyzing the for-
mation of putrescine (1,4 diaminobutane) from ornithine 
(Fig. 1) (Davis et al., 1992; Cohen, 1998). Putrescine 
is then modifi ed by the addition of one and two propyl-
amino groups, respectively, to form spermidine and 
spermine. The donor of the propylamino group is decar-
boxylated S-adenosylmethionine that is formed by the 
enzyme S-adenosyl-methionine decarboxylase.

Polyamines are multifunctional molecules that are in-
volved in many cell activities. These activities include 
regulation of gene expression (Celano et al., 1989), sta-
bilization of chromatin (Snyder, 1989; Feuerstein et al., 
1990; Basu and Marton, 1995), protection of DNA from 
damaging agents (Khan et al., 1992a,b; Tadolini, 1988; 
Dypbukt et al., 1994; Ha et al.. 1998), and the function 
of Kir type K+ channels (Lopatin et at., 1994; Ficker et 
al., 1994; Lin et al., 1997). In addition, spermidine is 
the source of the 4-aminobutyl moiety that is used in 
the posttranslational conversion of lysine to hypusine; 
hypusine serves a vital role in the function of the pro-
tein synthesis initiation factor elF-5A (Park et al., 1997). 
Be cause of the importance of polyamines, ODC has 

been characterized from a variety of organisms includ-
ing Escherichia coli (Applebaum et al., 1977), Trypano-
soma brucei (Phillips et al., 1987), Neurospora crassa 
(DiGangi et al., 1987), Saccharomyces cerevisiae (Tyagi 
et al., 1981), and tobacco (Heimer and Mizsrahi, 1982), 
as well as many mammals (e.g., Haddox and Russell, 
1981; Seely et al., 1982; Gupta and Coffi no, 1985).

Enzymes that decarboxylate ornithine, lysine, or argi-
nine require pyridoxal 5’-phosphate (PLP) as a cofactor 
and are classifi ed into two families based on amino acid 
sequence similarities (Sandmeierefa/., 1994). Mem-
bers in family 1 include ornithine and lysine decarboxyl-
ases from prokaryotic organisms and E coli biodegrada-
tive arginine decarboxylase; collectively, these proteins 
are referred to as group III decarboxylases (Sandmeier 
et al., 1994). Members in family 2, referred to as group 
IV decarboxylases, include ornithine and diaminopimelic 
acid decarboxylases from eukaryotic organisms, plus 
bacterial and plant biosynthetic arginine decarboxylases 
(Sandmeier et al., 1994). Family 2 ODCs function as ho-
modimers; the subunits range in size from 44 kDa for 
Drosophila melanogaster (Rom and Kahana, 1993) and 
46 kDa for Datura starmonium (jimsonweed) (Michael et 
al., 1996) to 53 kDa for N. crassa (DiGangi et al., 1987).

Unexpectedly, computer analysis of the 330-kb dsDNA 
genome of chlorella virus PBCV-1, the prototype virus 

Published in Virology 301 (2002), pp. 165-175.  doi:10.1006/viro.2002.1573  Copyright  © 2002 Elsevier Science (USA). Used by permission.

Submitted February 14, 2002; revised May 2002; accepted May 13, 2002. This manuscript was assigned journal series number 13703, Agricul-
tural Research Division, University of Nebraska.

Ornithine Decarboxylase Encoded by Chlorella Virus PBCV-1
Tiara A. Morehead,a,* James R. Gurnon,a Byron Adams,b Kenneth W. Nickerson,c Lisa A. 

Fitzgerald,d and James L. Van Etten a,e,†

a  Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska 
b  Department of Entomology and Nematology, University of Florida, Gainesville, Florida 

c  School of Biological Sciences. University of Nebraska–Lincoln, Lincoln. Nebraska 
d  Department of Chemistry. University of Nebraska–Lincoln, Lincoln, Nebraska 

e  Nebraska Center for Virology, University of Nebraska–Lincoln, Lincoln, Nebraska 
* Current address: Centers for Disease Control and Prevention, Atlanta, GA 

† Corresponding author. Email: jvanetten@unlnotes.unl.edu.

