23 research outputs found

    Ecology of the Ocean Sunfish, Mola mola, in the southern California Current System

    Get PDF
    The common ocean sunfish, Mola mola, occupies a unique position in the eastern Pacific Ocean and the California Current Large Marine Ecosystem (CCLME) as the world\u27s heaviest, most fecund bony fish, and one of the most abundant gelativores. M. mola frequently occur as bycatch in fisheries worldwide and comprise the greatest portion of the bycatch in California\u27s large-mesh drift gillnet fishery. In this first long-term tagging study of any ocean sunfish species in the eastern Pacific, 15 M. mola (99 cm to 200 cm total length) were tagged in the southern California Bight (SCB) between 2003 and 2010 using 14 satellite pop-off archival tags (PATs) and one Fastloc Mk10 GPS tag. Ten tags provided positional data for a cumulative dataset of 349 tracking days during the months of july through March. Thirteen tags provided temperature and depth data. All M. mola remained within similar to 300 km of the coast, and nearly all exhibited seasonal movement between the SCB and adjacent waters off northern and central Baja California, Mexico. No tagged individuals were tracked north of the SCB. Tag depth data showed diel vertical migration and occasional deep (\u3e500 m) dives. Data from the Fastloc GPS tag allowed close examination of the relationship between the movements of the largest tagged ocean sunfish (2 m TL) and fine-scale oceanographic features. Near-instantaneous satellite sea surface temperature images showed this individual associated with upwelling fronts along its migration path, which exceeded 800 km and ranged from 6 to 128 km from the coast. Tag depth data showed active use of the water column within the frontal zones. Synthetic aperture radar (SAR) images demonstrated that surface slicks, which often indicate convergent circulation, coincided with this type of front. Zooplankton tows in the southern region of tracking off central Baja California, Mexico revealed dense populations of salps toward the warm side of these fronts. Satellite tag and ecosystem data suggest that bio-physical interactions in coastal upwelling fronts create favorable foraging habitat. (C) 2015 The Authors. Published by Elsevier B.V

    Integrated monitoring of mola mola behaviour in space and time

    Get PDF
    Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of finescale (< 10 m) behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS), which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV) videorecorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS) and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (r(s) = 0.184, p < 0.001). The model also revealed that tracked fish opportunistically displace with respect to subsurface current flow. Thus, we show how physical forcing and current structure provide a rationale for a predator's finescale behaviour observed over a two weeks in May 2014

    Fastloc-GPS reveals daytime departure and arrival during long-distance migration and the use of different resting strategies in sea turtles

    Get PDF
    Determining the time of day that animals initiate and end migration, as well as variation in diel movement patterns during migration, provides insights into the types of strategy used to maximise energy efficiency and ensure successful completion of migration. However, obtaining this level of detail has been difficult for long-distance migratory marine species. Thus, we investigated whether the large volume of highly accurate locations obtained by Argos-linked Fastloc-GPS transmitters could be used to identify the time of day that adult green (n = 8 turtles, 9487 locations) and loggerhead (n = 46 turtles, 47,588 locations) sea turtles initiate and end migration, along with potential resting strategies during migration. We found that departure from and arrival at breeding, stopover and foraging sites consistently occurred during the daytime, which is consistent with previous findings suggesting that turtles might use solar visual cues for orientation. Only seven turtles made stopovers (of up to 6 days and all located close to the start or end of migration) during migration, possibly to rest and/or refuel; however, observations of day versus night speed of travel indicated that turtles might use other mechanisms to rest. For instance, turtles travelled 31% slower at night compared to day during their oceanic crossings. Furthermore, within the first 24 h of entering waters shallower than 100 m towards the end of migration, some individuals travelled 72% slower at night, repeating this behaviour intermittently (each time for a one-night duration at 3–6 day intervals) until reaching the foraging grounds. Thus, access to data-rich, highly accurate Argos-linked Fastloc-GPS provided information about differences in day versus night activity at different stages in migration, allowing us, for the first time, to compare the strategies used by a marine vertebrate with terrestrial land-based and flying species

    Mechanical Impedance and Its Relations to Motor Control, Limb Dynamics, and Motion Biomechanics

    Get PDF
    corecore