Abstract: Sequence analysis of the 330-kb genome of chlorella virus PBCV-1 revealed an open reading frame, A207R, which en-
codes a protein with 37–41% amino acid identity to ornithine decarboxylase (ODC) from many eukaryotic organisms. The a207r 
gene was cloned and the protein was expressed as a His-A207R fusion protein in Escherichia coli. The recombinant protein cat-
alyzes pyridoxal 5’-phosphate-dependent decarboxylation of ornithine to putrescine, the fi rst step in the polyamine biosynthetic 
pathway The enzyme has a pH optimum of 9.0 and a temperature optimum of 42°C, and it requires dithiothreitol for maximal activ-
ity. The enzyme has a Km, for ornithine of 0.78 mM and a specifi c activity of 100 μmol/min/mg protein. PBCV-1 ODC is quite sensi-
tive to the competitive inhibitor L-arginine and the irreversible inhibitor difl uoromethylarginine but it is less sensitive to the irrevers-
ible inhibitor difl uoromethylornithine. The a207r gene is expressed both early and late in PBCV-1 infection and is highly conserved 
among the chlorella viruses. The 42-kDa PBCV-1 ODC (372 amino acids) is the smallest ODC in the databases and, to our knowl-
edge, is the fi rst virus-encoded ODC. 

Keywords: ornithine decarboxylase, polyamines, chlorella viruses, Phycodnaviridae

165
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of the genus Chlorovirus (family Phycodnaviridae)(Van 
Etten et al., 1991; Van Etten and Meints, 1999; Van 
Etten, 2000), revealed an open reading frame (ORF) 
encoding a putative family 2 ODC (Lu et al., 1996). To 
our knowledge, this is the fi rst report of a virus-encoded 
ODC. Further more, the PBCV-1-encoded protein is the 
smallest ODC reported to date. Herein, we demonstrate 
that the PBCV-1-encoded protein has ODC activity.

RESULTS

PBCV-1 ORF A207R resembles ODCs

Comparing the predicted 375 virus PBCV-1 protein 
encoding ORFs to sequences in the databases identi-
fi ed an ORF (A207R) with 37–41% amino acid identity 
with ODCs from various organisms including humans, T. 
brucei, and S. cerevisiae (Fig. 2). A207R has both motifs 
that characterize family 2 ODCs (Prosite-PDOC00685) 
includ ing a Lys48 in the fi rst motif, the predicted PLP 
binding site. Two additional key amino acids involved in 

PLP binding to ODC have been identifi ed from the crys-
tal structure of the T. brucei protein (Grishin et al., 1999). 
The PBCV-1 protein contains both of these amino ac-
ids, Glu252 and Arg255 (Fig. 2). A207R also contains 6 
of 9 amino acids in the conserved WGPTCDG(L/I)D se-
quence in which Cys324 is the difl uoromethylornithine 
(DFMO) binding site (Poulin et al., 1992).

The predicted size of the PBCV-1 protein, 372 amino 
acids, is smaller than all ODCs in the databases. The 
ODC from Drosophila consists of 394 amino acid resi-
dues (Rom and Kahana, 1993); however, ODCs from 
most organisms have 420 or more amino acid residues 
(Table 1). To rule out the possibility that the small size 
of the PBCV-1 ODC resulted from a DNA sequenc-
ing error, a 1217-nucleotide region encompassing the 
a207r gene was amplifi ed from PBCV-1 DNA by poly-
merase chain reaction (PCR) and resequenced. The 
nucleotide se quence was identical to the original report 
(Lu et al., 1996).

An amino acid alignment of A207R with ODCs from 

Figure 1. Polyamine biosynthetic pathway. The two enzymes, ODC and homospermidine synthase, encoded by chlorella virus PBCV-1 are high-
lighted.
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human (Hickok et al., 1987), jimsonweed (Michael et 
al., 1996), Drosophila (Rom and Kahana, 1993), T. bru-
cei (Phillips et al., 1987), and S. cerevisiae (Fonzi and 
Sypherd, 1987) indicates that the smaller size of A207R 
can be attributed to the absence of amino acids at both 
the N-terminus and the C-terminus, as well as three in-
ternal gaps of 14, 12, and 5 amino acids beginning at 
amino acid residues 277, 303, and 311, respectively. 
Each of these internal gaps also occurs in at least one 
of the other ODCs included in Fig. 2. The G + C con-
tent of the a207r gene is 41%, essentially identical to the 
40% G + C content of the PBCV-1 genome (Van Etten 

et al., 1985). Several stretches of adenines and thymi-
dines occur within the 50 nucleotides upstream of the 
ATG start codon and could serve as the a207r transcrip-
tional start site.

Expression of recombinant PBCV-1 ODC

To determine if a207r encodes a functional ODC, a 
plasmid, pODCTM9, was constructed to express a His-
tagged recombinant protein in E. coli. Cells containing 
pODCTM9 produced the expected 43-kDa recombinant 
fusion protein after induction with isopropyl-β-D-thioga-
lactopyranoside (IPTG). About 50% of the His-A207R 

Figure 2. Amino acid alignment of ODCs from human, T. brucei, Drosophila, jimsonweed, S. cerevisiae, and PBCV-1. Alignments were done with 
the Wisconsin GCG Pileup program. The two motifs used to distinguish family 2 ODCs (Prosite PDOC00685) are underlined. Important amino ac-
ids are indicated with asterisks: Lys48 is the binding site for the cofactor PLP and Glu252 and Arg255 are also involved in PLP binding; Cys324 is the 
binding site for the irreversible suicide inhibitor DFMO. Key residues are numbered according to the PBCV-1 amino acid sequence.
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protein was in the soluble fraction of the bacterial ex-
tract. The protein was purifi ed to apparent homogeneity 
over a Ni-NTA column; about 2 mg of recombinant pro-
tein was obtained per liter of E. coli cells. We did not re-
move the N-terminal His residues prior to characterizing 
the en zyme for two reasons. First, a His-tag had no ef-
fect on recombinant ODC activity from mouse, T. bru-
cei, or Leishmania donovani (Osterman et al., 1994) and 
second, as described below, the His-tagged A207R pro-
tein had excellent enzyme activity.

Characterization of PBCV-1 recombinant ODC

After a 5- to 10-min lag the recombinant His-tagged 
A207R protein decarboxylates L-[1-14C]ornithine to pu-
trescine in a linear fashion for at least 45 min (Fig. 3A) 
and the rate varies with protein concentration (Fig. 3B). 
The enzyme requires PLP as a cofactor and maximum 
activity occurs with 2.5 mM dithiothreitol (DTT) (results 
not shown). The enzyme has maximum activity at pH 
9.0 (Fig. 3C). The temperature optimum for the enzyme 
is 42°C (Fig. 3D), which is considerably higher than the 
25°C optimum temperature for growing host and virus.

The PBCV-1 ODC has a Km for ornithine of 0.78 mM 
(inset Fig. 3A) and a specifi c activity of 100 μmol orni-
thine decarboxylated/min/mg protein at 42°C. Both of 
these values are higher than ODCs from other organ-
isms (Table 1). Storage of the enzyme at –80°C in the 
pres ence of 0.5 mg/ml bovine serum albumin (BSA), 
DTT, and PLP resulted in ~30% loss of activity after 8 
weeks.

Effect of inhibitors on PBCV-1 ODC activity

L-arginine and L-lysine often compete with L-ornithine 
for binding to the ODC active site. The PBCV-1 ODC 
was inhibited by both amino acids; enzyme activity was 
in hibited ~50% by 0.25 mM arginine (Fig. 4A) or by 1 
mM lysine (Fig. 4B). Neither 0.4 mM D-ornithine nor 10 

mM L-diaminopimelic acid effected enzyme activity (re-
sults not shown).

Surprisingly, PBCV-1 ODC was relatively insensitive 
to DFMO, a specifi c and irreversible inhibitor of ODCs 
(Metcalf et al; 1978). Typically, micromolar concentrations 
of DFMO inhibit family 2 ODCs. However, the PBCV-1 en-
zyme required ~2.5 mM DFMO for 50% inhibition (Fig. 
4C). In contrast, the virus ODC was more sensitive to 
difl uoromethylarginine (DFMA): 50% inhibition occurred 
between 0.1 and 0.25 mM DFMA (Fig. 4D).

Expression of the a207r gene in PBCV-1-infected 
cells

RNA was extracted from viral infected cells at various 
times after infection and hybridized to a single-stranded 
antisense a207r probe to determine if the gene is tran-
scribed during PBCV-1 replication. The a207r probe hy-
bridized to a 1.2-kb RNA transcript extracted from viral 
infected cells at 15–45 min p.i.; hybridization decreased 
at 60 min p.i. and increased again at 90–180 min p.i. 
(Fig. 5). This RNA transcript is the expected size for a 
372-amino-acid protein. Since PBCV-1 DNA synthesis 
begins 60–90 min p.i. (Van Etten et al., 1984), a207r is 
expressed as both an early and a late gene.

Occurrence of the a207r gene in other chlorella 
viruses

To determine if the a207r gene is common among 
the chlorella viruses, genomic DNAs from 42 chlo-
rella vi ruses isolated from diverse geographical regions 
were hybridized to the a207r probe used in the North-
ern anal yses (results not shown). DNA from 32 of the 
viruses that infect Chlorella NC64A hybridized strongly 
with the probe; weak or no hybridization occurred with 5 
viruses—NYs-1, IL-5-2s1, MA-1D, NY-2B, and NY-2A— 
that infect the same host (NC64A viruses). No hybridiza-
tion was detected with DNA from the Chlorella NC64A 
host or DNA from 4 of the 5 viruses which infect Chlo-
rella Pbi (Pbi viruses). However, shotgun DNA sequenc-
ing has identifi ed an odc gene in NC64A virus NY-2A 
and Pbi virus CVM-1 (unpublished results). These two 
odc genes differ suffi ciently from the PBCV-1 odc so that 
the PBCV-1 probe gives no detectable signal. These 
fi ndings indicate that odc genes are common in the chlo-
rella viruses.

Phylogenetic analyses

Neighbor-joining analyses of PAM distances depict the 
PBCV-1 enzyme arising near the ancestral origin of the 
ODC clade (Fig. 6), sharing a common origin with the 
ODC gene of Selenomonas ruminatum, and branching 
prior to the divergence of the other ODC genes. Ninety 
percent of the neighbor-joining bootstrap replicates, but 
only 45% of the more conservative maximum likelihood 

Table 1

Comparative Properties of ODC from Several Organisms
 
                                   Km
                   M.W.   ornithine  Specifi c activity 
Organism                 Amino acids    (kDa)       (mM)     (μmol/min/mg)a

——————————————————————————————
PBCV-1  372 41.9 0.78 100
Jimsonweed 431  46  NAb    NA
T. brucei 423 46.8 0.33 43.5
Mouse 461 51 0.13 17
S. cerevisiae 466 52 0.091 0.52
Human 461 51 NA NA
Drosophila  393 44  NA  NA
Xenopus 460 50.8 NA  NA
——————————————————————————————

a μmol ornithine decarboxylated/min/mg protein. 
b NA, not available.
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bipartitions, support this relationship. The ODC gene lin-
eage appears to be monophyletic, supported by neigh-
bor-joining bootstrap and quartet puzzling metrics (100 
and 83%, respectively).

DISCUSSION

This report establishes that despite its small size, 
372 amino acids with a predicted molecular weight of 
41,969 Da, the chlorella virus PBCV-1 ODC has prop-
erties com parable with other ODCs. The specifi c activ-
ity of the PBCV-1 enzyme is higher than ODC from other 
organ isms (Table 1). However, the high Km (0.78 mM) of 
PBCV-1 ODC indicates relatively weak binding to orni-
thine (Table 1). The virus ODC prefers a pH of 9.0 and 
has a temper ature optimum of 42°C, higher than optima 
for host cell growth and viral replication. Possibly the 
most surprising fi ndings were that arginine was a strong

competitive inhibitor of PBCV-1 ODC and that the en-
zyme was rela tively insensitive to the irreversible inhibi-
tor DFMO. The arginine affi nity is consistent with strong 
inhibition by DFMA (Fig. 4).

In other organisms, ODC is subject to a variety of 
control mechanisms and the protein typically turns over 
rapidly in vivo (Cohen, 1998). Several years ago stud-
ies with mammalian cells showed that putrescine in-
duces synthesis of a heat-labile, trypsin-sensitive pro-
tein that decreases ODC activity in a noncompetitive 
manner (Fong et al., 1976; Heller et al., 1976; Hayashi 
et al., 1996; Cohen, 1998). This inhibitor protein was 
named antizyme and was shown to target ODC for pro-
teolysis by the 26S proteasome (Fong et al., 1976; 
Heller et al., 1976; Cohen, 1998). Regions rich in Pro, 
Glu, Ser, and Thr residues (PEST regions) often exist 
in the C-terminal portion of ODCs and these PEST re-
gions target proteins for cellular proteases (Loetscher 
et al., 1991; Cohen, 1998). For ex ample, mammalian 
ODCs contain two PEST sequences, one in the C-ter-
minus that infl uences protein stability (Ghoda et al., 
1989) and an internal PEST sequence (Li and Coffi no, 
1992). Removal of 37 amino acid residues from the C-
terminus stabilized the protein (Ghoda et al., 1989; Co-
hen, 1998), indicating that the ODC carboxyl-terminal 
region is required for basal degradation (Li and Cof-
fi no, 1992). The internal PEST region serves as the an-

Figure 4. Effect of L-arginine (A), L-lysine (B), DFMO (C), and DFMA (D) on PBCV-1 recombinant ODC activity. The inhibitors were added to the 
enzyme 15 min prior to starting the reaction.

Figure 5. Northern hybridization of RNAs isolated from uninfected and 
PBCV-1-infected Chlorella NC64A at 0, 15, 30, 45, 60, 90, 120, 180, 
and 360 min p.i. RNA was electrophoresed on a 1.2% agarose gel, 
trans ferred to a nylon membrane, and probed with an antisense 32P-
single-stranded a207r probe.
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tizyme-binding site required for polyamine-mediated 
ODC degradation.

The PBCV-1 ODC lacks a C-terminal PEST se-
quence and a comparison of the 24-amino-acid anti-
zyme-binding region of the mouse ODC (residues 117–
140) with the PBCV-1 enzyme indicates only 7 common 
amino acids. Thus the virus enzyme lacks both PEST 
sequences that control ODC levels in mammalian cells. 
Searching the PBCV-1 genome for ODC antizyme 
ORFs found in mam mals (Hayashi et al., 1996) and in 
the fi ssion yeast Schizosaccharomyces pombe (Chatto-
padhyay et al., 2001; Ivanov et al., 2000) failed to de-
tect such a protein. Therefore, we conclude that PBCV-
1 ODC levels are not controlled by antizymes. However, 
this conclusion may be premature. A recent report indi-
cates that ODC levels in the baker’s yeast S. cerevisiae 
are also controlled by an antizyme-like mechanism. This 

is surprising since no antizyme homologue has been de-
tected in S. cerevisiae either in vitro or in silico (Gupta et 
al., 2001). It would seem worthwhile to determine if the 
PBCV-1 ODC gene complements the S. cerevisiae ODC 
gene, and if so, whether virus protein levels are regu-
lated like the yeast protein.

Another possibility is that the PBCV-1 enzyme is a 
primitive ODC that lacks regulatory regions. This sug-
gestion is supported by phylogenetic analyses; the 
PBCV-1 ODC resides near the origin of the clade con-
taining eukaryotic ODCs (Fig. 6). This scenario im-
plies that the chlorella viruses and their genes have a 
long evolutionary history. This hypothesis is supported 
by phylogenetic analysis of eukaryotic DNA polymer-
ases, which indicates that the phycodnavirus DNA poly-
merases reside near the origin of all eukaryotic δ DNA 
polymerases (Villarreal, 1999; Villarreal and DeFilippis, 

Figure 6. Gene genealogy of PBCV-1 ODC and other group IV decarboxylases. Tree was produced using neighbor joining of PAM distances. Par-
tition frequency indices follow bootstrap support values where nodes of neighbor-joining and maximum likelihood trees are concordant. Scale bar 
references branch length as frequency of changes per site.
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2000), supporting the theory that the chlorella viruses 
are ancient.

In addition to encoding ODC, PBCV-1 encodes a 
func tional homospermidine synthase (Kaiser et al., 
1999). Homospermidine synthase catalyzes the synthe-
sis of the rare polyamine homospermidine from two mol-
ecules of putrescine. Thus PBCV-1 encodes the com-
plete pathway for the synthesis of homospermidine from 
ornithine (Fig. 1). Consequently, one might expect poly-
amines, includ ing homospermidine, to play an important 
role(s) in PBCV-1 replication or serve structural roles 
in the virus particle. Indeed, polyamines are structural 
components of many viruses, helping to neutralize viral 
nucleic acids (Sheppard et al., 1980; Tyms et al., 1990; 
Cohen, 1998). However, these expectations are not ful-
fi lled for PBCV-1. We reported previously that uninfected 
and PBCV-1-in fected Chlorella NC64A cells, as well as 
virus particles, contain putrescine, cadaverine, spermi-
dine, and homo spermidine and that the ratios of these 
polyamines change during virus infection; however, the 
total poly amine concentration remains relatively con-
stant during virus replication (Kaiser et al., 1999). Also 
it is unlikely that polyamines neutralize PBCV-1 DNA be-
cause there are only ~0.002 polyamine molecules per 
virus phos phate residue (Kaiser et al., 1999). Further-
more, the poly amines are easily displaced from the par-
ticles by wash ing virions in a polyamine-free buffer with-
out affecting virus infectivity. Therefore, the biological 
function of the polyamines and associated enzymes re-
mains a mystery

MATERIALS AND METHODS

Strains and culture conditions

The production and purifi cation of the chlorella viruses 
and the isolation of their DNAs have been described 
previously (Van Etten et al., 1981, 1983). E. coli strains 
DH5αMCR (E. coli Genetic Stock Center, New Ha-
ven, CT) and BL21(DE3) (Novagen, Madison, Wl) were 
grown in LB medium (Sambrook et al., 1989).

Cloning and expression of PBCV-1 ODC

PBCV-1 a207r was cloned from PCR-amplifi ed viral 
DNA using the following oligonucleotide primers:

5’ Primer:  AAATTGCTCGAGATGAATTCTGTTGTAAATAAC

3’ Primer: ATTATTTTGTCATTTGGGATCCTCATTTAAAT-
GTAGT

The underlined bases indicate the 5’ and 3’ restriction 
sites for Xhol and BamHI endonucleases that were used 
for cloning. The PCR contained 1.2 μg of PBCV-1 ge-
nomic DNA, 26 pmol of each primer, 0.2 mmol of each 
dNTP, 5 mM MgCI2, 5 units of Taq DNA polymerase 
(Sigma, St. Louis, MO), 0.6 units of Vent DNA poly-
merase (New England Biolabs, Beverly, MA), and 1× 

PCR buffer in a 50-μl reaction volume. Amplifi cation was 
carried out with an Ericomp Thermocycler (Deltacycler 
II) using 25 cycles of 94°C for 1 min, 50°C for 1 min, 
and 72°C for 2.5 min. PCR fragments of the expected 
size were digested with Xhol and BamHl and inserted 
into the Xhol–BamHl  sites of the pET-15b expression 
vector (Novagen). This process produced a 6-His resi-
due tag at the N-terminus of the target protein. The re-
sulting plasmid, pODCTM9, was transformed into either 
E. coli strains DH5αMCR for maintenance or BL21(DE3) 
for expression.

The a207r gene was expressed by growing cells over-
night at 25°C in 125 ml of LB medium containing 100 μg/
ml ampicillin to an A600 of 1.0. Then, 12.5 ml of the over-
night culture was subcultured into 500 ml LB me dium 
containing 100 μg/ml ampicillin (5 liters total vol ume). 
The cultures were induced with 1 mM IPTG and incu-
bated at 25°C overnight. The cells were harvested by 
centrifugation at 5000 rpm for 5 min and resuspended 
in 400 ml of phosphate-buffered saline which contained 
100 μg/ml of lysozyme. After incubation on ice for 30 
min, cells were disrupted by sonication for 3 min using a 
Tekmar sonic disruptor at 100% amplitude, in 5-s pulses. 
Samples were centrifuged at 10,000 rpm for 10 min to 
separate soluble and insoluble fractions.

Purifi cation of recombinant enzyme

Addition of (NH4)2SO4 to the soluble fraction resulted 
in ODC precipitation in the 35–65% fraction. The precip-
itated protein was collected by centrifugation, resus-
pended in 100 ml buffer A (50 mM NaH2PO4, 300 mM 
NaCI, 10 mM imidazole, pH 8.0) containing 0.04 mM 
PLP (Sigma) and 2.5 mM DTT (Sigma) and applied to 
a NiNTA Superfl ow column (Qiagen, Hilden, Germany) 
equil ibrated with buffer A, 0.04 mM PLP, and 2.5 mM 
DTT. The column was washed with 50 ml of buffer A, fol-
lowed by 50 ml of buffer B (50 mM NaH2PO4, 300 mM 
NaCI, 20 mM imidazole, 0.04 mM PLP, and 2.5 mM DTT, 
pH 8.0). The His-tagged protein was eluted with 50 ml of 
buffer C (50 mM NaH2PO4, 300 mM NaCI, 250 mM imid-
azole, 0.04 mM PLP, and 2.5 mM DTT, pH 8.0) contain-
ing 0.5 mg/ml BSA. All column washes and subsequent 
elutions were performed at 4°C. The fractions containing 
the recombi nant protein, monitored by their faint yellow 
color from the PLP, were pooled and dialized against 50 
mM CAPSO, pH 9.0, containing 2.5 mM DTT and 0.04 
mM PLP. Protein concentrations were determined by the 
Lowry method (Lowry et al., 1951). Purifi ed enzyme was 
stored in 100-μl aliquots at –80°C.

Enzyme assays

Enzyme assays were carried out in Warburg fl asks 
at 42°C with shaking unless otherwise noted. Enzyme 
re actions contained 50 mM CAPSO buffer, pH 9.0, 0.04 
mM PLP, 2.5 mM DTT, 0.125 μCi L-[1-14C]ornithine hy-
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drochloride (Amersham Biochemicals, Piscataway, NJ), 
0.4 mM L-ornithine hydrochloride, and enzyme in a fi -
nal volume of 250 μl. A Whatman 1-cm fi lter paper was 
soaked with 20 μl of 10% KOH and placed in the center 
chamber of the Warburg fl asks to trap 14CO2 released 
from the decarboxylation reaction. The assay mixture 
was placed in the bottom of the fl asks while the enzyme 
was placed in the sidearms of the fl asks. The fl asks 
were sealed with serum stoppers and then tipped slightly 
to mix the en zyme with the substrate mixture. The re-
actions were stopped after 30 min with the addition of 
500 μl of 6 N HCI and allowed to incubate an additional 
30 min to trap residual 14CO2. The fi lter papers were re-
moved, placed into scintillation vials containing 10 ml of 
Optifl uor (Pack ard, Downers Grove, IL), and counted in 
a liquid scintil lation counter.

Northern and dot blot analyses

Chlorella cells (1 × 109) were collected at various 
times after PBCV-1 infection, frozen in liquid, nitrogen, 
and stored at —80°C. RNA was extracted, denatured 
with formaldehyde, separated on 1.2% agarose gels, 
and transferred to nylon membranes (Micron Separa-
tions Inc., Westborough, MA) as described (Graves et 
al., 2001). RNA was hybridized to an antisense 32P-sin-
gle-stranded odc probe (Graves and Meints, 1992) at 
65°C in 50 mM NaPO4, 1% BSA, and 2% SDS. After hy-
bridization, radioactivity bound to the membranes was 
detected and quantifi ed using a Storm 840 Phosphorim-
ager and ImageQuant software (Molecular Dynamics, 
Inc., Sunny-vale, CA). To monitor possible loading differ-
ences be tween samples, the relative amount of the 3.6-
kb rRNA in each lane was determined by converting the 
photo graphs of stained membranes to digital images us-
ing a Hewlett-Packard ScanJet 4C scanner and analyz-
ing the images with ImageQuant software.

Viral DNAs used for dot blots were denatured, ap-
plied to nylon membranes fi xed by UV cross-linking, and 
hy bridized with the same probes used for the Northern 
analysis.

Phylogenetic analyses

Amino acid sequences were aligned using Clustal X 
(Thompson et al., 1997) and then optimized manually 
with MacClade 4.02 (Maddison and Maddison, 2001). 
Phylogenetic trees were constructed using maximum 
likelihood and neighbor-joining approaches.

The maximum likelihood analysis assumed the amino 
acid substitution model of Jones et al. (1992). Amino 
acid substitution frequencies were estimated empirically 
from the multiple sequence alignment. The model of rate 
het erogeneity assumed eight Γ-distributed rate catego-
ries. The distribution parameter of gamma (alpha) was 
1.59, also estimated from the data set. The maximum 
likeli hood tree was identifi ed via 100,000 quartet puz-

zling steps using PUZZLE 4.0.2 (Strimmer and von Hae-
seler, 1996). Branch support for each node in the un-
rooted tree was inferred as the percentage of shared 
bipartitions from among the 20,475 analyzed quartets.

The neighbor-joining tree was constructed using the 
PAM matrix model of probabilities of change between 
amino acids (Dayhoff et al., 1978) with the Protdist and 
neighbor programs in PHYLIP (Felsenstein, 1993). Tree 
building included subreplicates and random input order 
of taxa. Branch support was estimated using the same 
parameters, but from 1,000 bootstrap-resampled data 
sets generated using the Seqboot program of PHYLIP. 
All trees were rooted with the arginine decarboxylase 
genes of E. coli and Avena sativa.

Other procedures

DNA and putative protein sequences were analyzed 
with the University of Wisconsin Computer Group Ver-
sion 10.1 package of programs (Genetics Computer 
Group, 2000). The GenBank Accession Numbers for 
PBCV-1 ORF A207R are U42580 and T17697.
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